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Demands for tritium-facing components

• Weapons, analytical chemistry, self powered lighting, fuel for fusion power

• Tritium compatibility
• Functional components/materials

• Structural components/materialsSTRUCTURAL MATERIALS FOR TRITUM SERVICE
• Primary pressure boundaries

• Safety performance

• Austenitic stainless steels
• Higher Ni, Cr, Mo, and N

• Composition

• Formability/weldability



Austenitic SS is relatively resistant to hydrogen isotopes 
embrittlement, but…

• Internal hydrogen degrades ductility

• Decay product from hydrogen 
isotope, tritium, forms helium 
bubbles causing further 
embrittlement

1. D. Rawl, Notebook, November 1979.
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Lots of data on conventionally manufactured structural materials/steel

• What is “known” about tritium effects on austenitic steel
• Decreased ductility and fracture resistance

• Hardening/strengthening 

• Hydrogen is believed to interact with dislocations, grain boundaries, vacancies, and 
other microstructural features2

• But what about AM??
• Similar behavior/trends?

• How do we account for differences between AM and forged?

• Can we design based on material with similar microstructure that has already been 
tested?

2. Lawrence, S.K., Pokharel, R., Clausen, B. et al. In Situ X-ray Diffraction Investigation of Hydrogen 
Effects on Deformation-Induced Phase Transformation in Forged and Additively Manufactured 304L 
Stainless Steels. JOM 75, 2287–2298 (2023). https://doi.org/10.1007/s11837-023-05787-6.



304L and 316L test samples made via laser powder bed fusion (LPBF)

(In MPa) Yield Strength Ultimate Tensile (UTS)

304L 412 513

316L 416 496

Video credit: sokolmask on https://makeagif.com/i/_1JqqM

304L

316L



Tritium charging and aging enables control of helium content  
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Ductility loss due to T/He content evaluated by tensile testing

Testing conducted at 3 ages representing Tritium + 
100, 200, and 375 appm He (and noncharged “NC”)

Tensile testing conditions:

→Displacement controlled: 1.27 mm/minute

→Strain measured across 25.4 mm gauge length 
(extensometer)

Results:

→Yield and Tensile strengths

→Ductility loss evaluated by Reduction of Area (RA) 
– estimated from reduction of OD



Tritium and helium-3 content leads to increased strength
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• Both alloys display 
increase in strength

• As 3He increases
• 316L maintains strength

• 304L appears to continue 
increasing



Initial loss of ductility followed by modest increase between 200 and 
375 appm helium-3
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• 20% drop after 
charging, some 
increase after 200 
appm He

• 304L and 316L 
behave and perform 
similarly – even less 
difference with more 
3He

Noncharged



“Arc” fracture testing conducted to evaluate fracture resistance

Same ages as tensile tested samples

ASTM E1820 fracture test
• Precrack
• Rising displacement at 0.02 mm/min
• Direct current potential drop measured for 

crack extension

“JQ-H” calculated from load/displacement 
curve and crack extension

JQ-H



Increased helium content further degrades fracture resistance

• JQH continues to decreases with 
increasing 3He

• ~75% of electron beam (EB)  weld JQH

• AM 304L outperform gas tungsten arc 
(GTA) welds
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Electron beam welds in 304L

GTA welds in 304L fall below 200 kJ/m2 !!!



Conclusions and future work

• Both alloys display higher strength and lower ductility when tritium and helium 
are present
• Increasing helium does not affect significantly

• Fracture resistance of both alloys decreases with increasing helium
• Lower than EB welds, higher than GTA welds

• Looking forward…
• Continue aging and testing at higher helium contents

• Fracture testing of non charged and hydrogen charged material

• Other relevant AM material?
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EB Weld in 304L GTA Weld in 304L

304L 316L

Ronevich, et al. 2025, in draft



TEM reveals helium bubbles in partially recovered material
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Previous Work
• Yield strength increases 

similarly for hydrogen 
and tritium exposed 
material

• Annealed 304L remains 
the most ductile of the 
microstructures, despite 
hydrogen isotope 
exposure

• Weld yield strength and 
UTS are between 
noncharged and 
hydrogen charged 
material

Non-charged

T. M. Krentz, J. A. Ronevich, D. K. Balch, C. San Marchi, Tritium embrittlement of austenitic stainless-steel tubing at low 
helium contents, Fusion Engineering and Design,168 (2021).



Two additional aging periods

• Recrystallized and 
annealed material yield 
and UTS most sensitive 
to He content

• Yield strength varies 
more with aging/ 
increasing with He 
content

0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

En
g 

St
re

ss
 (

M
P

a)

Eng Strain

304L Tube Tensile Behavior after Tritium Charging and Aging

As Received
 Partially Recovered
 Fully Recovered
 Partially Recrystallized
 Fully Recrystallized
 Annealed
Solid Tritium charged and 100 appm He 
Dashed Tritium charged and 300 appm He 
Dotted Tritium charged and 650 appm He



304L Microstructure/Strength Study
• Reduction of Area (ductility) Before test

After test
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