
DISCLAIMER

This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or any agency thereof. The

views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency

thereof. Reference herein to any social initiative (including but not

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits

Plans (CBP); Justice 40; etc.) is made by the Author independent of

any current requirement by the United States Government and does

not constitute or imply endorsement, recommendation, or support by

the United States Government or any agency thereof.

SANDIA REPORT
SAND2025-11634
Printed September 2025

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

MPACT Safeguards Modeling:
FY25 Update
Nathan Shoman, Philip Honnold, Ramon Pulido, Tania Rivas, Anna Taconi

SAND2025-11634

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE:This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
Sandia National Laboratories develops and maintains several open-source software packages to support
material accountancy analyses. This includes the Material Accountancy Performance Indicator Toolkit
(MAPIT), the Fissile Facility FlowModeler (F3M) and the Separation and Safeguards Performance
Model Library (SSPM-L).
MAPIT is responsible for performing statistical safeguards analyses on bulk and itemized data from
nuclear fuel cycle facilities and can operate on real or synthetic data. MAPIT is the only open-source
software for such analyses. F3M is a library of modules, built in MATLAB Simulink, that contain pre
made blocks to represent different generic fuel cycle processes. These blocks can be used together in a
modular fashion to represent and simulate nuclear fuel cycle processes with the goal of improving
facility-level accountancy during the design phase. F3M is also an open-source library. Finally, the
SSPM-L library is a series of completed models built from F3M. The library includes facility models
such as a generic PUREX facility and a fuel fabrication facility. The SSPM-L library is not open source,
but is available to collaborators with a relevant use case.
These tools include modeling and simulation pipelines to simulate nuclear fuel cycle facilities and the
underlying software needed to simulate measurement uncertainty and perform statistical analyses.
Together, these tools can perform end-to-end nuclear material accountancy analyses. This report
documents the various improvements made to these tools in FY25. Specifically, we added new statistical
test, new statistical modeling capabilities, new fuel cycle facility models, and launched a new
open-source model component library.

3

This page intentionally left blank.

4

ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

This work is supported by the DOE/NEOffice of Materials and Chemical Technologies (NE-43) -
Materials Protection, Accounting, and Control Technologies (MPACT) program.

5

This page intentionally left blank.

6

CONTENTS

1. Introduction . 11

2. MAPIT . 15
2.1. Systematic error calibration . 15
2.2. Discrete item support . 17
2.3. GEMUF Test integration . 18
2.4. Miscellaneous improvements . 21

3. F3M . 23
3.1. Block improvements . 23
3.2. Initial public release . 23
3.3. Finalized documentation . 25

4. SSPM-L . 27
4.1. Fuel Fabrication . 27
4.2. TRISO Compact . 28
4.3. Generic Electrochemical Reprocessing . 30

5. Summary . 31

References . 33

Appendix A. Pop queue . 35

7

This page intentionally left blank.

8

LIST OF FIGURES
Figure 1-1. MAPIT, F3M, and SSPM-L architecture overview. Small colored blocks for each flow

sheet in the SSPM-L reference the different libraries from F3M that are used. 11
Figure 2-1. Recalibration GUI dialog. Per-sensor calibration frequencies can be set here through

the drop downs or the edit box. 16
Figure 3-1. Initial release of F3M onto GitHub. 24
Figure 3-2. Example of F3M block documentation. 25
Figure 4-1. SSPM-L Fuel Fabrication model flowsheet . 28
Figure 4-2. SSPM-L TRISO Fuel Fabrication (compact) flowsheet . 29
Figure 4-3. SSPM-L Electrochemical reprocessing flowsheet . 30

9

This page intentionally left blank.

10

1. INTRODUCTION

Nuclear fuel cycle facilities face significant economic challenges in meeting safeguards, security, and
environmental regulations. Prior experience has demonstrated that retrofits to meet regulatory
requirements can be costly and time consuming. It is therefore advantageous to consider these goals
during the facility design phase. Sandia National Labs develops and maintains several software packages
that support the design and implementation of material control and accountancy (MC&A). This
includes the Material Accountancy Performance Indicator Toolkit (MAPIT), Fissile Facility Flow
Modeler (F3M), and the Separation and Safeguards Performance Model Library (SSPM-L). These tools
are a mix of open-source and closed-source software tools, that together, can help answer “what-if”
questions for accountancy of bulk nuclear facilities. Figure 1-1 below shows how the different tools
work together to support accountancy analyses.

EnrichmentPUREX

Open Source

Facility 1

Generic

Facility 1

Generic

Facility 1

Enrichment

Generic

Fuel Fab CommonPUREX

Fuel Fab

CUI/EC
Extras

Error
Propagation

Statistical
Tests

Scenario
Analysis

MB
Optimization

Python
API

(Optional) Additional External
Analysis

Figure 1-1: MAPIT, F3M, and SSPM-L architecture overview. Small colored blocks for each flow sheet in the
SSPM-L reference the different libraries from F3M that are used.

11

A brief description of each tool is as follows:

• MAPIT:MAPIT (Material Accountancy Performance Indicator Toolkit) is a Python package
designed to aid in safeguards analysis of bulk materials. The inherent flexibility is designed to
allow safeguards practitioners ask the ”what if?” questions while providing transparency into
commonly employed statistical tests. MAPIT provides both a graphical user interface (GUI) and
an application program interface (API). The API can be used with other popular Python
libraries to extend functionality and integrate with other analytical workflows.

– MAPIT code

– MAPIT documentation

* Complete function and theory documentation for MAPIT is available here

– MAPIT examples and notional data

• F3M:The Fissile Facility FlowModeler (F3M) is an open source series of modules intended to
facilitate the development of nuclear facility models in MATLAB Simulink for safeguards
research. F3M consists of several libraries divided into facility type. This library is targeted
towards modeling material flows and operations without the inclusion of specific operational
details. For example, one generic block is the flow batcher. This block exposes parameters that
describe the behavior of a batching operation such as batch target size and residual size, but does
not describe dimensions or mechanics for how this process might be carried out. The most
relevant details for safeguards research are material flows, quantities, and timings, which is the
primary focus of this library.

– F3M code

– F3M documentation

* Complete function and theory documentation for F3M is available here

• SSPM-L:The Separation and Safeguards Performance Model Library (SSPM-L) is an evolution
of the SSPM framework, which started development nearly 15 years ago. The SSPM-L is a series
of generic models built on the F3M component library and readily integrated withMAPIT. Each
model in the library is tied to references where possible with explicit ties between the model’s
operating parameters and literature references. These parameters are documented in a model
card that accompanies each model. The intent of the SSPM-L model library is to either perform
generic accountancy analyses or to serve as a base for customized, facility-specific models. Since
SSPM-L is based on F3M, any bug fixes or improvements made in one model can be easily
propagated to the others. Many of the SSPM-L models are CUI and are not available on an open
repository like F3M andMAPIT. Users with a relevant use case can obtain SSPM-L without
extensive paperwork (no government use notice required), but must still protect the models as
they would any other CUI information.

This report is focused on updates and improvements made in FY25 and is not intended to serve as a
comprehensive overview. Much of the underlying software documentation for MAPIT and F3M is

12

https://github.com/sandialabs/mapit
https://sandialabs.github.io/MAPIT/
https://github.com/sandialabs/MAPIT-tools
https://github.com/sandialabs/F3M
https://sandialabs.github.io/F3M/

hosted on our GitHub repos 1,2 whereas SSPM-L documentation is in model cards that accompany the
model file.

1MAPIT repo
2F3M repo

13

https://github.com/sandialabs/MAPIT
https://github.com/sandialabs/F3M

This page intentionally left blank.

14

2. MAPIT

MAPIT is the an open source material accountancy toolkit supported byMPACT. Efforts in FY25
focused on general improvements and responses to users filing bug reports or reporting usability
issues.

2.1. Systematic error calibration

MAPIT uses a multiplicative error model [1, 2] to apply simulated measurement error to user supplied
data. The model is described in Equation 2.1.

𝑥𝑡 = 𝑥𝑡(1+ 𝑟𝑡+𝑠𝑡) (2.1)

Where:

• 𝑥𝑡 is the observed value (i.e., what is actually measured) at time 𝑡

• 𝑥 is the true, but unknowable value at time 𝑡

• 𝑟𝑡 is relative random error of 𝑥

– Specifically 𝑟𝑡 is a random variate of the distributionN (0, 𝛿2𝑟)where 𝛿2𝑟 is the random
relative standard deviation.

• 𝑠𝑡 is the relative systematic error of 𝑥

– Specifically, 𝑠𝑡 is a random variate of the distributionN (0, 𝛿2𝑠)where 𝛿2𝑠 is the systematic
relative standard deviation.

Here, random error refers to sources of error that can be reduced through repeated measurements of the
same item. Systematic errors refers to short-term biases that are generally irreducible. These systematic
biases can arise from a variety of sources such as calibration errors. Regardless of the measurement type,
errors are characterized by a mean zero normal distribution with non-zero standard deviation. The
distributions characterizing the random and systematic error can vary based on a variety of factors such
as measurement type, measurement system, and even the specific isotope measured.

Systematic errors behave as a bias. Consequently, the systematic variate, 𝑆𝑡, from the multiplicative
model described above (Equation 2.1), is not updated at every timestep. This contrasts with the random
variate which is updated at each time step. The systematic variate is held constant and only updated on
a periodic basis that corresponds to a specified calibration period. The specifics of the calibration period
are measurement system specific.

Historically, MAPIT hasn’t supported sensor recalibration. Sensor recalibration would need to be
modeled as systematic errors that are updated at a regular periodicity corresponding to the recalibration.
This feature was added in FY25. Now users can select a sensor recalibration period. A new systematic
variate is drawn and applied at each interval specified, instead of limiting users to one applied systematic
variate over the entire run. This is integrated into the GUI, as shown in Figure 2-1.

15

Figure 2-1: Recalibration GUI dialog. Per-sensor calibration frequencies can be set here through the drop downs
or the edit box.

This functionality is also incorporated in the API, as shown below. The new arguments
inputCalibrationPeriod, inventoryCalibrationPeriod, and outputCalibrationPeriod take a list
of values that should be equal in length to the correspond list on data inputs. The list of calibration
periods are matched, in order, to the data series for each measurement type. A value of None indicated
that there is no recalibration and the same systematic error should be used for the duration of the data
set. The code block below shows the new arguments for setting up the material balance area object.

16

2.2. Discrete item support

Historically, MAPIT has considered all material balance calculation terms to be “continuous” in that
they are rates (e.g., kg/hr, L/hr, etc.). Consequently, MAPIT assumed that all terms would require
numerical integration as material balance terms must have mass units. Recent improvements to F3M,
namely integrating SimEvents for discrete entity tracking, has led to the need for both continuous and
discrete mass handling withinMAPIT. In FY25, we added the capability for MAPIT to handle discrete
terms.

The key difference between continuous and discrete terms is that the latter doesn’t need to be
integrated. We created complementary blocks in F3M for recording discrete data streams that only
record data when entities are present. As such, we can then simply sum all the terms in a material
balance period without the need for integration. We adapted all existing statistical tests to handle both
material types. For example, the input terms for the standard error of the inventory difference (SEID)
calculation are shown below. Note the option for continuous or discrete data.

17

Functionality for handling different item types has been integrated into both the GUI and the API. In
the GUI, when bringing your own data, a simple popup prompts users to specify the type of
measurement for inputs and outputs 3. The API implements this by requesting a list of strings for the
input (inputTypes) and outputs (outputTypes) that specify continuous or discrete for each data
stream.

2.3. GEMUF Test integration

We implemented the GEMUF (geschatzter, or estimated, MUF) [3] in FY25. We previously
implemented SITMUF, which attempts to develop a sequence of residuals wherein the MUF sequence
is converted to a standardized sequence and monitored for trend changes. In contrast, GEMUF
attempts instead to develop a distance-based metric to detect anomalies via MUF and the covariance
matrix (but not necessarily a whitened residual).

Recall that themuf sequence [1, 2, 4] is defined as follows:

muf = {muf0,muf1, ...muf𝑛} (2.2)

with

muf𝑖 =∑
𝑙∈𝑙0

∫
MBP𝑖

𝑡=MBP𝑖−1
𝐼𝑡 ,𝑙−∑

𝑙∈𝑙1
∫
MBP𝑖

𝑡=MBP𝑖−1
𝑂𝑡 ,𝑙−∑

𝑙∈𝑙2

(𝐶𝑖,𝑙−𝐶𝑖−1,𝑙) (2.3)

The covariance matrix contains the covariance between different material balances in the sequence. For
example, consider the entry 𝜎22𝑛 of the covariance matrix below. This term is the variance between
material balance 𝑛 and 2.

Σ =
⎛
⎜
⎜
⎝

𝜎211 𝜎212 … 𝜎21𝑛
𝜎221 𝜎222 … 𝜎22𝑛
⋮ ⋮ ⋱ ⋮
𝜎2𝑛1 𝜎2𝑛2 … 𝜎2𝑛𝑛

⎞
⎟
⎟
⎠

= (
Σ𝑖−1 𝜎𝑖−1
𝜎𝑖−1𝑇 𝜎𝑖,𝑖

) (2.4)

The simplest statistical test to detect a loss in the MUF sequence would be a simple hypothesis test:

𝐻0 ∶ 𝐸(muf𝑖) = 0 for 𝑖 ∈ {1,2, ...,𝑁 }
𝐻1 ∶ 𝐸(muf𝑖) = 𝑀𝑖 for 𝑖 ∈ {1,2, ...,𝑁 }
where
∑𝑀𝑖 = 𝑀 > 0

(2.5)

3Inventories are assumed to always be masses, not flows.

18

For all loss patterns,M𝑇
𝑁 = {𝑀1,𝑀2, ...𝑀𝑁}, where𝑀𝑖 is the loss in period 𝑖, the optimal test to compare

𝐻0 and 𝐻1 is a Neyman-Pearson test. Siefert [3] showed the test statistic for such an optimal test can be
defined as:

𝑍 = 𝑀𝑇
𝑁Σ−1𝑁 muf𝑁 (2.6)

With the test itself formulated as:

𝑍{
> k𝛼 ∶ reject 𝐻0
≤ k𝛼 ∶ reject 𝐻1

(2.7)

There’s two challenges with this test. First, the test doesn’t provide sequential decisions (not necessarily
a problem considering the test can still be calculated sequentially, which we will do). This can be
remedied by simply calculating the test statistic for each period and making decisions as such:

𝑍𝐺𝑖 = 𝑀𝑇
𝑖 Σ−1𝑁 muf𝑖 (2.8)

with decision process:

𝑍𝐺𝑁 {
> 𝑠(𝑁) ∶ reject 𝐻0
≤ 𝑠(𝑁) ∶ no reject 𝐻1

(2.9)

Second, and more problematic, is the requirement that the loss pattern,𝑀𝑁 is known. It is reasonable to
approximate𝑀𝑁 as𝑀𝑁 ≈muf𝑁 such that ̂𝑀𝑁 =muf𝑁 by considering that 𝐸(muf𝑖) = 𝑀𝑖.

The test statistic can then be formulated as:

𝑍 = (̂𝑀𝑁)
𝑇
Σ−1𝑁 muf𝑁

=muf𝑁
𝑇Σ−1𝑁 muf𝑁

(2.10)

Siefert noted that using a single MUF value at each step (i.e.,𝑀𝑖) can lead to significant variance. It was
proposed to use a weighted value such that:

𝑀𝑖 =
1
7
(muf𝑖−2+muf𝑖−1+3muf𝑖+muf𝑖+1+muf𝑖+2) (2.11)

This approach has lower variance, but is no longer unbiased. InMAPIT we implement both
approaches, the use of the single MUF value is referenced as V1 and the use of the weighted values is
V5B3, following the notation in the original paper. The code implementation (V1 shown below) only
requires a few lines of code as much of the complexity for this test involves calculating the covariance
matrix, which we already implemented and use for SITMUF.

19

20

2.4. Miscellaneous improvements

Wemade a few other under-the-hood improvements that are smaller in impact, but important for
maintaining the tool:

• Conda-Forge Deployment: We addedMAPIT to the conda-forge build repository in FY25.
Anaconda is a package management platform for Python that help to manage install and
deployment of Python code. Conda-forge is the community managed list of Python packages,
whichMAPIT is now a part of. This enables end users to very easily update and deployMAPIT.
Now, MAPIT can be installed with a single line of code conda install MAPIT -c conda-forge
without managing dependencies or environments.

Current MAPIT statistics on conda-forge

• Improved Parallel Behavior: Previously, MAPIT relied on the ray library to perform parallel
processing of large scale accountancy calculations. In FY25, we replaced raywith a simpler
concurrent.futuresworkflow. This helps shrink the footprint of MAPIT while reducing code
complexity.

• Improved GUI Thresholds: We improved the functionality of the graphical thresholding and
associated statistics in the MAPIT GUI to allow for higher order thresholds. Previously, MAPIT
could only perform a single threshold at a constant value (i.e., order 0). We added the ability to
specify an order 1 threshold (i.e., ax+b) to support analysis with the GEMUF test, which has a
linear test statistic that changes with time.

21

This page intentionally left blank.

22

3. F3M

The Fissile Facility FlowModeler (F3M) is the open source library of Simulink blocks that can be used
to compose models of nuclear fuel cycle facilities to support material control and accountancy research.
The largest effort for F3M in FY25 was launching the library in the public domain. We also continued
to add a few new blocks to the library and fixed several bugs as we completed new SSPM-L models.

3.1. Block improvements

Themajority of work conducted on F3M itself during FY25 focused on bug fixes in and around discrete
item handling. As this was a new capability added toMAPIT, some iteration was required to ensure the
data recorder blocks worked properly. The one notable block that was added is our first custom block,
which was created to support the fuel fabricationmodel. This block, the “pop queue” block was written
by us to behave like a modified entity queue. Typical Simulink queues have capacities for entities (items)
that, once reached, no longer accept items. For example, if a queue has a capacity of 25 items, then item
26 cannot enter. There are some instances where we wanted a constant item queue, regardless of the
arrival of new entities. Here, when the pop queue is full, it pushes out the oldest entity to make space
for the new entity. In that way, the oldest entities are “popped” out when new ones arrive.

Custom Simulink blocks must be coded inMATLAB, not composed of existing blocks. The code for
the pop queue is relatively straightforward and can be found in Appendix A.

3.2. Initial public release

We released our initial version of F3M on our public facing GitHub repository in FY25. Although not
necessarily a “technical” achievement, this required extensive work with our legal and export control
teams at Sandia. We have ultimately been able to release F3Mwith a permissive license with the hopes
that other stakeholders will be able to use our blocks to help create models of their own.

23

Figure 3-1: Initial release of F3M onto GitHub.

24

3.3. Finalized documentation

Along with our initial release of F3M as open-source code, we completed all the complementary
documentation. Each block has documentation explaining how it’s used, what different options mean,
and any important use details. An example of a completed document page can be seen below in Figure
3-2.

Figure 3-2: Example of F3M block documentation.

25

This page intentionally left blank.

26

4. SSPM-L

The most substantial work in the modeling and simulation software packages in FY25 was for SSPM-L.
SSPM-L is the library of models composed from F3M blocks. The model files themselves are
accompanied by initialization files that closely tie model parameters to references. In FY25, we
completed three new models, bringing the total in the library to four. In many instances, we leveraged
the new discrete item capabilities developed for F3M to improve both accuracy and simulation
efficiency. F3M and SSPM-L is actively being used in several collaborations with industry, so these new
models will greatly improve our ability to expand support for domestic vendors.

4.1. Fuel Fabrication

A generic LEU fuel facility based on a number of references (described and linked in the model card)
and leverages the F3M library. This initializer file is included to enable easier changing of the facility
throughput. All the calculations below are based on a series of Reference and should only be modified if
being used to represent a different facility. By default, we assume 300MTIHM/yr throughput with 270
operational days.

The flowsheet itself is largely derived from a NRC training module on fuel fabrication (publicly
available here) along with STR-150. Further details of the individual unit operation can be found either
in the initialization file or in the Simulink model itself in the block properties.

This model adopts the F3M notation of tracking 1675 isotopes. The two auxiliary slots of the F3M
signal are utilized in the model. The first slot, at1 is the bulk liquid flow and the second slot, at2 is the
bulk solid flow. These aren’t currently used, but could be useful in the future to relax a number of
simplifying modeling assumptions. This model represents a conversion from the legacy SSPMmodel to
the new SSPM-L format with few changes to the underlying operational flowsheet.

A screenshot of the model can be seen in Figure 4-1 below.

27

https://www.nrc.gov/docs/ML1204/ML12045A009.pdf
https://inis.iaea.org/records/cv4yh-mn921

Figure 4-1: SSPM-L Fuel Fabrication model flowsheet

4.2. TRISO Compact

This model is a generic TRISO fuel fabrication model. It is assumed that the TRISO particles are used
to form fuel compacts, which ultimately form hexagonal fuel assembilies used for prismatic HTGR
designs. The flowsheet is largely derived from an open source IAEA document
(IAEA-TECDOC-CD-1645 [5]). The process starts with a HALEUUO2 to produce the coated
TRISO particles (uranium oxycarbide kernel manufacturing). Then, particles are coated with the
various carbide layers (coated particle manufacturing). Next, particles are assembled into compacts
before finally being assembled into fuel elements.

This model does contain some notional representations of chemical processes, but does not include
chemical models themselves. That is, we might have a process block that adds 10kg of carbon to a batch
of TRISO fuel particles to simulate the deposition of carbide layers, but we don’t have chemical models
to simulate that process. We can only specify simple additions or removals to loss terms and can’t model
chemical interactions in a detailed way.

This model adopts the F3M notation of tracking 1675 isotopes. The two auxiliary slots of the F3M
signal are utilized in the model. The first slot, at1 is the bulk liquid flow and the second slot, at2 is the
bulk solid flow. Here, bulk flow represents a material that is not tracked on an elemental/isotopic basis,
but is nonetheless needed for mass balances and model simulation. In this model, at1 and at2 are
sometimes used to represent solvent masses and flows.

A screenshot of the model can be seen in Figure 4-2 below.

28

Figure 4-2: SSPM-L TRISO Fuel Fabrication (compact) flowsheet

29

4.3. Generic Electrochemical Reprocessing

The final model added in FY25 is a generic electrochemical reprocessing facility. Unlike the other
SSPM-L models, the EChemmodel has a much looser relation to related literature. The original SSPM
model (circa 2020) avoided direct references to conceptual flowsheet design over sensitivity concerns
that they might one day become real facilities. Consequently, this model loosely follows flowsheet
references but relies on notional process values based on rule-of-thumb engineering.

As with all of the other models, the generic electrochemical model includes an initialization file that
explains the model assumptions while allowing users to change some parameters. It model adopts the
F3M notation of tracking 1675 isotopes. The two auxiliary slots of the F3M signal are utilized in the
model. The first slot, at1 is the bulk liquid flow and the second slot, at2 is the bulk solid flow. Here,
bulk liquid flow, at1 represents a material that is not tracked on an elemental/isotopic basis, but is
nonetheless available in the model simulation. For this EChemmodel, at1 is used to reference the bulk
salt component, which is not broken down into elemental or isotopic constituents. at2 is largely
unused here.

A screenshot of the model can be seen in Figure 4-3 below.

Figure 4-3: SSPM-L Electrochemical reprocessing flowsheet

30

5. SUMMARY

This report covers improvements to Sandia’s material control and accountancy software in FY25. The
most significant improvement was for SSPM-L where three new models were added to the library. We
added new blocks to F3M, including our first totally custom block, to support these models. We
ensured continued integration between our modeling (F3M and SSPM-L) tools with our analytical
tools (MAPIT) by adding support for discrete items. We also continued to support and address user
concerns by fixing several bugs raised by the community. Finally, we added the GEMUF test toMAPIT,
to expand the number of statistical tests available to users.

31

This page intentionally left blank.

32

REFERENCES

[1] S. F. DeMuth, Proliferation Resistance and Safeguards, pp. 3421–3538. Boston, MA: Springer US,
2010.

[2] T. Burr andM. S. Hamada, “Revisiting statistical aspects of nuclear material accounting,” Science
and Technology of Nuclear Installations, March 2013.

[3] R. Seifert, The GEMUF test: A new sequential test for detecting loss of material in a sequence of
accounting periods. IAEA., 1987.

[4] R. R. Picard, “Sequential analysis of material balances,” Journal of NuclearMaterials
Management, vol. 15, 1987.

[5] I. A. E. Agency,High temperature gas cooled reactor fuels and materials. IAEA, 2010.

33

This page intentionally left blank.

34

APPENDIX A. POP QUEUE

The following code block is used to create the new pop queue block:

classdef F3_popQueue < matlab.DiscreteEventSystem

% Push-Pop FIFO like entity queue
% Queue that holds entities to a capacity
% Essentially the queue fills to capacity
% then pushes out FIFO entities as new ones
% arrive

properties(Nontunable)
Capacity=10; % Queue size - can be adjusted by dialog also

end

properties(DiscreteState)
Count

end

methods (Access = protected)

% Single input and output
function num = getNumInputsImpl(~), num = 1; end
function num = getNumOutputsImpl(~), num = 1; end

% Type entity, same as generator string
function types = getEntityTypesImpl(obj)

types = obj.entityType('Entity');
end

% types for in/out ports
function [inT, outT] = getEntityPortsImpl(~)

inT = {'Entity'};
outT = {'Entity'};

end

% create FIFO storage and connect input1 to storage
% and storage to output 1
function [specs, I, O] = getEntityStorageImpl(obj)

specs = obj.queueFIFO('Entity',obj.Capacity+1);
I = 1;
O = 1;

end

% set the value of our internal counter
function resetImpl(obj)

obj.Count = 0;
end

end

35

methods

% Function to iterate over entities
function [entity, events, next] = iterate(obj, storage, entity, tag, status)

events = obj.initEventArray;
next = false;

% if an entity is tagged to be popped and its next
% up then try to send it on
if strcmp(tag,'pop') && status.position == 1

events(end+1) = obj.eventForward('output',1,0);
end

end

% when an entity leaves
function event = exit(obj, storage, entity, dest)

% reduce the internal count of queued entities
obj.Count = obj.Count - 1;

% allow additional entities in
event = obj.eventTestEntry(storage);

end

% on entity arrival
function [entity, events] = entry(obj, storage, entity, ~)

% update count
obj.Count = obj.Count + 1;
events = obj.initEventArray;

% if theres too many entities, we need
% to pop, so mark the position 1 entity
% in the queue to leave
if obj.Count > obj.Capacity

events = obj.eventIterate(storage,'pop',1);
end

end
end

end

36

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Nathan Shoman 8845 nshoman@sandia.gov

Philip Honnold 8845 phonnol@sandia.gov

Ramon Pulido 8845 rpulido@sandia.gov

Tania Rivas 8845 tnrivas@sandia.gov

Anna Taconi 8845 ataconi@sandia.gov

Scott Sanborn 8845 sesanbo@sandia.gov

Benjamin Cipiti 8845 bbcipit@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

Email—External

Name Company Email Address Company Name

Mike Browne mcbrowne@lanl.gov DOE

Tansel Selekler tansel.selekler@nuclear.energy.gov DOE

37

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	MAPIT
	Systematic error calibration
	Discrete item support
	GEMUF Test integration
	Miscellaneous improvements

	F3M
	Block improvements
	Initial public release
	Finalized documentation

	SSPM-L
	Fuel Fabrication
	TRISO Compact
	Generic Electrochemical Reprocessing

	Summary
	References
	Appendix Pop queue

