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ABSTRACT:  
Current methods for modeling non-adiabatic molecular dynamics face fundamental limitations 
when treating geometric phase effects: quantum mechanical phenomena where nuclear 
wavepackets acquire phase shifts when encircling conical intersections.  Existing approaches 
either neglect these effects entirely or rely on potential energy surfaces arising from the Born-
Oppenheimer approximation, which introduce artificial singularities and can overestimate 
geometric phase contributions. This project developed a new theoretical framework based on 
exact factorization (XF) methods to overcome these limitations. We derived mathematical 
formulations for hybrid quantum-classical XF dynamics that selectively treat critical nuclear 
degrees of freedom quantum mechanically while propagating others classically.  This approach 
addresses the computational intractability that has previously limited exact methods to toy 
systems. Key innovations include a new approach to systematically identifying nuclear 
coordinates requiring quantum treatment, as well as novel implementation strategies that 
interface with existing quantum chemistry codes.  The project also developed a proof-of-concept 
code for treating Jahn-Teller systems and creation of educational materials on non-adiabatic 
dynamics geared at the graduate level. The theoretical framework developed will enable future 
systematically improvable calculations of nuclear quantum effects in realistic molecular systems, 
filling a critical gap in non-adiabatic dynamics methods. This foundation supports future 
development of predictive tools for designing energy-relevant photochemical processes where 
quantum coherence effects may be exploited to control reaction outcomes. 
 
INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:  
Understanding and predicting non-adiabatic molecular dynamics represents one of the central 
challenges in modern theoretical chemistry, providing the essential foundation for describing 
electron-nuclear coupled phenomena that govern photochemical reactions, charge and energy 
transfer, and quantum coherence effects in molecular systems.1, 2 The development of non-
adiabatic dynamics theory is essential for performing predictive molecular calculations in 
applications such as next-generation photocatalysis, optoelectronics, and quantum information 
science. However, an outstanding challenge in contemporary non-adiabatic dynamics theory lies 
in quantifying the role of geometric phase interference, a quantum mechanical phenomenon 
where nuclear wavepackets interfere when encircling points in a potential energy surface with 
nontrivial topology.3, 4 

Recent high-impact experimental and theoretical studies have demonstrated that accurate 
treatment of geometric phase effects is necessary for prediction of differential cross sections in 
the prototypical hydrogen exchange reaction where high-level theoretical treatment remains 
feasible.5-7 For the hydrogen exchange reaction, H + HD à H2 + D, experimental measurements 
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of final state distributions were accompanied by quasi-classical scattering calculations 
incorporating geometric phase effects through the Mead-Truhlar method.  These studies have 
conclusively shown that inclusion of geometric phase in dynamics simulations is required to 
reproduce experimental observables.6-8 However, for larger molecular systems, advanced 
dynamics methods that treat nuclear quantum effects such as path integral molecular dynamics 
and ring polymer molecular dynamics, fundamentally cannot account for geometric phase 
effects, as these approaches are not constructed to track phase relationships between different 
components of a wavepacket.2  Even methods that treat nuclear dynamics fully quantum 
mechanically struggle to accurately capture geometric phase effects due to artifacts arising from 
the ubiquitous Born-Oppenheimer approximation (BOA), which applies an adiabatic separation 
of nuclear and electronic motion.4 More recent efforts aimed at overcoming BOA artifacts for 
assessing geometric phase effects in nonadiabatic dynamics have included transformation into 
diabatic representations.9, 10 However, the transformation from an adiabatic to a diabatic 
representation is not uniquely defined for polyatomic systems, requiring approximations that 
introduce unquantifiable errors into potential energy surfaces and their couplings.11  

In 2010, Gross and colleagues developed the XF methodology with the potential to 
overcome these fundamental challenges for accurate calculation of geometric phase effects on 
non-adiabatic dynamics.12 This formalism expresses the total molecular wavefunction as a 
product of nuclear and electronic wavefunctions, with the electronic component treated as a 
conditional probability based on nuclear configuration. The critical distinction between XF and 
conventional approaches lies in the inclusion of electronic-nuclear coupling directly in the 
dynamics through coupled differential equations that must be solved simultaneously to evolve 
the nuclear and electronic wavefunctions. In regions with significant non-adiabatic coupling, the 
nuclear equations act back on electronic eigenvalues and eigenvectors, resulting in time-
dependent potential energy surfaces that naturally do not produce the artificial singularities 
introduced by the BOA.12, 13 

Notably, XF methods inherently track phase relationships of wavefunctions throughout 
time evolution, making them exceptionally well-suited for accurate calculation of geometric 
phase effects. However, due to the substantial computational expense of propagating both 
electronic and nuclear wavefunctions simultaneously, no publicly available implementation of 
this method for realistic molecular systems has been developed and released to date. Over the 
past fifteen years, the majority of XF method development has focused on propagating nuclear 
dynamics classically for computational efficiency.14 Recently, three compelling studies have 
employed fully quantum dynamical XF to compute geometric phase effects in two-dimensional 
model systems,15-17 but quantum dynamical XF has not been applied to any polyatomic 
molecular system due to the absence of practical software implementations. 

Recent theoretical work from Gross and colleagues suggests that geometric phase effects 
may be systematically overestimated when employing the BOA, which forms the foundation for 
nearly all previous theoretical studies.4 Their XF dynamics calculations on model systems 
demonstrate that for finite nuclear masses, electronic wavefunctions remain smooth in regions 



 
 
where BOA employment generates artifacts that appear as geometric phase effects. This 
overestimation arises from several sources including artificial singularities introduced by the 
BOA at conical intersections and neglect of dynamical electronic-nuclear coupling. This 
represents a significantly underdeveloped research area requiring systematic investigation to 
identify which molecular properties and topologies produce genuine geometric phase effects that 
persist beyond adiabatic approximations. 

In this short, one-year project, we began to address the computational and theoretical 
gaps identified above by developing a systematically improvable XF framework specifically 
designed for realistic molecular systems. Our work establishes a new comprehensive 
implementation strategy that, upon completion, we believe will make quantum dynamical XF 
computationally tractable through hybrid quantum-classical partitioning and efficient interfacing 
with existing quantum chemistry codes. By creating systematic criteria for identifying nuclear 
degrees of freedom that require quantum treatment and developing novel algorithms that avoid 
the computational bottlenecks that have previously limited XF methods to small model systems, 
this research provides the foundational framework needed to quantify geometric phase effects in 
polyatomic molecules. The theoretical and algorithmic developments presented here position us 
to move beyond the current limitations of methods relying on the BOA, enabling predictive 
modeling of nuclear quantum effects in energy-relevant photochemical processes where quantum 
coherence phenomena may be exploited to drive and change reactive outcomes. 
 
 
DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 
METHODOLOGY:  
We hypothesize that XF with both electronic and nuclear degrees of freedom propagated 
quantum mechanically will recover the geometric phase-induced wavepacket interference 
observed in exact quantum dynamics calculations. Initial implementations of quantum dynamical 
XF have demonstrated the significant potential of the method, however, current numerical 
methods for solving the complex coupled equations are computationally intensive, limiting 
application of the methods to small model systems.18 In this short project, we began development 
of novel numerical approaches to improve the convergence and efficiency of XF equations, as 
well as develop new interfaces to more flexible quantum dynamics codes such as multi-
configuration time-dependent Hartree (MCTDH).19  

Here we briefly review the equations of motion for XF and summarize how they differ 
from quantum dynamics approaches that employ the BOA, following the seminal paper of Gross 
et al.12 For a system of electrons and nuclei evolving under a time-dependent external field, the 
Hamiltonian can be written 

𝐻" = 𝐻"!" +	𝑉#$%# '𝑟, 𝑡+ + 𝑇-&'𝑅+ + 𝑉#$%& '𝑅, 𝑡+ 1 
where 𝑉#$%# '𝑟, 𝑡+ and 𝑉#$%& (𝑅, 𝑡) are time-dependent potentials acting on the electrons and nuclei, 
respectively. 𝑇-& is the kinetic energy operator of the nuclei and 𝐻"!" is the Born-Oppenheimer 



 
 
Hamiltonian, 

𝐻"!" = 𝑇-#'𝑟+ +𝑊"##'𝑟+ + 𝑉#&'𝑟, 𝑅+ +𝑊"&&'𝑅+ 2 
where 𝑇-# is the kinetic energy operator of the electrons, 𝑊"## 	and 𝑊"&& are the electron-electron 
and nuclear-nuclear potential energy operators, respectively, and 𝑉#& is the electron-nuclear 
potential energy operator. The total Hamiltonian satisfies the time-dependent Schrödinger 
equation: 

𝐻"	Ψ'𝑟, 𝑅, 𝑡+ = 𝑖
𝜕
𝜕𝑡
Ψ'𝑟, 𝑅, 𝑡+ 3 

Gross et al. prove that the exact solution to the time-dependent Schrödinger equation can be 
written as a single product: 

Ψ'𝑟, 𝑅, 𝑡+ = Φ''𝑟, 𝑡+χ'𝑅, 𝑡+ 4 
where Φ''𝑟, 𝑡+ is normalized at any fixed nuclear configuration at time t: 

;𝑑𝑟|Φ''𝑟, 𝑡+|( = 1 5 

The authors show that the wavefunctions Φ''𝑟, 𝑡+ and χ(𝑅, 𝑡) satisfy the following coupled 
differential equations: 

[𝐻"#)'𝑟, 𝑅, 𝑡+ − 𝜖(𝑅, 𝑡)]	Φ''𝑟, 𝑡+ = 𝑖
𝜕
𝜕𝑡
Φ''𝑟, 𝑡+ 6 
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where Nn is the number of nuclei, Mv∇* partial derivative with respect to nuclear coordinates v. 
𝐻"#) is defined 

𝐻"#)'𝑟, 𝑅, 𝑡+ = 	𝐻"!" + 𝑉#$%# '𝑟, 𝑡+ +	𝑈"#&
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where we have defined a scalar potential 

𝜖'𝑅, 𝑡+ = 〈Φ''𝑟, 𝑡+|𝐻"12'𝑟, 𝑅, 𝑡+ − i
𝜕
𝜕𝑡
|Φ''𝑟, 𝑡+〉3 10 

and a vector potential 
𝑨*'𝑅, 𝑡+ = 〈Φ''𝑟, 𝑡+|−i∇0Φ''𝑟, 𝑡+〉3 11 

where 〈. . |. . 〉3 denotes the inner product over the electronic coordinates r. The solution of the 
two time-dependent Schrödinger equations, electronic and nuclear, depend on each other and 
must be solved simultaneously. The construction of these XF equations result in an effective 
PES, 𝜖'𝑅, 𝑡+, that is time-dependent due to the nuclear wavefunction acting back on the 
electronic wavefunction, which, by definition, does not occur in BOA quantum dynamics.  



 
 

We note here that the second key proof in Gross et al.12 is that the electronic and nuclear 
time-dependent Schrödinger equations are form-invariant to choice of gauge, implying that the 
dynamics themselves (and therefore all observables) are gauge-invariant. This also implies that 
the electronic and nuclear wavefunctions are unique up to the '𝑅, 𝑡+-dependent phase. There are 
numerous reasonable choices of gauge, but the most employed is: 

〈Φ''𝑟, 𝑡+|
𝜕
𝜕𝑡
Φ''𝑟, 𝑡+〉3 ≡ 0 12 

To describe our implementation strategy, we express the time-dependent vector and 
scalar potentials when the electronic wavefunction is expanded in the basis of Born-
Oppenheimer states, as shown in Ref. 13. We define: 

𝐻"!"'𝑟, 𝑅+𝜑''𝑟+ = 𝑉!"
4 '𝑅+𝜑''𝑟+ 13 

Here, 𝑉!"
4  and 𝜑',6 are the eigenvalues and eigenfunctions of the Born-Oppenheimer 

Hamiltonian, respectively. We expand the electronic wavefunction in the complete orthonormal 
set of Born-Oppenheimer states: 

Φ''𝑟, 𝑡+ =E𝐶4(𝑅, 𝑡
7

489

)	𝜑'
4'𝑟+ 14 

𝐶4'𝑅, 𝑡+ = ;𝑑𝑟	𝜑'
4∗'𝑟+Φ''𝑟, 𝑡+ 15 

The XF normalization condition now becomes 

E|𝐶4(𝑅, 𝑡)|(
7

489

= 1 16 

Gross et al. derive the time-dependent vector and scalar potentials in the Born-Oppenheimer 
basis as: 
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where ℱ>4,;!"  and 𝒢>4,;!"  are the first- and second-order non-adiabatic couplings 
ℱ>4,;!" '𝑅+ = −𝑖 〈𝜑'>|∇;𝜑'

4〉 19 
𝒢>4,;!" '𝑅+ == 	 〈𝜑'>|∇;(𝜑'

4 〉 20   
At this stage, we have the previously derived expressions needed to provide context for the 
implementation approach we developed in this project. The publications by Gross and coworkers 
report few details on implementation strategies for solving these complex and coupled 
equations,12, 13 which is a likely reason for the lack of publicly accessible code that can perform 
quantum dynamics using XF. Here we detail an implementation strategy that harnesses efficient 
and flexible pre-written electronic structure codes alongside quantum dynamics codes to perform 
quantum dynamical propagation of the coupled XF equations for molecular systems, which has 
not been done for any molecules other than very simple systems such as H2+.12, 13  

We note that the XF framework naturally supports a quantum-classical partition, as 
shown in key papers from Gross et al. 12, 13 In the large nuclear mass limit, the dependence of the 
electronic Hamiltonian, 𝐻"#), on the nuclear wavefunction, c, vanishes and the electronic equation 
becomes parametrically dependent on the nuclear configuration alone.12, 13 This leads to classical 
equations of motion for the nuclei, as follows: 

𝑀
𝜕(

𝑑𝑡(
𝑅? = 𝐸? + o

𝜕
𝑑𝑡
𝑅?p × 𝐵? 22 

where 𝑅? is the nuclear configuration, 𝐸? = ∇?𝜖'𝑅, 𝑡+ −
@A"
@%

, and 𝐵? = ∇? × 𝑨?. The quantities 
𝐸? and 𝐵? are known as the electric and magnetic “Berry fields,” respectively, but it is crucial to 
note that they are not external electromagnetic fields. Instead, these “fields” arise internally from 
the topological and time-dependent structure of the XF formalism. The term involving 𝐵? 
introduces an effective “Lorentz-like” force that acts on the nuclear degrees of freedom and 
captures non-adiabatic effects beyond what is accessible in the BOA.20, 21 This treatment 
distinguishes XF-based classical nuclear dynamics from the BOA: the forces on the nuclei come 
from the gradient of the time-dependent PES, not from a static adiabatic surface, and includes 
dynamical corrections via the magnetic Berry field. These internal fields reflect electron-nuclear 



 
 
coupling in a gauge-invariant form and are fundamental to understanding geometric and non-
adiabatic effects in XF dynamics. In the next section, we develop the theory and an 
implementation roadmap for treating some nuclear degrees of freedom quantum mechanically 
and others classically, while treating all electronic degrees of freedom quantum mechanically.  
We believe this will enable scalable XF calculations for realistic molecular systems. 
 
 
RESULTS AND DISCUSSION:  
 
Implementation Strategy for Fully Quantum XF in Molecules 
This implementation strategy combines the XF approach of Gross and coworkers with a Born-
Oppenheimer expansion for the electronic wavefunction and an MCTDH expansion19 for the 
nuclear wavefunction. This enables the use of standard electronic structure codes (energies, non-
adiabatic coupling vectors) to assist in the calculation of the time-dependent PESs and electronic 
wavefunctions. This also enables us to use the MCTDH code for solving the nuclear equations. 
Due to the high computational cost of this procedure, we describe numerous places where we can 
harness lower-cost algorithms and parallel computing to reduce the computing resources needed. 
 We introduce the MCTDH wavefunction here, which takes the 
form

𝜒'𝑅, 𝑡+ = ∑ 𝐴4#…4!(𝑡)∏ 𝜓4$
C (>4#…4! 𝑅C , 𝑡) 21 

Here, 𝐴4#…4!(𝑡) are the expansion coefficients for the time-dependent single-particle functions 
(SPFs) 𝜓4$

C . More detail on this approach and the expansion can be found in Refs. 19, 22. 
 
I. Pre-computation of electronic structure quantities 

We generate a grid of nuclear configurations, R, covering relevant configuration space 
and calculate BOA electronic energies, orbitals, orbital coefficients, and non-adiabatic 
couplings between states, employing fitting procedures23 and adaptive grid methods in 
regions with strong non-adiabatic couplings. High-level electronic structure methods, 
including coupled cluster theory, multi-reference configuration interaction,24-26 and 
complete active space second order perturbation theory can be selected based on the 
molecular system studied.27-29 

II. Initialization phase 
The initial electronic wavefunction is the BOA wavefunction computed from standard 
electronic structure methods (see above). There are many ways to initialize the nuclear 
wavefunction and efficiency tests can be performed to determine the best procedure. One 
approach is to equilibrate an MCTDH wavefunction in the BOA, which is likely to 
provide a reasonable starting guess. For dissociative systems, we will implement complex 
absorbing potentials at grid edges,30 ensuring proper behavior of interpolated quantities 
and boundaries. 

III. Time propagation algorithm 



 
 

a. Nuclear wavefunction propagation 
i. MCTDH implementation: Using the constructed 𝑨;'𝑅, 𝑡+ and 𝜖'𝑅, 𝑡+ 

described in I.a.iii, we will set up an MCTDH calculation to propagate the 
nuclear wavefunction (𝜒), employing the operator from the nuclear equation, 

𝐻&., = S∑ 9
(D%

+!
* G−𝑖∇* + 𝑨*'𝑅, 𝑡+J

(
+ 𝑉#$%& '𝑅, 𝑡+ + 𝜖'𝑅, 𝑡+T. Specifically, 

this means we will solve for 𝜒 in 𝐻&.,𝜒 = 𝑖 @
@%
𝜒 using the built-in integrators 

in the MCTDH code such as Adams-Bashforth-Moulton. The use of MCTDH 
will also enable us to incorporate dynamic pruning methods to reduce the 
number of SPFs in our MCTDH expansion.31 

b. Electronic coefficient propagation 
i. In developing this proposal, I derived the equations to propagate the 

expansion coefficients, Cj in Φ''𝑟, 𝑡+ = ∑ 𝐶4(𝑅, 𝑡7
489 )	𝜑'

4(𝑟), giving 

𝑖 @
@%
𝐶4(𝑅, 𝑡) = G𝑉4!"'𝑅+ − 	𝜖'𝑅, 𝑡+J 𝐶4'𝑅, 𝑡+ +

∑ 〈𝜑'
4 |𝑉#$%# |𝜑'>〉 𝐶>'𝑅, 𝑡+ +> 	∑ G 9

D&
J 〈𝜑'

4 `𝑈#&
,-./`𝜑'>〉 𝐶>(𝑅, 𝑡)>,; . Note that in 

the absence of an external electronic potential, 𝑉#$%# , calculation of 
〈𝜑'

4 `𝑈#&
,-./`𝜑'>〉 does not require any additional integral calculations, as it 

consists purely of pre-computed quantities 𝑨;'𝑅, 𝑡+, 𝜖'𝑅, 𝑡+ and BOA 
energies and non-adiabatic coupling vectors. 

ii. For each sampled nuclear configuration, we will construct the equations above 
and time-propagate using a unitary integrator such as split-operator or 
Lanczos, enforcing normalization ∑ |𝐶4(𝑅, 𝑡)`

( = 14 . We will once again 
interpolate to the full grid, using gauge-consistent interpolation to preserve 
phase relationships. 

 Future benchmark application of the methods developed here will be the calculation of 
geometric phase effects on the differential cross section of the ground state H + HD à H2 + D 
reaction, as experimentally and theoretically studied in Refs 6, 7. In these studies, the Mead-
Truhlar vector potential was successfully used in quasi-classical scattering trajectories to 
incorporate the effects of the geometric phase. This method was shown to effectively reproduce 
the differential cross sections of the H + HD à H2 + D reaction, making it a suitable benchmark 
for comparison with the XF approach proposed here. To my knowledge, if successful, this would 
be the first calculation of geometric phase effects using fully quantum dynamical (i.e., both 
electrons and nuclei are propagated quantum mechanically) XF in a molecular system.  

Once the quantum dynamical XF method has been successfully developed, implemented, 
and tested for the hydrogen exchange reaction below the conical intersection, we aim to test the 
method on reactions involving multiple electronic states. While one study has successfully 
investigated the hydrogen exchange reaction at scattering energies just above the conical 



 
 
intersection, they find that the effect of the upper electronic state only plays a small role in 
changing the differential cross sections.5 We thus turn to apply our new methodology larger 
systems that require reduced-dimensional Hamiltonians for quantum dynamics propagation.  

To develop a predictive understanding of geometric phase effects in larger molecular 
systems, it is essential to identify the nuclear degrees of freedom that give rise to these effects. 
We hypothesize that the nuclear coordinates responsible for lifting degeneracies in BOA energies 
contribute most significantly to geometric phase effects. As molecular size increases, a full 
quantum treatment of all nuclear modes becomes computationally intractable. This limitation has 
led to the dominance of classical nuclear propagation in practical implementations of the XF 
framework.18 A key challenge is to determine which nuclear coordinates are essential for 
capturing quantum effects and therefore which can be treated classically. Identifying a reduced-
dimensional model Hamiltonian for quantum dynamics that retains relevant quantum features is 
a longstanding problem in quantum dynamics.32 Here we established a systematic framework for 
dimensionality reduction within the XF methodology, enabling accurate and efficient treatment 
of nuclear quantum effects in realistic systems. 

In future work, we will test this hierarchical approach to determine which nuclear 
coordinates require quantum treatment to accurately capture geometric phase effects. The 
methodology consists of the following steps: 
1. Branching space characterization: For each system, we will identify the branching space 
coordinates in BOA conical intersections. These coordinates will form the minimal subspace for 
quantum treatment. 
2. Progressive coordinate inclusion: Starting from the branching space, we will systematically 
add nuclear degrees of freedom based off the magnitude of their energetic coupling elements 
while fixing the remaining coordinates. For each configuration we will propagate the quantum 
dynamics using XF and calculate quantities such as reaction probabilities, branching ratios, 
wavepacket interference patterns, and time-dependent spectroscopic observables. 
3. Convergence analysis: We will establish quantitative convergence metrics to determine when 
adding nuclear coordinates to the dynamics subspace no longer affects geometric phase effects 
and other nuclear quantum effects. These metrics include changes in reaction probabilities, phase 
interference contrast measures, and renormalized spatial overlap between reduced and higher-
dimensional wavepackets. 

Building on the insights gained in our dimensionality reduction scheme, we will develop 
a hybrid XF method that selectively treats critical nuclear degrees of freedom quantum 
mechanically while treating other classically. This approach will overcome computational 
barriers that limit quantum dynamics calculations to small molecules, enabling predictive 
modeling of geometric phase effects in complex photochemical systems. By precisely capturing 
phase interference effects while maintaining computational feasibility, this method will 
transform our ability to predict and design photochemical reaction outcomes, enabling a new 
paradigm for quantum dynamical calculations on systems ranging from photocatalysts to light-
harvesting complexes.  



 
 
 
Development of Hybrid Quantum-Classical XF Equations 
To efficiently model nuclear quantum effects in complex molecular systems, we developed a 
hybrid quantum-classical dynamics approach within the XF framework. In this scheme, the 
electronic subsystem and a subset of key nuclear degrees of freedom are treated fully quantum 
mechanically, while the remaining nuclear coordinates are propagated classically. Based on 
reduced-dimensionality studies described above, we select a subset of nuclear coordinates to 
treat quantum mechanically that exhibit strong nuclear quantum effects (e.g. tunneling, 
geometric phase interference), couple strongly to electronic transitions, and/or participate 
directly in the process of interest. We define nuclear coordinates treated quantum mechanically 
as 𝑄 and others treated classically as 𝑋. All electronic coordinates will be propagated quantum 
mechanically. The total wavefunction is factorized as:  

ΨG𝑟, 𝑄, 𝑋, 𝑡J = ΦE,F G𝑟, 𝑄, 𝑡J 𝜒F G𝑄, 𝑡J 23 
Here, the electronic wavefunction ΦE,F depends parametrically on both the classical and 
quantum nuclear coordinates, 𝑄, 𝑋, while the nuclear wavefunction 𝜒F depends only on 𝑄, 
parameterized by classical nuclear coordinates 𝑋. We define the nuclear wavefunction 

𝜒F G𝑄, 𝑡J = 𝜒 o𝑄, 𝑡; 𝑋(𝑡)p 𝛿'𝑋 − 𝑋(𝑡)+ 24 

where 𝛿(𝑋 − 𝑋(𝑡)) is the Dirac delta function. The XF equations for the electrons and quantum 
nuclei become 
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The equations of motion for the classical nuclei are given: 
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where 〈… 〉E represents averaging over the quantum nuclear wavefunction 

〈𝑂〉E = ;𝑑𝑄 |𝜒F G𝑄, 𝑡J |(𝑂 G𝑄, 𝑋J 28 

Our implementation approach follows the one outlined previously, with the difference that at 
each time step, the classical nuclear coordinates, 𝑋, are frozen and the quantum XF procedure of 
electrons, 𝑟, and quantum nuclear coordinates, 𝑄, is performed. The forces on the classical 
nuclear degrees of freedom and velocity-dependent terms can be computed by averaging over 𝑄, 

weighted by 𝜒F G𝑄, 𝑡J.	Then, coordinates 𝑋 will be updated using the classical equations of 
motion described above. The quantum dynamical procedure for electrons and quantum nuclei 



 
 
can then proceed at this new geometry for classical nuclear coordinates by recalculating the 
scalar and vector potentials, 𝜖(𝑄, 𝑋, 𝑡) and 𝑨G G𝑄, 𝑋, 𝑡J. 

This hybrid strategy retains exact coupling between electrons and quantum nuclear 
degrees of freedom while dramatically reducing the computational cost of full quantum 
dynamics. This approach offers a scalable pathway to incorporating nuclear quantum effects, 
including geometric phase effects, in realistic, high-dimensional molecular systems. 

 
Discussion 
The primary accomplishment of the research in this project was the successful development of a 
comprehensive mathematical framework for hybrid quantum-classical XF dynamics. We derived 
complete evolution equations for the partitioned system, including modified expressions for 
time-dependent vector and scalar potentials that account for coupling between the quantum and 
classical coordinates. These equations maintain gauge invariance while providing a 
computationally tractable path to treating nuclear quantum effects in realistic molecular systems. 
 The theoretical framework addresses several fundamental challenges that have previously 
limited XF methods. By establishing systematic criteria for coordinate partitioning based on 
energetic coupling analysis and branching space characterization, we created a new approach to 
dimensionality reduction that preserves essential quantum effects while eliminating 
computational bottlenecks. The hybrid approach maintains exact electronic-nuclear coupling for 
critical degrees of freedom while treating others classically, providing a clear pathway to 
systematic improvement through progressive inclusion of additional quantum coordinates. 
 
Implementation Strategy Validation 
Our implementation strategy successfully addresses the computational challenges that have 
prevented practical application of XF methods to molecular systems. The interface with existing 
quantum chemistry codes eliminates the need for complete reimplementation of electronic 
structure methods, while the MCTDH-based nuclear dynamics component provides efficient 
high-dimensional quantum propagation capabilities. 
  
Model System Development 
We have begun implementation of XF for a Jahn-Teller model system to provide validation of 
our proposed theoretical framework and computational algorithms. The two-dimensional 𝐸⨂𝑒 
system exhibits well-characterized geometric phase effects, making it an ideal testbed for method 
development. Initial calculations successfully reproduced expected qualitative behavior, 
including wavepacket splitting around the conical intersection.  This work remains ongoing. 
 
Educational Impact and Capacity Building 
The educational component of this project yielded substantial benefits for capability 
development. In the course of this project, a nine-lecture curriculum on non-adiabatic dynamics 
and geometric phase effects was developed by Dr. McCaslin.  She delivered these lectures to 



 
 
postdocs at Sandia and external collaborators in Spring 2025. Feedback from participants 
indicated significant improvement in understanding of both fundamental theoretical concepts and 
practical implementation challenges. The structured educational approach facilitated meaningful 
collaboration with external institutions, specifically Prof. Melanie Reber (University of Georgia) 
and PhD candidate Samuel Biggerstaff. The Office of Science Graduate Student Research 
(SCGSR) program provided support for Samuel Biggerstaff to collaborate on this research and 
build new capabilities in XF implementation as well as active learning approaches for fitting 
potential energy surfaces and other quantities from quantum chemistry calculations. This 
collaboration model demonstrates effective leveraging of limited resources through strategic 
partnerships. 
 
 
ANTICIPATED OUTCOMES AND IMPACTS:  
The XF framework developed in this project addresses fundamental limitations in current non-
adiabatic dynamics methods, positioning the scientific community to resolve longstanding 
questions about geometric phase effects in molecular systems. Unlike previous approaches that 
rely on adiabatic approximations such as the Born-Oppenheimer approximation with known 
artifacts, our method provides systematically improvable calculations that can distinguish 
genuine quantum interference phenomena from computational artifacts. 
 
Methodological Advances for the Field 
The implementation strategy interfacing with existing quantum chemistry codes, once complete, 
will eliminate barriers to adoption by the broader computational chemistry community. Rather 
than requiring complete software ecosystem replacement, researchers can incorporate XF 
capabilities into established workflows using familiar electronic structure packages. This 
accessibility ensures rapid dissemination and adoption of the methods.  
 The systematic dimensionality reduction approach addresses a fundamental challenge in 
quantum dynamics: identifying which nuclear coordinates require quantum treatment. Current 
methods rely on chemical intuition or trial-and-error approaches. Our quantitative criteria based 
on energetic coupling analysis and branching space characterization provide objective, 
transferable protocols applicable across a wide variety of molecular systems. 
 
Energy Applications and Technological Impact 
Accurate prediction of geometric phase effects has direct relevance to emerging energy 
technologies where quantum coherence plays a crucial role. Photocatalytic systems involve 
multiple electronic states with strong non-adiabatic coupling, precisely the regime where 
geometric phase effects become important. The ability to model these effects accurately could 
accelerate development of more efficient artificial photosynthesis systems. In organic 
optoelectronic devices, exciton dynamics and charge separation processes require new, highly 



 
 
accurate theories for quantitative modeling of these processes.  This would enable precise 
rational design of materials with optimized photophysical properties.  
 
Fundamental Science Contributions 
This work contributes to resolving a fundamental debate in theoretical chemistry regarding the 
role and importance of geometric phase effects in molecular dynamics. Recent theoretical studies 
suggest that Born-Oppenheimer methods may systematically overestimate these effects due to 
artificial singularities. Our XF approach provides the tools needed to definitively answer these 
questions through comparison with experimental observables. The framework enables 
exploration of previously inaccessible parameter regimes where quantum nuclear effects and 
non-adiabaticity combine. This includes investigation of isotope effects on geometric phase 
phenomena, temperature dependence of quantum interference patterns, and the role of 
environmental coupling in destroying quantum coherence. 
 
Long-term Research Directions 
The theoretical foundation established here opens multiple avenues for future investigation. 
Extension to condensed phase systems through combination with continuum solvation models 
could address photochemistry in realistic environments. Integration with machine learning 
approaches for automated coordinate partitioning and potential energy surface construction could 
further enhance computational efficiency. Development of specialized algorithms for specific 
molecular classes such as conjugated organic molecules, transition metal complexes, and 
biological chromophore, could leverage the general framework while optimizing for system-
specific features. This could lead to predictive modeling capabilities for photobiological 
processes including vision, photosynthesis, and DNA photodamage. 
 
Educational and Workforce Development 
The educational materials developed during this project create lasting impact through training of 
next-generation researchers. The nine-lecture curriculum provides a comprehensive introduction 
to non-adiabatic dynamics and the role of geometric phase, filling a gap in current graduate 
education. These materials can be adapted for broader dissemination through online platforms 
and workshop presentations. Furthermore, the collaborative model demonstrated through the 
partnership with researchers from The University of Georgia shows how national laboratories 
can effectively leverage external expertise while building internal capabilities. This approach 
maximizes return on investment while fostering broader scientific community engagement. 
 
Economic and Societal Benefits 
Accelerated development of energy technologies through improved theoretical predictions could 
yield substantial economic benefits. The chemical industry invests billions annually in catalyst 
development, much involving trial-and-error approaches due to inadequate theoretical guidance. 



 
 
Predictive modeling capabilities for photocatalytic processes could dramatically reduce 
development costs and timelines.  
 
CONCLUSION:  
This project successfully established the theoretical and computational foundation for next-
generation non-adiabatic dynamics methods capable of quantifying geometric phase effects in 
realistic molecular systems. Through development of a comprehensive XF framework with 
systematic quantum-classical partitioning, we addressed fundamental limitations that have 
prevented accurate modeling of nuclear quantum effects in photochemical processes. The hybrid 
approach developed here represents a significant methodological advance, providing the first 
systematically improvable path to treating geometric phase phenomena in polyatomic molecules 
without Born-Oppenheimer artifacts. The mathematical framework maintains exact electronic-
nuclear coupling while achieving computational tractability through dimensionality reduction 
based on energetic coupling analysis and branching space characterization.  
 The educational and collaborative components yielded substantial capacity-building 
benefits, transferring specialized knowledge through structured curriculum development and 
establishing productive partnerships with external institutions. These efforts created lasting 
scientific infrastructure supporting continued method development and application. 
 Future development efforts building on this foundation could transform computational 
photochemistry by enabling predictive modeling of energy-relevant processes where quantum 
coherence effects determine reaction outcomes. The systematic approach developed here 
provides a clear pathway from fundamental theory to practical applications in photocatalysis, 
quantum information technologies, and optoelectronic device design. 
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