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Abstract

We investigate optimized quantum state preparation for quantum metrology applications in
noisy environments. Using the QFI-Opt package, we simulate a low-depth variational quantum
circuit (VQC) composed of a sequence of global rotations and entangling operations applied
to a chain of qubits that are subject to dephasing noise. The parameters controlling the VQC
are numerically optimized to maximize the quantum Fisher information, which characterizes
the ultimate metrological sensitivity of a quantum state with respect to a global rotation. We
find that regardless of the details of the entangling operation implemented in the VQC, the
optimal quantum states can be broadly classified into a trio of qualitative regimes—cat-like,
squeezed-like, and product states— associated with different dephasing rates. Our findings are
relevant for designing optimal state-preparation strategies for next-generation quantum sensors
exploiting entanglement, such as time and frequency standards and magnetometers, aimed at
achieving state-of-the-art performance in the presence of noise and decoherence.

1 Introduction

Quantum sensing holds great promise among emerging technologies that exploit quantum phenom-
ena such as entanglement to achieve a near-term, substantive quantum advantage over state-of-the-
art classical devices. Prominent successes include LIGO, which has increased its detection volume
with frequency-dependent squeezed light [1], and the use of squeezed quantum states in searches for
dark-matter candidates [2]. Similarly, optical frequency metrology experiments are at the precipice
of benefiting from quantum entanglement and correlations to push measurement precision beyond
the limits of quantum projection noise [3—6].

Progress toward the paradigm of quantum-enhanced sensing is being fueled through rapid im-
provements in technical capabilities, such as the realization of fully controllable intermediate-scale
quantum hardware featuring tens to even thousands of high-quality qubits [7, 8]. These systems
exhibit long coherence times, an exquisite degree of coherent single-qubit control, and innovative
methods for many-body control (i.e., entangling operations) via natural or engineered interactions
[9-13].



A key challenge for current research is to establish robust metrological schemes that exhaust the
potential of these hardware platforms in the presence of technical imperfections and decoherence
[14-16]. In the absence of these, optimal entangled quantum states for metrology can be obtained
by analytically maximizing the quantum Fisher information F(, which bounds from below the
achievable variance (Af)? in an estimation parameter @ via the quantum Cramer-Rao bound,
(A9)? > 1/Fg [17-19]. In the context of sensing spin rotations, diverse protocols exist, including
non-equilibrium and quasi-adiabatic dynamics [20-23], to prepare these ideal entangled states as
well as optimize signal acquisition and readout to infer 6 [24-28], and which can be tailored for
specific experimental platforms. However, these optimal quantum states—corresponding to cat-like
macroscopic superposition states—are catastrophically susceptible to decoherence [29, 30], which is
ever-present in real-world quantum hardware. It remains an open challenge to identify and prepare
states that maximize quantum Fisher information (QFI) in the presence of decoherence [31].

In this work we perform a preliminary study of optimal state preparation for metrology in a noisy
quantum environment. OQur work is motivated by an effort to bring to bear existing resources and
coherent control to maximize the potential of near-term quantum devices to demonstrate a state-
of-the-art quantum advantage in sensing tasks, as opposed to proof-of-principle realizations. To
make our task concrete, we numerically optimize a simple, low-depth variational quantum circuit
(VQC; see Fig. 1) for state preparation in an effort to maximize the resulting quantum Fisher
information. Motivated by current physical platforms for quantum computation and simulation,
we include a range of entangling gates in our VQC based on a variety of natural or engineered two-
qubit interactions. We seek to maximize the QFT of the state generated by the VQC for a range
of experimentally relevant noise models. We find that the optimal states can typically be grouped
into several regimes—such as cat-like and squeezed-like quantum states—regardless of the nature
of the entangling interactions, with some caveats associated with interaction range and system size.
While our calculations are limited to relatively small systems (because the QFI for mixed quantum
states is computationally expensive to obtain), we comment on implications for larger ensembles
of qubits.

Our paper is structured as follows. In Sec. 2 we outline our basic VQC, including fundamental
entangling operations and sources of decoherence. We present our results for the optimal QFI
obtained with these VQCs in Secs. 3 and 4, which includes a detailed analysis of the structure of
the obtained optimal quantum states as well as a discussion of the dependence on system size and
interaction range. In Sec. 5 we summarize our findings and present suggestions for future research.

2 Variational quantum state preparation

As a basis for our investigation we consider a low-depth VQC to prepare a quantum state of N
qubits to be used for sensing global qubit rotations. The applications for such states are diverse
and include frequency metrology and magnetometry. The VQC consists of two key pieces: (i) a set
of global rotations occurring during the initial and final stages to prepare and reorient the qubits
for sensing and (ii) an intermediate stage where the qubits interact to create entanglement. In more
detail (see Fig. 1), the VQC sequence begins by preparing an ensemble of N qubits in a pure product

Ap s n APg
state |¢g) = |¢>®N . The initial and final rotations are parameterized by R;;_J = Hi;vzl e~ 56 /2,
where &,fj = 67 cos (pj) + 0} sin (p;) are Pauli matrices for the kth qubit in a rotated basis, where

6; and ¢; respectively define the rotation angle and axis for the initial (j = 1) or final (j = 2)
rotation. The intermediate entangling step is generated by the gate:

Uy, = e~ *0H100, (1)
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Figure 1: A one-dimensional chain of N qubits (left to right) prepared in the state 1V®N. The
qubits are globally rotated by Rgll through an angle 6; about an axis defined by the azimuthal

angle 1. This is followed by application of an entangling gate Ugl characterized by 61 = xt;. Then,
the qubits are globally rotated byf%f; through an angle 6> about an axis defined by the azimuthal
angle ¢y. We compute the QFT of the state prepared by the VQC, p(x), which is parameterized by
x = (61,1, 01,02, 02). See the main text for a detailed definition of the VQC stages and associated
parameters.

where the Hamiltonian Hy describes the interaction of the qubits with characteristic coupling
strength x (see below). We parameterize the “strength” of the entangling gate through the quantity
01 = xt1, where t1 is the duration of the applied gate. Note that this preliminary description of the
entangling gate as a unitary operation ignores the role of decoherence, but we will address this in
the following subsections.

In total, the VQC is characterized by a set of five parameters, x = (01, 1,607,602, ¢2), and
additionally through the choice of entangling Hamiltonian, H;. We denote the output state of the
VQC in terms of these parameters via the density matrix p(x).

2.1 Entangling gates

We study a variety of Hamiltonians H; for the entangling gate, motivated by both conceptual
and practical considerations. First, to benchmark our findings, we explore one-axis (OAT) and
two-axis (TAT) twisting Hamiltonians featuring infinite-range pairwise interactions between qubits
[32]. The generation of entangled states for metrology using the unitary dynamics generated by
these Hamiltonians, such as spin-squeezed and Greenberger—Horne—Zeilinger (GHZ) states, is well
established [30, 32, 33]. In particular, OAT dynamics have been realized and exploited in a diversity
of experimental platforms including trapped ions [34], Bose—Einstein condensates [35], and cavity-
QED [36-39]; and early work has proposed [40] and even demonstrated [12, 41] TAT interactions. In
addition, motivated by current efforts to generate entangled states in quantum simulation platforms
featuring finite-range pairwise couplings between qubits [42-46], we also study Ising, XX, and f-
TAT (finite-range TAT) spin chain models with power-law interactions. The Hamiltonians for these



models are

I;[Ismg = ZXZ]&ZZ Aja (2)
i#]

Hxx =Y xij(6767 +676Y), and (3)
i#]

Hyrar =) xij(6767 +6757). (4)
i#]

Here i and j index individual qubits at positions r; and r;, and the couplings x;; = x/Na/|ri —7;|%,
where x sets the strength of interactions and NV, = (N — 1)~} >izj|ri — 1|7 is a normalization
factor to ensure that the Hamiltonian is extensive [47, 48] and simplify comparison of the models
as a function of decoherence strength (see below). Throughout this manuscript we set i = 1; and,
for simplicity, we focus on qubits in a one-dimensional geometry that can be realized using, for
example, arrays of neutral atoms or trapped ions.

We will restrict our focus to interactions featuring power-law exponents a = 0, ..., 6, motivated
by the range featured in prominent quantum science platforms such as Rydberg atoms (o = 3,6),
trapped ions (a € [0, 3]), molecules (o = 3), and light-matter systems (o = 0). The limiting case
of a = 0 corresponds to all-to-all interactions, for which the Ising and XX models reduce (up to a
constant of motion) to the OAT Hamiltonian oc S2, while f-TAT resolves to the TAT Hamiltonian
x (8,8, +5,5,).

2.2 Decoherence

Motivated by the implementation of the above VQC in real-world hardware, we incorporate into
our description decoherence due to, for example, stray background fields and spurious couplings
to the environment. In our treatment, however, we will make the simplifying assumption that
decoherence occurs only during the application of the entangling gate, with the dynamics of the
initial and final rotations taken to be sufficiently rapid that they may be approximated as unitary
processes.

The inclusion of decoherence and dissipation means that the unitary representation of the
entangling gate given by Eq. (1) is inappropriate. Instead, we model this stage of the VQC using
a Lindblad master equation,

% —i[H p)+ Y W <L’” Lt - *{LVTL” A}> ()

v,j

where Hj is the chosen entangling Hamiltonian [Eqs. (2)-(4)] and the jump operators ﬁ% describe
decoherence acting on the kth qubit at a rate 7,. In this work we focus on two cases: (i) dephasing
with LZ = 0} / 2 for v € {z, y, z} and (ii) spontaneous decay and dephasing along Z given by
Lk =0, and Lz = 67 /2 at rates y_ and 7., respectively.

2.3 Optimization of the quantum Fisher information

We seek to identify optimal state preparation protocols, within the constraints of the VQC defined
above, for metrology of global spin rotations. The quantity capturing the suitability of a generic
quantum state p for this task is the quantum Fisher information [49]:

N — 2 N
Falp(): 61 = 23 S0 i )
k,l



Here |k) and \; are, respectively, the eigenvectors and corresponding eigenvalues of the density
matrix prepared by the VQC; that is, p = >, Ay |k)(k|, and G is the generator of a unitary
transformation U¢ = ¢7"%C encoding a classical parameter ¢. The QFI characterizes the minimum
uncertainty with which the classical parameter can be estimated through the quantum Cramer—
Rao bound, (A¢)? > 1/Fg[p(x);G]. Without loss of generality, throughout this work we set
G=8.=3,6%/2

For an uncorrelated product state of the qubits, the uncertainty is bounded from below by
the standard quantum limit (SQL): (A¢)? > 1/N (equivalently, Fy[p(x);S.] < N). This bound
can be saturated by a coherent spin state wherein the qubits are collectively polarized along a
common axis perpendicular to the rotation about 2, for example, |—)®" with [—=) o [1) +]{). The
introduction of correlations and entanglement can lead to quantum-enhanced sensitivity below the
SQL, with a fundamental bound given by the Heisenberg limit (HL): (A¢)? > 1/N? (equivalently,
Fglp(x);S.] < N?). Tt is known that an optimal state for the sensing rotations about 2 that
saturates this bound is the macroscopic superposition (“cat” or GHZ) state [33],

[GHZ, @) = (I11)*" + ¢ |D*Y)/v2, (7)

with arbitrary phase ®. Strategies to dynamically prepare this state are known and have even
been demonstrated for small systems [21], although their feasibility for scalable quantum-enhanced
sensing is severely limited by the catastrophic sensitivity of the cat state to decoherence [29, 50].

In the following section we instead investigate optimal preparation strategies, using the VQC
discussed previously, that take into account the effects of decoherence. For a fixed decoherence
strength v we obtain the state p(x) generated by a given VQC with parameters x. We numerically
integrate the master equation (5) for a given choice of entangling Hamiltonian H; and associated
global rotations. The optimal preparation strategies defined by parameters xqp; are obtained by
numerically optimizing over x to maximize the QFI of Eq. (6). Throughout this work we use
derivative-free algorithms such as the Nelder-Mead method in SciPy [51] to obtain Xpi. The
QFI-Opt package used to simulate the VQC is an open-source Python package [52].

3 Optimal state preparation with isotropic dephasing

In this section we present the results of our numerical optimization for the range of entangling
Hamiltonians defined in Egs. (2)—(4). Moreover, we focus on @ = 0, 3 and 6 and isotropic dephasing
noise such that v, = v, = 7. = . This assumption voids bias in our results due to, for example,
robustness of the entangling dynamics for specific representations of the Hamiltonians in Egs. (2)—
(4) [9, 53]. A key result of our investigation is that we observe that the states prepared by the
optimal VQC can be typically delineated into three regimes: (i) a cat-like regime, characterized by
quantum states typified by Eq. (7) but more broadly described as a superposition of macroscopically
distinct projections, (ii) a squeezed-like regime, characterized by states with non-zero polarization
(i.e., collective spin projection) and anisotropic projection noise, and (iii) an uncorrelated regime,
corresponding to a separable coherent spin state of the qubits with sensitivity near the SQL. This
classification is based on an analysis of the optimal QFI and abrupt transitions in the associated
VQC parameters but is further supported through the examination of auxiliary quantities, including
state overlap, distribution functions, and spin squeezing, which provide additional information
about the structure of the prepared quantum states.
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Figure 2: The normalized QFI Fo/N 2 and optimal VQC parameters Xopt as functions of isotropic
decoherence strength, v (in units of x) for (a) OAT and TAT and for (b) and (c) Ising, XX, and
f-TAT models. In all panels we use N = 8, and the interaction range is set to (a) a = 0, (b)
a = 3, and (¢) a = 6. For all cases we exclude the initial rotation angle 61, since it is found to
identically be either 7/2 (OAT, Ising, and XX) or 0 (TAT and f-TAT) regardless for nontrivial
values of v < v (see main text). The values of ¥(!) and v for each model are indicated by
vertical lines (blue dashed for OAT and Ising, red dot-dashed for TAT and {-TAT, and solid green
for XX) to guide the reader between the main regimes. Note that ~+() is absent for the Ising data,
while the values of v(!) for XX and £-TAT in panel (c) are indistinguishable.



3.1 Infinite-range interactions: One- and two-axis twisting

We begin by presenting results for OAT and TAT with infinite-range interactions (a = 0), since
the dynamics generated by these Hamiltonians is well understood in the absence of noise [32, 54]
and they can provide a template for our later discussion of finite-range interactions. The optimal
QFTI and parameters obtained for OAT and TAT are plotted in panel (a) of Fig. 2 as a function of
the isotropic dephasing strength v (in units of x) and with fixed N = 8. For both cases, the QFI
begins near the maximal value Fy/N? ~ 1 (HL) for v/x < 1 (in fact, it is essentially saturated for
OAT) and then monotonically decreases until settling at the SQL (Fgp/N? = 1/N) for v/x > 1.

We observe that the QFI appears to be continuous as a function of v for both OAT and
TAT, although there is a clear kink in the QFI at v/x & 0.25 for OAT. On the other hand, the
associated VQC parameters X,p¢ show more abrupt behavior, including discontinuities, that we use
to qualitatively classify different regimes of quantum states. In particular, we use the strength of
the entangling gate 01 to define two characteristic values of . For vanishingly small v we observe
that 6 takes the largest values (6;/m ~ 0.5) for both OAT and TAT, but it decreases with increasing
~v. We identify v(!) as the dephasing strength at which 6; exhibits a discontinuity and abruptly
drops in value, leading to v(1) /x &~ 0.25 and 0.02 for OAT and TAT, respectively. Further decrease
in 07 is then observed for v > ~() until it vanishes corresponding to turning off the entangling gate.
We define the point at which 6; = 0 as 4(?) and find 7(2)/)( ~ 9.44 and 25.85 for OAT and TAT,
respectively. Additionally, we observe that similar discontinuities or abrupt behavior are present
in other VQC parameters, for example, rotation angle 62 and the axis difference |1 — p2|/m. Note
that we do not show data for the initial rotation angle 61, since we find that the optimal choice is
01 = m/2 for OAT and 6; = 0 for TAT for v < 4? (i.e., “nontrivial” values of 7).

Insight into the three distinct parameter regimes carved out by the definition of 4(!) and ~(?) is
found by drilling further into the OAT results, which can be contrasted against the well-understood
unitary limit of v/x = 0. First, when v < (1) we observe that the optimal parameters Xopt, [s€e
Fig. 2 panel (a)] are virtually identical to those that would produce a GHZ state [see Eq. (7)] in
the absence of decoherence [50]. In particular, our optimal VQC sequence corresponds to a first
rotation of §; = 7/2 with an arbitrary value of ¢, which orients the initially prepared product
state on the collective Bloch sphere equator. The rotation is followed by an entangling gate with
strength 01 ~ m/2, which is consistent with the value required to generate a GHZ state using
twisting dynamics [50]. At this point, the generated GHZ-like state is characterized by a collective
superposition of qubits oppositely polarized along an axis lying in the equatorial plane (specifically,
along an axis perpendicular to that defined by the first rotation about ¢1). Thus, the final rotation
by an angle 3 = m/2 about the axis 9 ~ ¢ reorients the GHZ-like state along the z-axis [similar
to Eq. (7)]. In the absence of noise, this state features the largest possible fluctuations in the
observable S, and thus maximizes the QFT [33]. As a result, we dub vy < (1) as the cat-like regime,
since our results suggest that decoherence is sufficiently weak that the optimal state preparation
strategy is simply to closely (i.e., cat-likely) follow the approach established in the absence of
decoherence.

On the other hand, in the regime where v(!) < 4 < 4 #; takes on relatively smaller values
that can be associated with the paradigmatic generation of spin-squeezed states [32]. Particular
to one-axis twisting, the unitary generation of spin-squeezed states occurs via “shearing” of the
quantum fluctuations of an initial coherent spin state polarized along the equator of the collective
Bloch sphere. The resulting squeezing of the projection noise is thus in a spin quadrature that is
rotationally offset from the equatorial plane of the Bloch sphere, by an amount that depends on
the strength/duration of the twisting interaction (f;), and thus requires a final rotation about an
axis aligned along the collective polarization of the state. We see signatures of these features in



our dynamics with decoherence, including that the final rotation axis is perpendicular to the initial
rotation (and thus parallel to the polarization of the state post first rotation), |2 — 1| &~ 7/2, while
the angle of the rotation #, varies with the duration of the entangling interaction characterized by
01 [32]. Thus, since our results suggest that the states within this regime may be closely associated
with spin squeezing, we designate v(1) < 4 < ~2) as the squeezed-like regime.

Finally, we denote v > 42 as the uncorrelated regime. In this case, since the entangling gate is
never applied (67 = 0), the VQC reduces to a pair of global rotations that together simply reorient
the initial pure, uncorrelated coherent spin state onto some axis in the z-y plane to maximize the
QFI at the SQL, Fp/N? = 1/N. This regime arises for overwhelmingly large decoherence, such
that any application of the entangling gate would in fact lead to a QFI below the SQL due to an
increase in total projection noise. In other words, the interactions cannot generate metrologically
useful correlations faster than decoherence degrades the quantum state [see the bottom subplot of
Fig. 3].

The behavior of the optimal parameters Xop, for TAT (also shown in Fig. 2) follows similar
trends and is suggestive of a similar classification into three state preparation regimes. In this case,
however, the increased complexity of the unitary dynamics for TAT [54] makes quantitative analysis
of the parameters more difficult. Thus, in the following we build on the intuition developed from
OAT and perform a more systematic investigation of the structure of the prepared quantum states
using a variety of diagnostic quantities.

3.1.1 Characterization of cat-like states

We first focus on the cat-like regime defined by v < 41). Motivated by the observation that the QFI
in this regime is near the HL (F/N? = 1) and informed by the close proximity of the parameters
Xopt for OAT to those that are known to generate GHZ states [see Eq. (7)] for v/x = 0, we calculate
the overlap between the optimally prepared state p(xopt) and a GHZ state. Specifically, we compute
the maximum fidelity,

Fonz = max | (GHZ, ®|p(xopt)| GHZ, @) 2. (8)

The results for this quantity as a function of 7/x are shown in the middle panels of Fig. 3(a) and
(b). We observe appreciable fidelities 1/2 < Fgnz < 1 in the regime v < v() for both OAT [panel
(a)] and TAT [panel (b)]. The values for the fidelity are indicative of strong overlap with the GHZ
state and the presence of N-qubit entanglement [21]. Relative to the OAT results, the TAT case
is observed to typically feature a reduced fidelity to the GHZ state, indicating that an ideal GHZ
is never formed even for v/x — 0. Interesting, however, Fouz remains robustly above or quite
near 1/2 even for some values of vy > ~() | although it steadily decreases. We attribute this to the
inherent richness of states that can generated by TAT interactions [54] and the relatively faster
generation of entanglement that is expected [32]. In contrast, the fidelity for OAT rapidly falls
below 1/2 prior to v = 'y(l). However, we qualify these observations by noting that the system size
used in our calculations is quite small.

The fidelity is qualitatively supported by visualization of the quantum states in this regime
using an averaged Husimi probability distribution (see Appendix A), shown below the main panels
of Fig. 2. These distributions clearly demonstrate that the quantum state is composed of a super-
position of two components localized at the north and south pole of the Bloch sphere, consistent
with a GHZ-like state.
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Figure 3: Diagnostic quantities calculated for optimally prepared states as functions of isotropic
dephasing strength + (in units of x) for (a) OAT and (b) TAT (i.e., Ising and {~TAT Hamiltonians,
respectively, with @ = 0). All data is for N = 8. Top subplots: Normalized classical Fisher
information (F./N?2, squares), inverse Wineland squeezing parameter (N&2)~1) tri-prongs) and
the normalized QFI (F/N?, circles for OAT and triangles for TAT). Lower subplots: Overlap
of the optimal state p(Xopt) with a GHZ state (Fguz, diamonds) and the normalized collectivity
((§2)/82.., crosses). Vertical lines in all panels indicate 4(!) and v*). Below each set of panels
we show Husimi phase space distributions for representative quantum states in each regime (see
Appendix A for details of distribution). Bright regions indicate larger probability density. For

~v/x = 0.01 we show two perspectives of the same quantum state, rotated for indicated axes and
angles.




3.1.2 Characterization of squeezed-like states

In the squeezed-like regime found for larger decoherence, ’y(l) << 7(2), we expect the prepared
states to have a non-zero collective polarization and anisotropic quantum fluctuations in the spin
quadratures defined perpendicular to the orientation of the state. Mathematically, this structure
can be captured by the Wineland squeezing parameter [55],

- ((ASn,)?)
2 — N min Ll 9
& T (9)

where (S) = ((S,), ( 5’y>, (5.)) is the collective Bloch vector of the state and n; denotes a unit
vector lying in a plane orthogonal to <S> The squeezing parameter is obtained by minimizing the
fluctuations ((AS,,)2) with respect to the orientation of n,. A value €2 < 1 reflects that the
quantum fluctuations along one spin quadrature are squeezed below the projection noise limit such
that the state can enable sensing of spin rotations below the SQL using a simple Ramsey sequence
[55]. More generally, squeezing sets a lower bound on the QFI (and thus the metrological utility of
the quantum state) through the inequality FQ/N2 > (Ne3H)~ L

We plot the inverse squeezing parameter (N¢2)~! as a function of 7 in the upper panels of
Fig. 3(a) and (b). We observe that (N¢2)~! = 0 in the cat-like regime of ¥ < v1) as the polarization
of the cat state vanishes; that is, (S) = 0. On the other hand, for v > v we observe (N£€2)~! > 0.
Initially, as « is increased past this transition, the inverse squeezing parameter does not breach
the SQL, that is, (N¢2)™! < 1/N, indicating that while the QFI is large (Fp/N? > 1/N) and
corresponds to a quantum-enhanced sensitivity, the state does not exhibit simple squeezing that
can be exploited using Ramsey interferometry with mean values of global spin measurements. We
attribute this to oversqueezing, which has been studied in the context of OAT dynamics [34, 56]. To
demonstrate this, we show example Husimi distributions for representative quantum states in this
regime below panels in Fig. 3(a) and (b). These clearly illustrate that the quantum state features
anisotropic quantum noise. However, the distribution wraps appreciably around the Bloch sphere,
leading to a shrinking of the collective Bloch vector <S) and the failure of the squeezing parameter
to capture the metrological sensitivity of the state. As  further increases, the squeezing parameter
breaks through the SQL and eventually matches the QFI, (N¢2)~1 = Fy/N2. In this latter regime,

the metrological utility of the state is thus entirely captured by spin squeezing.

3.1.3 Additional diagnostic quantities

In addition to the fidelity to the GHZ state and the squeezing parameter, it is insightful to consider
other quantities. First, we compute the collectivity of the prepared states (see Fig. 3]), <S2>, which
should be compared against the maximal value of S, = S(S + 1) with S = N/2 for a collective
state. Both OAT and TAT unitary dynamics preserve the collectivity since they feature infinite-
range interactions, so that any deviation from the maximum value of (S'2> should be attributable to
the single-qubit dephasing noise. The collectivity is most useful when examined alongside a second

quantity, the classical Fisher information (CFI), which can be obtained as

6—0

F.(6) - tim 5 (VPm:0) ~ VP 0 =0)) . (10)

where P(m;) is the distribution function for the collective spin projection m, along Z and F, is
bounded from above by the QFI, F,, < Fp. In the case of unitary OAT and TAT dynamics, the CFI
always saturates the QFI when optimized over all possible collective measurements. However, we

10



observe that Fy is less than the QFT across parts of both the cat-like and squeezed-like regimes, par-
ticularly when the collectivity strays appreciably from S2,, . . This suggests that more sophisticated
measurements, such as local (site-resolved) spin observables, are necessary to exhaust the metrolog-
ical potential of the states we preserve and, in particular, highlights that states in the “squeezed”
regime—a name that is motivated by a simple analysis of collective spin fluctuations—require more

nuanced treatment in general.

3.2 Finite-range interactions: Ising, XX, f-TAT

Equipped with an understanding of the results for the infinite-ranged OAT and TAT entangling
Hamiltonians, we now generalize to the finite-ranged models given in Eqgs. (2)—(4). For simplicity,
we focus on the specific coupling exponents @ = 3 and 6 in the following.

In Figs. 2(b) and (c), we plot the maximal QFI and optimal parameters Xp, for these coupling
exponents as a function of dephasing strength v with N = 8 qubits. Overall, we observe a similar
delineation of the QFI and X, into different regimes set by the dephasing strength, with some
important caveats. First, for the XX and f-TAT models, we can define an analogous cat-like
regime for 4 < 4! (see vertical lines in panels), where the transition 4! /y is again defined by an
abrupt drop in the interaction time characterized by 67 and similarly sharp changes in the rotation
angles/axes. Similarly, we define a squeezed-like regime for 7 < v < 4@ with the upper bound
on the dephasing strength 7(?)/x set via the uncorrelated regime that emerges when 6; finally
reaches zero. On the other hand, the Ising model presents distinct behavior. In particular, we
observe an absence of the cat-like regime, as the VQC parameters change smoothly throughout a
large squeezed-like regime v < ~(2), until 0; vanishes at the boundary of the uncorrelated regime
that exists for v > ~(2). We note that the extent of the cat-like (where applicable) and squeezed-like
regimes is slightly reduced with o = 3 when compared with o = 6.

While our preliminary identification of the cat-like, squeezed-like, and uncorrelated regimes is
supported by an analysis of the optimal parameters x,p, which show some qualitative similarities
to OAT (Ising and XX) and TAT (f-TAT), we provide stronger evidence through quantities such
as the overlap with a GHZ state and the squeezing parameter, which are plotted as a function of
~v/x in Fig. 4.

The cat-like regime for the XX and f-TAT models [see panels (c)-(f) of Fig. 4] is supported by
an appreciable overlap with the GHZ state [42]. In particular, for v/x — 0 both XX and {-TAT
feature Fgnz > 1/2, indicating the generation of a quasi-collective state that shows signatures
consistent with a GHZ-like state. Unlike the infinite-range TAT results, however, the overlap for f-
TAT dips below the value of 1/2 before the transition to the squeezed-like regime. We also observe
that the maximum value of Fguz and indeed the QFI Fp/N 2 attained for the XX and f-TAT
Hamiltonians are surprisingly greater in the case a = 6 rather than the longer-range case with
« = 3. This distinction is discussed in further detail momentarily. In addition to the GHZ fidelity,
we highlight that the characteristic collectivity <5’2) of the states generated in the cat-like regime
remains a substantial fraction of the maximum value S2 . In contrast, the Ising model [see panels
(a) and (b) of Fig. 4] never features a meaningfully large overlap with the GHZ state, even for
~v/x — 0, although we note that the value of the collectivity <§2> remains appreciable, much like
the states prepared by XX and f~TAT. Furthermore, unlike the XX and f-TAT examples, for the
Ising Hamiltonian the attainable QFI in this regime is marginally reduced for a = 6 relative to
that of a = 3.

The squeezed-like regime between 7(1) < v < () is also significantly more complex for the
finite-ranged models. While the inverse squeezing parameter (N&2)~! continues to take on non-
zero values for v > (1 reflecting the transition from the GHZ state to one with non-zero collective
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Figure 4: Diagnostic quantities calculated for optimally prepared states as functions of relative
dephasing strength ~/x for (a)-(b) Ising, (c¢)—(d) XX, and (e)—(f) {~TAT Hamiltonians. All data is
calculated for N = 8 qubits. Panels (a), (c), and (e) are generated with o = 3 whereas panels (b),
(d), and (f) use a = 6. Top subplots: Normalized classical Fisher information (F./N?, squares),
inverse Wineland squeezing parameter (N&2)™1, tri-prongs), and the normalized QFI (Fy/N2,
circles, diamonds ,and triangles, respectively). Lower subplots: Overlap of the optimal state p(Xopt)
with a GHZ state (Fgnz, diamonds) and the normalized collectivity ((S2)/S2,., crosses). Vertical
lines in all panels indicate 4! /x [absent for (a) and (b)] and 7(?)/x. Below each set of panels
we show Husimi phase space distributions for representative quantum states in each regime (see
Appendix A for details of distribution). Bright regions indicate larger probability density. For
~v/x = 0.01 we show two perspectives of the same quantum state, rotated for indicated axes and
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v/x
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polarization of the qubits, in contrast to the results for the infinite-ranged models we observe that
the squeezing parameter only marginally breaches the SQL (i.e., (N¢2)~™! < 1/N) for limited
values of 7. This reflects that while these states may exhibit anisotropic fluctuations/correlations
analogous to a spin-squeezed state (see averaged Husimi distributions shown beneath each panel
in Fig. 4), the finite-range interactions lead to states that are far from collective. Notably, the
collectivity parameter <S 2) is far smaller in the squeezed-like regime for these models than previous
observations for the infinite-ranged models in Fig. 3.

The complexity of the squeezed-like regime is further supported by computing the CFI. For
the Ising model, the CFI lies above the SQL for v < v but quickly deviates below the QFI as
~ increases. On the other hand, for the XX and f-TAT models the CFI shows only a handful of
points in the squeezed-like regime where the SQL is breached and does not approach the QFI until
the point at which quantum enhancement is essentially lost. Given that the CFI we compute is
constrained to collective observables, this suggests that, in general, harnessing the QFI of states
generated by finite-ranged interactions will require measurement of site-resolved observables or
correlations.

We carry out a more systematic investigation of the influence of the interaction range in Fig. 5,
wherein we plot the optimal QFI for each choice of entangling Hamiltonian as a function of a.
Panels (a) and (b) present results for fixed values of the decoherence rate v/x = 0.01 and v/x =
1.0, respectively. To further characterize the generated states, we plot the corresponding VQC
parameter 0; and (a) the fidelity with a GHZ state (Fgnz) or (b) the inverse squeezing parameter
((N€2)~1). All data uses N = 8 qubits.

In the case of weak decoherence [Fig. 5(a), v/x = 0.01], the QFI behaves in a markedly distinct
manner for each of the models. In the case of the Ising Hamiltonian, the QFI begins near the HL
(Fo/N? ~ 1) for a = 0 and quickly decreases as « increases (i.e., the interaction range shrinks),
approaching a value of F/N? = 0.27 (still just above the SQL, F/N? = 1/8) for a = 6. The
fidelity with a GHZ state (middle panel) similarly drops as the interaction is decreased, which
explains the reduction of the QFI relative to the HL. Underpinning both observations, the VQC
parameter 07 abruptly drops away from values associated with the generation of GHZ-like states
(0r/m ~ 0.5) toward faster evolution that indicates the optimal VQC is preparing squeezed-like
states.

On the other hand, while for the XX and f-TAT cases the QFI again starts near the HL for
a = 0, it does not monotonically decrease. Instead, it features a dip for intermediate values of
1 < a < 3 before growing again to become near the HL for the larger values of a we probe
(reaching Fp/N? ~ 0.83 for o = 6). Despite the qualitative similarity, the behavior of §; provides
insight that distinguishes the two Hamiltonians. For the XX Hamiltonian, we observe that 6 is
relatively unchanged as « is varied, suggesting that the existence of the cat-like regime is robust
regardless of interaction range [42]. This assertion is supported the fact that the overlap with
the GHZ state remains appreciable throughout (i.e., Fguyz is above or close to 1/2 throughout).
By contrast, for the f~-TAT Hamiltonian the more substantial dip in the QFT is accompanied by
an abrupt drop in the interaction duration 6; to smaller values consistent with the generation of
squeezed-like states, before jumping back to larger values consistent with the generation of cat-like
states. Again, this behavior is supported by a computation of Fgpz, which similarly falls below
1/2 in the region of a where smaller 65 is obtained before rising back above 1/2 when 6 increases.
The behavior of the QFI at large o for both the XX and f-TAT Hamiltonians suggests that the
generation of quasi-collective, cat-like states with large QFI is possible with short-range interactions
(at least in small systems) and merits further investigation.

The case of more moderate decoherence [Fig. 5(b), v/x = 1.0] presents a simpler story, with
the QFT starting from smaller values at & = 0 and monotonically decreasing as « is increased.
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In parallel, the values of the associated optimal VQC parameter 0; (and the inverse squeezing
parameter (N¢2)~1) are consistent with those previously observed in the squeezed-like regime,
suggesting it remains robust regardless of a.

3.3 Dependence on qubit number

Our results so far have focused on the specific case of N = 8. However, it is important to examine
the dependence of our analysis on system size, particularly to generate insight and develop general
strategies for larger systems that are not accessible with exact numerical calculations.

We conduct additional calculations for system sizes N € {2,4, 6,8} and perform a similar anal-
ysis to that described in the preceding sections. In particular, we still observe a general delineation
of the optimal preparation strategy into the three regimes: cat-like, squeezed-like,, and uncorre-
lated. We extract the transition values (! /x and ~(2) /x for each system size and plot the results
in Fig. 6 (the solid and dashed lines are used to distinguish the markers for A1) /x and ~(2) /X,
respectively).

Panel (a) of Fig. 6 shows the results for OAT and TAT. We observe that for both entangling
Hamiltonians, the scope of the cat-like regime tends to decrease with system size; in other words,
7(1)/ x trends to smaller values. This is unsurprising given that GHZ-like states are known to be
highly fragile and difficult to dynamically prepare in the presence of decoherence, and this fragility
worsens with system size [29, 50]. We note that while A1) /X appears to monotonically decrease
with system size for OAT, TAT exhibits more sophisticated behavior. Specifically, TAT depicts
a slight increase in (1) /x from N = 2 to 4 before dropping away quickly relative to OAT. We
attribute this to the fact that TAT does not prepare explicit GHZ states (in fact the characteristic
fidelity Fauyz deep in the cat-like regime changes noticeably as N is varied) and we are probing
particularly small system sizes. In future work, it would be interesting to exploit the permutational
symmetry of the TAT dynamics using efficient numerical methods [57] to study the non-unitary
dynamics for much larger systems N 2 100, in an effort to better understand the complexity of the
cat-like regime. In contrast to the shrinking cat-like regime, the value of () /X increases similarly
with system size for OAT and TAT. Thus, for large N we expect that, for this VQC, preparing
squeezed-like states will become the clear optimal strategy for sensing spin rotations in the presence
of modest decoherence.

Panels (b) and (c) of Fig. 6 depict analogous results for the Hamiltonians in Eqs. (2)—(4) with
a choice of @« = 3 and a = 6, respectively. Intriguingly, in panel (c) for the XX and f-TAT
Hamiltonians we observe that 'y(l)/ x settles to a fixed value (! /x =~ 0.46 independent of system
size for N > 4 (for the Ising Hamiltonian no cat-like regime exists so we do not plot (1) /x). Note
that this does not imply that finite-range interactions are more robust to decoherence, since the
QFT of the states in this persistent cat-like regime can be much smaller than for infinite-range OAT
and TAT (see Fig. 2). On the other hand, the increase of ’7(2)/X with system size for each of the
Ising, XX, and ~-TAT Hamiltonians closely follows the results for OAT and TAT.

4 Optimal state preparation with general decoherence

In our investigation so far, we have focused on a relatively specific scenario of isotropic dephasing.
Here we broaden the scope of our work and present general results for (i) imbalanced dephasing
along each axis and (ii) an alternative scenario where the decoherence is due to a combination of
spontaneous emission and dephasing along the z-axis. While the presence of the cat-like, squeezed-
like, and uncorrelated regimes remains, we find that the quantitative extent of these regimes is
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Figure 7: Optimal QFT as a function of relative strength of various types of decoherence for OAT in
panels (a) and (b) TAT in panels (b) and (d). All data is for N = 6 and o = 0. The top row scans
over z-dephasing (7, /x) versus y-dephasing (v, /x) whereas the bottom row scans over z-dephasing
versus spontaneous emission (y_/x). The boundary between the cat-like/squeezed-like regimes and
squeezed-like/uncorrelated regimes is delineated by magenta and green lines, respectively.

sensitively dependent on the specific combination of the entangling Hamiltonian and dominant
decoherence mechanism.

We first present results for the case of & = 0 (i.e., OAT and TAT Hamiltonians with infinite-
range interactions) with N = 6 qubits in Fig. 7. Panels (a) and (b) present the optimal QFI
(Fo/N?) for OAT and TAT, respectively, as a function of both z-dephasing with strength ~,/x
and y-dephasing with strength v, /x (we ignore z-dephasing by setting 7, = 0).> To guide the eye,
we indicate the boundaries between the cat-like and squeezed-like regimes with magenta lines and
similarly between the squeezed-like and uncorrelated regimes with green lines. The boundaries are
defined analogously to () and () indicated previously in the results of Sec. 3.

Starting with OAT in Fig. 7(a), we observe that the extent of the cat-like regime is nearly
symmetric, with only a slightly greater sensitivity to y-dephasing than z-dephasing. In contrast,
we observe that the squeezed-like regime is very asymmetric and is clearly less sensitive to y-
dephasing. Specifically, for small v, /x < 1 we find the SQL is reached for 7,/x ~ 10!, whereas in
the opposing case with small 7./x < 1 the squeezed-like regime extends far beyond ~,/x > 10*
[i.e., extends outside the range shown in panel (a)]. In the case of TAT [see 7(b)], while we find
that the cat-like regime is marginally more sensitive to z-dephasing, the more striking observation
is the reduced extent of this regime relative to OAT. On the other hand, the squeezed-like regime
is much larger than that observed for OAT and notably features larger QFI at comparable values
of decoherence. Both observations are consistent with earlier data shown in Fig. 3 for isotropic
dephasing.

We additionally present results for OAT and TAT subject to spontaneous emission and z-

'Note that we do not present similar depictions for a- versus z-dephasing and - versus y-dephasing as both z-
and y-dephasing render identical results. A similar statement can be made for the interchanging of spontaneous
emission/absorption.
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Figure 8: Optimal QFI as a function of relative strength of various types of decoherence for Ising
[panels (a) and (e)], XX [panels (b) and (e)], and f-TAT [panels (c) and (f)]. All data is for
N =6 and a = 6. The top row scans over z-dephasing (,/x) versus y-dephasing (v,/x), and the
bottom row scans z-dephasing versus spontaneous emission (v_/x). The boundary between the
cat-like/squeezed-like regimes and squeezed-like/uncorrelated regimes are delineated by magenta
and green lines, respectively.

dephasing in Fig. 7(c) and (d), where we show the QFT as a function of the respective decoherence
rates y_/x and v,/x. In the case of OAT, while the cat-like regime features a slightly better ro-
bustness to z-dephasing as opposed to spontaneous emission, the squeezed regime clearly showcases
the reverse. The onset of the SQL occurs near 7,/x ~ 10 when v_/x is taken to be vanishingly
small; in contrast, when v, /x is negligible, the squeezed regime continues to persist for large spon-
taneous emission v_/x > 10'° (the crossover the to SQL is not shown). For TAT [see 7(d)],
the extent of the cat-like regime is contracted relative to OAT with the boundary values of v_/x
and 7,/x (magenta line) effectively reduced by an order of magnitude compared with panel (c).
However, the squeezed-like regime again encompasses a considerably larger range of decoherence
rates relative to OAT. Specifically, the onset of the uncorrelated regime occurs at large values of
v2/XY—/x > 101% which are outside the range of parameters displayed in panel (d). In addition,
by inspecting the value of the QFI within the squeezed-like regime, we identify a relative robustness
to z-dephasing: The onset of red hues (lower QFI) occurs in the limiting case of dominant dephas-
ing at (v_/x,7./x) = (1072,10%) as opposed (v_/x,7./x) =~ (10°,1072) in the case of dominant
spontaneous emission.

Figure 8 presents analogous results for Ising, XX, and {-TAT models with & = 6 and N = 6
qubits. Panels (a)—(c) display the optimized QFI as a function of dephasing rates ,/x, and v,/x
(72 is again set to zero). For the XX and f-TAT models, the cat regime is of similar size and
approximately symmetric with respect to the dephasing axis. On the other hand, the Ising model
does not feature any cat regime, consistent with our prior discussion in Sec. 3. Similar to the « =0
results for OAT, the squeezed-like regime of the Ising and XX models extends to large values of
vy/x falling outside the plot range and is much more robust to y-dephasing. Equivalently, the
squeezed-like regime for the f-TAT model qualitatively mirrors the @ = 0 results for TAT, being
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far more robust than the Ising and XX models.

Panels (d)—(f) of Fig. 8 illustrate the behavior of the optimal QFI as a function of z-dephasing
and spontaneous emission rates v,/x and y_/x. Overall, the relative size and existence of the
cat-like and squeezed-like regimes follow similar trends to the data of panels (a)—(c). The most
significant difference in the case of imbalanced dephasing is the relatively quicker dropoff of the QFI
for the XX model when spontaneous emission is dominant, while the converse is true for f-TAT.

5 Conclusion

Our work provides insight into optimal state preparation strategies to maximize the QFI for metrol-
ogy tasks while fully accounting for limitations imposed by decoherence. In particular, we identify
a clear delineation of the strategies in terms of the types of states they generate, regardless of the
entangling interactions used as part of the VQC. Moreover, while we find that the generation of
states with QFI scaling near the HL. appears to become increasingly ambitious for larger system
sizes, as a result of the increased fragility of the preparation schemes to decoherence, we emphasize
that the generation of states with a QFI above the SQL can scale favorably with N. Further-
more, our results suggest that finite-range interactions may be sufficient to generate states with
appreciable QFI.

A number of interesting future directions can build on the analysis presented in this work. First,
we can expand the circuit ansatz in Fig. 1 by, for example, increasing the depth of our VQC by
layering alternating rotations and entangling stages. This will, in principle, increase the complexity
and range of potential states that we can prepare, potentially modifying our current classification
into cat-like, squeezed-like, and uncorrelated states. The VQC ansatz can also be expanded to fully
exploit the programmability of quantum sensing hardware by including different site-resolved qubit
rotations and two-qubit gates, as opposed to global rotations and entangling operations.

Second, in addition to decoherence introduced during the entangling stage of the VQC, we can
incorporate decoherence introduced by errors in VQC parameters such as imperfect initial and final
rotations (i.e., shot-to-shot fluctuations in rotation axis or angle). In contrast to the current VQC
that we study, this could benefit theoretical understanding by introducing some degree of control
over the level of mixedness of the prepared states that is independent of the VQC parameters
(whereas in the current protocol, the total amount of decoherence is correlated with the duration
of the entangling stage).

Third, our investigation of the QFI of mixed quantum states can be broadened by considering
isolated quantum systems that feature multiple degrees of freedom that can be entangled and
coherently controlled but are not necessarily mutually measurable. This leads to a situation where
the metrological potential of a prepared quantum state is best captured by the QFI of the reduced
density matrix describing the observable degree(s) of freedom, which will be mixed if the system
features entanglement [58].

We are investigating the development of more sophisticated, specialized numerical optimization
routines for optimizing the QFI for a given VQC or state preparation protocol. Whereas general-
purpose optimization methods, such as the Nelder—Mead algorithm used to generate the results in
this manuscript, are designed to receive only scalar outputs, the QFI form in Eq. (6) has considerable
structure that can be exploited. Instead of receiving only the scalar value Fg [ﬁ(x);é], we are
developing optimization methods that can receive and work with the density matrix p(x) and
approximate (finite-differences) or exact (algorithmic-differentiated) derivatives for entries of p(x)
with respect to the parameters x. It is not straightforward to pass this information through an
eigendecomposition, which is needed in Eq. (6). However, by building on past work by some of
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us [59, 60] that optimizes composite objectives by using objective knowledge form (such as the form
of Eq. (6)) in a QFT-only numerical optimization routine, we hope to find higher-quality solutions in
fewer queries/simulations of the system. This is a particularly important task because simulation
of open quantum systems involving many qubits and subsequent computation of the QFI for a
given mixed quantum state are computationally expensive.
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A Husimi probability distributions

Here we define the Husimi probability distributions used to visualize spin states in Fig. 3. The
basic idea is to define a Husimi probability distribution within each manifold of fixed spin length S
and take an appropriately weighted average of these distributions. Note that, for ease of language,
in this appendix we treat the symbol S as a variable to denote spin length, whereas the main text
defines S = N/2 for N spins.

A.1 A simplified case

Consider first the simplified case in which N spins occupy the permutationally symmetric manifold
with spin length S = N/2. In this case, for a density matrix p we can define the Husimi probability
distribution

p(v) = ws (v|plv) (11)

jv) = R(w) 1)V, R(v) = ¢95=¢ 105, (12)

and the normalization factor wg is determined by requiring that p(v) be a normalized probability
distribution, with

/d'vp('v) = /Oﬂde sin@/jﬂ dg p(6,¢) = 1, (13)

which implies that?

2541
ws = —
When the state p is permutationally symmetric, the probability distribution p is a faithful repre-
sentation of p in the sense that p is uniquely determined by p. Moreover, in this case the values
p(v) at (28 + 1)? points v suffice to reconstruct p [61].

(14)

2The normalization factor wgs is most easily determined by considering a uniform mixture of all N 4+ 1 permuta-
tionally symmetric states, for which (v|p|v) = 1/(N +1) =1/(25 + 1).
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A.2 The general case

More generally, the state p may have components with non-maximal spin length S. In this case, the
state p can no longer be faithfully represented by a probability distribution on a sphere. Nonetheless,
we meaningfully visualize the spin polarization of p by averaging over probability distributions
that represent components of p within fixed-S manifolds. To this end, we classify states by their
spin length S, spin projection m onto a quantization axis, and an auxiliary index & that encodes
how a state transforms under spin permutations. That is, we identify states |S,m,§) that are
simultaneous eigenstates of $2 = 52 + 5’3 + 52 and S, with $2|S,m, &) = S(S+1)|S,m, &) and
S, 1S, m, &) =m|S,m,€). We then define the rotated state

v,5,6) = R(v)]S.5.¢), (15)

which is the analogue of |v) in a sector of Hilbert space with spin length S. The net spin-polarization
probability distribution p(v) is then

pv) = ws (v, 5.€plv, S,€). (16)
5,8
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