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ABSTRACT

Nighttime Light (NTL) images provide critical insights into urbanization, disaster response, and
energy consumption. The VIIRS Day/Night Band (DNB) sensor offers high-quality NTL im-
agery with daily revisit rates, but the available spatial resolution hinders fine-grained accurate
analysis. Super-resolution techniques aim to increase the resolution of NTL images, enabling
more detailed assessments of infrastructure, light pollution, economic activity, and power outages.
However, existing state-of-the-art super-resolution methods designed for natural images strug-
gle with the unique characteristics of NTL data. This work provides a comprehensive review of
super-resolution methods across multiple image modalities, evaluates their effectiveness on VI-
IRS DNB data, and proposes a multi-modal super-resolution approach tailored to NTL imagery.
The proposed approach integrates VIIRS DNB data with road networks and land use informa-
tion to improve reconstruction accuracy and spatial detail. Code is available for this project at
https://code.ornl.gov/viirs-sr/sr-demos.

1. INTRODUCTION

Nighttime Lights (NTL) images are satellite images that capture artificial light emissions on Earth
at night [1]. These images primarily show city lights, roads, industrial areas, fishing fleets, and
even some natural events like wildfires or auroras. NTL images have a wide variety of use cases,
including economics, environmental science, and urban planning [2]. There are several NTL sen-
sors mounted on satellites with publicly available data, including the Defense Meteorological Satel-
lite Program’s Operational Line-scan System (DMSP-OLS), the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) on-board the Suomi National Polar-orbiting Partnership (S-NPP) and
Joint Polar Satellite System (JPSS) satellites, and photographs taken by astronauts on the In-
ternational Space Station (ISS) [2]. However, in this work, we will focus on the Day/Night Band
(DNB) sensors on the VIIRS due to their high resolution and wide use.

The VIIRS DNB sensors on board the S-NPP and JPSS satellites capture global daily measure-
ments of visible and Near-Infrared (NIR) light emissions [3]. These sensors capture 22-band im-
ages at spatial resolutions of 375m and 750m with a swath width of 3000 km. The DNB has a
spectral range of 0.5-0.9µm and has three gain settings which allow for dynamic range of 3 ×
10−9 − 2 × 10−2 W·cm−2·sr−1 with a noise floor of about 5 × 10−11 W·cm−2·sr−1 [2]. More de-
tails on the data specifications and post-processing of VIIRS DNB images are available in the
user guide [3]. VIIRS DNB images have emerged as a valuable source of information for a variety
of applications, including urbanization monitoring, disaster risk assessment and response moni-
toring, regional conflict monitoring, light pollution studies, and power outage detection [4, 5, 6,
7, 8]. Despite the current application of VIIRS DNB images to critical applications, there is con-
tinued discussion of opportunities for more effective use of NTL data, implying that NTL images
will continue to be at the widely used [9, 10].

While NTL images offer valuable insight into human activity, urbanization, and energy consump-
tion, localized and accurate analysis of these acquired images is often limited by their spatial
resolution [11]. Super-resolution methods for NTL images attempt to recover a High-Resolution
(HR) NTL image from its Low-Resolution (LR) NTL counterpart, enabling finer-grained analysis
and more accurate assessments of infrastructure development, disaster impacts, and light pollu-
tion [12]. Figure 1 shows an example of NTL super-resolution, with a LR NTL image on the left
and a HR NTL image on the right.
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Figure 1. Example of nighttime light super-resolution. A low-resolution nighttime
light image on the left is input into a super-resolution method, which generates a

high-resolution nighttime light image on the right.

Super-resolution is a commonly researched topic in the image processing and computer vision
community, and has demonstrated impressive performance on natural images, which tend to have
complex textures, colors, and fine lines (i.e. images that depict real-world scenes such as land-
scapes, animals, human faces, etc.). However, there is a significant difference between the statis-
tics of these natural images and NTL images, since NTL images generally consist of low-contrast
dark regions and a high dynamic range of brightness values. Due to these differences, the perfor-
mance of state-of-the-art natural image super-resolution methods significantly deteriorates when
applied directly to NTL images.

In this work, we first provide a thorough literature review of existing super-resolution methods
designed for a variety of image modalities, including natural images, multispectral satellite im-
ages, and NTL images. Then, we select a comprehensive set of methods to test on VIIRS DNB
data in order to analyze the effectiveness of various super-resolution approaches for NTL imagery.
Additionally, we construct a multi-modal super-resolution network designed specifically for VI-
IRS DNB images which exploits correlation with auxiliary modalities. To the best of our knowl-
edge, this is the first comprehensive review of super-resolution methods for NTL images, which
will help to guide future research.
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2. PROBLEM FORMULATION

We denote the rasterized unknown HR NTL image that we wish to recover as x ∈ RMN , where
M,N ∈ N are the number of rows and columns respectively. Then, we assume that the LR NTL
image is given by

y = Ax+ ϵ, (1)

where y ∈ R
MN
L2 , A is an operator that reduces the resolution of the HR NTL image by a factor of

L, and ϵ ∼ N (0, σ2) is independent Additive White Gaussian Noise (AWGN).

The operator A is modeled as the composition of a blurring operator and a downsampling oper-
ator. The result of applying A to an image is as follows. First, the image is blurred by convolv-
ing it with a kernel k. Then, the image is downsampled, in which the image is divided into non-
overlapping L × L blocks, with each block being replaced by a single pixel related to the pixel
values in the corresponding L×L block. In this work, we assume that downsampling is performed
using a process known as block averaging, in which the pixel values are averaged over each L × L
block.

The kernel k is related to the Point Spread Function (PSF) of the imaging system, which de-
scribes how a point source of light is spread out in the image. The PSF is determined by various
factors such as the optics, detector, and atmospheric conditions. While the PSF for satellite im-
agery can be spatially and temporally variant due to atmospheric conditions, motion of the satel-
lite, or oblique viewing angles, we will assume that the PSF is spatially and temporally invariant
for practical purposes. For many super-resolution methods, the PSF is assumed to be known. In
these methods, an accurate estimation of the PSF is crucial. In the literature, there are several
approaches to estimating the PSF of NTL images. Zheng, Weng, and Wang estimate the PSF by
analyzing known point sources of light surrounded by relative darkness, such as gas flares in re-
mote oil extraction sites or ships at sea [13, 14]. Similarly, Xue et al and Sanchez de Miguel et al
analyze the spread over known high-contrast edges such as the Ross Ice Shelf in Antarctica, or
the Lake Michigan shoreline [14, 15]. On the other hand, Tziokas et al assume k to be a Gaus-
sian kernel based on case studies that they performed [16]. Namely, in two case studies, one of
Los Angeles, California, and the other of Delhi, India, the authors found through statistical anal-
ysis that a Gaussian kernel with a standard deviation of 572 and 676 meters, respectively, was the
best fit. Since we are working with data from the same satellite platform, this is the approach we
take in this work. Specifically, we assume that the PSF is a Gaussian kernel with a standard devi-
ation of 625 meters.

The goal of super-resolution is to recover the high-resolution image x from the low-resolution im-
age y using the relationship established in Equation (1). However, the super-resolution problem
is severely ill-posed due to the information loss during the blurring and downsampling process.
Notably, the solution space is infinite, i.e., there are infinitely many high-resolution images that
could have produced the low-resolution image. Moreover, the noise term ϵ further complicates
the problem — small perturbations in the low-resolution image can lead to large changes in the
reconstructed high-resolution image which are not visually plausible. Thus, a robust inversion
method is needed to recover the high-resolution image. Instead of directly inverting the forward
model in Equation (1), super-resolution methods seek to recover some map f : R

MN
L2 → RMN such

that x = f(y). This is done assuming some prior knowledge about the high-resolution image, such
as smoothness, sparsity, or some other property. This assumed information can then be incorpo-
rated explicitly through regularization techniques, or implicitly through a data-driven approach.
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However, these approaches are not without caveats, such as bias, overfitting, and generalization
issues.

In the case of multimodal super-resolution, these problems are further eased by incorporating ad-
ditional sources of data. Namely, in addition to the low-resolution image, we are given some set
{ai} of auxiliary modalities (e.g. depth maps, street maps, environmental indices) which are as-
sumed to have some correlation with the input image. Multimodal super-resolution methods seek
to leverage this information when recovering the map f : R

MN
L2 → RMN such that x = f(y, {ai}).

In the following section, we survey existing super-resolution techniques for a variety of image
modalities, outlining the approaches they take for dealing with the ill-posed nature of super-resolution.
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3. LITERATURE REVIEW OF SUPER-RESOLUTION METHODS

In this section, we outline various super-resolution methods that could be applied to NTL super-
resolution. Table 1 gives a high-level overview of each of these methods. We split them into three
categories: Single Image Super-Resolution (SISR), Multispectral Image Super-Resolution (MSI-
SR), and Multimodal Super-Resolution (MMSR).

3.1 SINGLE IMAGE SUPER-RESOLUTION (SISR)

SISR methods seek to enhance the resolution given only a single low-resolution image. These
methods can be classified as unsupervised, semi-supervised, and supervised methods.

Unsupervised SISR methods do not require any training, enabling application when training data
is unavailable. In general, these methods either take a zero-shot deep learning-based approach or
a model-based approach. Zero-shot deep learning-based approaches rely on self-similarity of im-
ages to generate super-resolved images using a deep learning network. On the other hand, model-
based unsupervised SISR methods solve an optimization problem using a model of the imaging
system along with prior knowledge of the high-resolution distribution.

Supervised SISR methods rely on a training set of paired low- and high-resolution images to learn
a mapping from a low-resolution image to the corresponding high-resolution image. They learn
this mapping by minimizing a loss function between the predicted super-resolved image and the
high-resolution ground truth image. Common loss functions include pixel-based loss such as mean
squared error or mean absolute error (L1 loss), total variation loss [47], perceptual loss [48], and
adversarial loss [49]. Supervised SISR methods are particularly successful when large amounts of
high-quality training data is available. However, it is impractical to collect this training data in
many applications, limiting the applicability of supervised SISR methods. Additionally, perfor-
mance of these methods can deteriorate if the training data is not representative of the testing
data (i.e. the testing data is out-of-distribution).

Semi-supervised SISR methods attempt to mitigate the limitations of supervised and unsuper-
vised methods by using unpaired high-resolution images to learn a prior distribution paired with
a data consistency term. Generally, these methods includes the incorporation of a deep learning
model within a model-based approach.

3.1.1 Unsupervised SISR Methods

Unsupervised SISR methods do not require any training before being applied to a test image. In-
stead, these methods generally use either a zero-shot deep learning-based approach or a model-
based approach. Model-based approaches depend on modeling of the imaging system along with
some prior knowledge of the high-resolution distribution. Various priors have been proposed for
SISR, including edge sharpening [20], total variation [19], and quadratic regularization [21]. Frequency-
based approaches have also been taken using either the discrete Fourier transform [17] or wavelet-
based approaches [18, 50].

Zero-shot deep learning-based methods use a single test image to leverage internal self-similarities
for learning parameters of a deep learning network, thus exploiting the success of deep learn-
ing architectures without requiring paired low- and high-resolution training data. For example,
ZSSR [51] exploits internal redundancy in an image to train a small image-specific Convolutional
Neural Network (CNN) at inference time. More specifically, ZSSR uses downscaled versions of the
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Method Reference Method Type Input
Type

Training Data Auxiliary
Inputs

Evaluation
Metrics

Code

DFT-based
method

[17] Unsupervised SISR RGB – – PSNR –

Wavelet-based
method

[18] Unsupervised SISR RGB – – – –

Total Variation
Prior

[19] Unsupervised SISR RGB – – PSNR –

Edge Sharpening
Prior

[20] Unsupervised SISR RGB – – – –

Quadratic Regular-
ization

[21] Unsupervised SISR RGB – – RMSE, PSNR,
ISNR, MSSIM

Unofficial

ZSSR [22] CNN, Unsuper-
vised SISR

RGB – – PSNR, SSIM Official

SinGAN [23] GAN, Unsuper-
vised SISR

RGB – – RMSE, NIOE Official

SRCNN [24] CNN, Supervised
SISR

RGB ImageNet, Set5,
Set14

– PSNR, SSIM, IFC,
NQM, WPSNR,
MSSSIM

Unofficial

VDSR [25] CNN, Supervised
SISR

RGB Set5, Set14,
BSD500

– PSNR, SSIM Unofficial

ESPCN [26] CNN, Supervised
SISR

RGB ImageNet – PSNR Unofficial

EDSR [27] CNN, Supervised
SISR

RGB DIV2K – PSNR, SSIM Official

SRResNet+ [28] CNN, Supervised
SISR

RGB DIV2K Noise map PSNR Official

SRGAN [29] GAN, Supervised
SISR

RGB ImageNet – PSNR, SSIM, Hu-
man Evaluation
(MOS)

Unofficial

ESRGAN [30] GAN, Supervised
SISR

RGB Div2K, Flickr2K,
OurdoorScene-
Training

– PSNR, Perceptual
Index

Official

SR3 [31] Diffusion, Super-
vised SISR

RGB Flickr-Faces-HQ,
ImageNet 1K

– PSNR, SSIM,
LR MSE, Human
Evaluation

Unofficial

USRNet [32] Supervised SISR RGB DIV2K, Flickr2K – PSNR Official
SwinIR [33] Vision transformer,

Supervised SISR
RGB DIV2K, Flicker2K – PSNR, SSIM Official

Swin2SR [34] Vision transformer,
Supervised SISR

RGB DIV2K – PSNR, SSIM Official

Swin2-MoSE [35] Vision transformer,
Supervised SISR

Remote
Sensing Im-
ages

Sen2Venµs,
OLI2MSI

– PSNR, SSIM Official

SupReME [36] Unsupervised MSI-
SR

MSI – – SRE, SAM Official

SMUSH [37] Unsupervised MSI-
SR

MSI – – SNR –

S2Sharp [38] Unsupervised MSI-
SR

MSI – – SRE, SAM,
RMSE, SSIM

Official

DSen2 [39] CNN, Supervised
MSI-SR

MSI Reduced Resolu-
tion Sentinel-2

– RMSE, SRE, UIQ Official

ResSR [40] Unsupervised MSI-
SR

MSI – – PSNR, SSIM Official

GWR-based
method

[41] Unsupervised
MMSR

NTL – NDVI, LST,
AWEI, popula-
tion density

R2, RMSE –

BlackMarbleHD [42] Unsupervised
MMSR

NTL – NDWI, NDVI,
road maps

– –

MGWR-based
method

[43] Unsupervised
MMSR

NTL – NDVI, NDBI,
LST, LUCC, road
density, and POI
density

R2, RMSE –

VNCI-based
method

[44] Unsupervised
MMSR

NTL Annual NPP DNB,
Luojia1-01

NDVI RMSE, R2 –

DeepLight [45] Supervised MMSR NTL PANDA, Luojia
1-01

MSI, elevation
maps, impervi-
ous surface

PSNR, SSIM,
SAM, CC, PIQE,
UIQI

–

NTL-CMDM [46] Supervised MMSR NTL Black Marble, Luo-
jia 1-01

Road density, im-
pervious surface,
highlight features

RMSE, R2 CV,
AD

–

Table 1. Comparison of reviewed super-resolution methods.
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test image to learn cross-scale relationships within the image, which are then applied to generate
the super-resolved image. SinGAN [23] extends this idea from CNNs to GANs by using a pyramid
of convolutional GANs to learn cross-scale relationships within the testing image.

More recently, zero-shot deep learning-based SISR methods using an Implicit Neural Representa-
tion (INR) of the image have gained attention in the computer vision community. These methods
attempt to learn a continuous representation of a discrete image using a coordinate-based neu-
ral network. After learning a continuous representation of a low-resolution image, the INR can
then be used to super-resolve the image by inputting a finer pixel grid to the network. Most INRs
use a Multilayer Perceptron (MLP) for the neural network. The first proposed INRs used a sim-
ple ReLU MLP [52]. However, Rahaman et al [53] showed that these networks prioritize learn-
ing low frequencies, a phenomenon called spectral bias. There are generally two approaches for
dealing with the spectral bias of ReLU MLPs – encoding the coordinates in a higher-dimensional
space or changing the activation function. By encoding the coordinates in a higher-dimensional
space, the network is able to express higher frequencies on the manifold of the new space using
lower frequencies with respect to the original coordinate space [53]. There are three encoders gen-
erally used in literature: basic encoding, positional encoding [54, 55, 56], and random Fourier
features [57]. Swapping ReLU with a different activation function can also mitigate the spectral
bias of ReLU MLPs. The first proposed alternative activation function was a sinusoidal activation
function [58] which enables better representation of higher-order derivatives and higher-frequency
detail. Since then, other periodic activation functions have been used, such as Gabor wavelet acti-
vation functions [59], HOSC functions [60], and modified sinusoidal activation functions [61]. Non-
periodic activation functions have also been proposed, such as Gaussian activation functions [62]
and the Sinc activation function [63]. Other INR-based unsupervised SISR methods update the
training process based on the super-resolution problem being solved, such as LINR [64] More
specifically, they use similar architectures to general INR methods with a modified loss function
which incorporates the super-resolution forward model.

3.1.2 Semi-supervised SISR Methods

Semi-supervised SISR methods use unpaired high-resolution images to learn high-frequency de-
tail without requiring access to a paired training set. Generally, these methods use a plug-and-
play approach [65] which incorporates a deep learning model as a prior along with a data-fitting
term. MDF [66] showed success in super-resolving microscopy imagery using PnP-ADMM with
DnCNN [67] trained on high-resolution imagery as the prior. By training the prior on high-resolution
images, the algorithm is able to effectively fuse high-frequency information into the super-resolved
images. DPSR [28] is a similar method that makes small adjustments to the degradation opera-
tor so that a super-resolver can be used as the prior instead of a denoiser. This procedure does
require access to paired high- and low-resolution data for training the prior, but is not an end-to-
end super-resolution method, which is why we categorize it as a semi-supervised SISR method.

3.1.3 Supervised SISR Methods

The first supervised SISR method used machine learning techniques to learn relationships be-
tween low- and high-resolution images without the use of a deep learning network. Common ex-
amples use neighbor-based methods [68], sparse representations [69], and example-based approaches [70].
However, with the rise of deep learning, supervised SISR methods have primarily shifted to deep
learning-based methods.

The first supervised deep learning-based SISR method was proposed in 2014 [24]. This network,
called SRCNN, is a fully convolutional network that learns an end-to-end mapping between in-
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terpolated low- and high-resolution images. It takes an interpolated low-resolution image as in-
put and consists of three convolutional layers which extract a set of feature maps, map the fea-
ture maps non-linearly to high-resolution patch representations, and combine the predictions
within a spatial neighborhood to produce the final high-resolution image. The proposed archi-
tecture is guided by reformulating conventional sparse coding-based super-resolution methods into
a convolutional network. For training, they use mean squared error as the loss function and mini-
mize the loss using stochastic gradient descent with the standard back-propagation. Their results
show improved performance over sparse coding-based methods. Kim et al improved upon SRCNN
in their proposed VDSR [25], which uses contextual information across large image regions, ex-
ploits residual-learning and gradient clipping for faster training, and allows for multi-scale super-
resolution with a single network.

One limitation of SRCNN and VDSR is that the input image is interpolated before being prop-
agated through the network, which greatly increases the computational complexity. To address
this, Shi et al proposed an efficient sub-pixel convolutional neural network (ESPCN) which takes
the measured low-resolution image and learns upsampling filters for each feature map that are
applied at the last layer [26]. This adjustment allows the majority of the computation to be per-
formed in low-resolution space, significantly reducing the computational complexity compared
to SRCNN and VDSR. Results show that ESPCN can significantly increase the speed and re-
duce the complexity compared to other super-resolution methods, enabling super-resolution of
HD videos in real time on a single GPU.

Residual learning, originally proposed in ResNet [71], has been very successful in high-level com-
puter vision problems like classification and detection. In 2017, Ledig et al applied residual learn-
ing to super-resolution in their proposed SRResNet [29]. However, Lim et al noted that modi-
fications must be made to this architecture to optimize the network for super-resolution. They
propose an enhanced deep super-resolution network (EDSR) which removes unnecessary mod-
ules from the SRResNet structure [27]. Namely, they remove batch normalization layers, which
increases performance and decreases GPU memory usage. They also propose a multi-scale model
which uses scale-specific pre-processing and upsampling modules. Results on public benchmarks
datasets demonstrate better performance than SRCNN, VDSR and SRResNet.

Ledig et al harnessed the promise of generative adversarial networks (GANs) in their super-resolution
GAN, called SRGAN [29]. They use a deep residual network, SRResNet, for the generator with a
novel perceptual loss rather than the traditional MSE loss (which tends to create blurry images).
More specifically, the perceptual loss is calculated as a weighted sum of a content loss and an ad-
versarial loss, where the content loss is calculated using high-level feature maps of a VGG classi-
fication network [72]. Results demonstrated state-of-the-art performance (as of 2017) on bench-
mark datasets for 4× super-resolution in terms of PSNR, SSIM, and mean opinion score.

Wang et al proposed an improvement on the original SRGAN called Enhanced SRGAN (ESR-
GAN) [30]. They improve the original model in three specific ways – the network structure, the
discriminator, and the perceptual loss. For the network structure, they introduce the Residual-
in-Residual Dense Block (which combines multi-level residual network and dense connections),
remove Batch Normalization layers (as in [27]), and use residual scaling and smaller initializa-
tion. For the discriminator, they use a relativistic average GAN (RaGAN) [73] which helps the
generator recover more realistic texture detail. Finally, they improve the perceptual loss by using
the VGG features before activation instead of after activation. ESRGAN is shown to consistently
achieve better perceptual quality than previous SR methods, including SRGAN. The method won
the first place in the PIRM-SR Challenge in terms of the perceptual index.
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SwinIR [33] is a transformer-based image restoration method, which produces state-of-the-art re-
sults on super-resolution, denoising, and JPEG compression artifact reduction tasks. It is built on
the Swin Transformer [74], which uses a shifted window mechanism to produce hierarchical rep-
resentations of images, thus reducing complexity of the method and allowing learning at various
scales. Swin2SR [34] extends SwinIR using SwinV2 [75], which is a modified version of the Swin
transformer that better scales model capacity and window resolution. Swin2SR produces results
comparable to SwinIR with 100k fewer training iterations. Swin2-MoSE [35] extends Swin2SR by
replacing the Feed-Forward inside all transformer blocks with an enhanced Mixture-of-Experts
(MoE), using positional encoding with a combination of per-head and per-channel bias, and train-
ing with a combination of Normalized-Cross-Correlation and SSIM losses. The presented results
show slight improvements over Swin2SR and SwinIR.

USRNet [32] is a deep unrolled super-resolution network that bridges the gap between model-
based and learning-based methods. While learning-based methods have been proven to be better
than model-based methods in effectiveness and efficiency, model-based methods are more gener-
ally applicable since they can directly handle different scale factors, blur kernels and noise levels.
USRNet combines the advantages of both approaches by using a deep unrolled network to learn
the mapping from low-resolution to high-resolution images, while incorporating the problem-
specific scale factor, blur kernel, and noise level. Algorithms such as plug-and-play and their un-
rolled variants can be limited by a number of hyperparameters, which may require tuning for each
specific problem. To mitigate this, USRNet includes a hyperparameter tuning network which
learns the optimal hyperparameters for the specific problem at hand during the course of train-
ing. USRNet reaches state-of-the-art performance on benchmark datasets while remaining flexible
like model-based methods. However, the method requires a known and fixed degradation model,
which may not be available in all applications.

HCFlow [76] is a unified framework for image super-resolution and image rescaling that learns a
bijective map between HR and LR image pairs by modeling the LR image and the high-frequency
component distributions of the HR image simultaneously. It combines the methods from two pre-
vious papers: SRFlow [77] and IRN [78]. First, by normalizing flow, HCFlow learns a distribution
of HR images from a LR image. Next, by conditioning the high-frequency components on the LR
image in a hierarchical manner, it enhances reconstruction quality. Beyond leveraging normaliz-
ing flow, HCFlow improves training by additionally using L1 loss, perceptual loss, and adversarial
loss. However, as with most generative models, HCFlow suffers from hallucination artifacts and
bias from the training data, which are inadmissible in critical applications.

Super-Resolution via Repeated Refinement (SR3) [31] is a conditional generative diffusion model
that uses a series of invertible transformations to map Gaussian noise to a high-resolution image.
Using a U-net architecture, the model learns to transform a standard normal distribution into
an empirical data distribution through a sequence of refinement steps, resembling Langevin dy-
namics. SR3 works on a range of magnification factors and input resolutions, and can be easily
cascaded to achieve higher magnification to obtain impressive 16x super-resolution results. How-
ever, this method is prone to bias; experiments on real-world data show that the model does not
reliably generate textures which often are the most important features to resolve.

In imaging scenarios where the blur kernel is unknown, or changes over time, blind super-resolution
methods are necessary. Blind methods work without knowing the forward model beforehand – ei-
ther by training on a variety of degradations or by estimating the degradation along with the HR
image.
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BSRGAN [79] is a blind generative method for image super-resolution trained on a suite of realis-
tic SISR degradations. First, they randomly shuffle the degradation sequence (i.e. blur, downsam-
pling, noise, JPEG compression artifacts, etc). Then they randomly sample from the implemented
downsampling methods as well as various parameters like kernel width, rotation angle, and noise
standard deviation. From this, they generate a number of different LR candidates for each given
HR image. This variety of LR images ensures that the trained model is robust and more broadly
applicable to real degradation models.

Iterative Kernel Correction (IKC) [80] is a blind super-resolution method that estimates the blur
kernel and the high-resolution image simultaneously. When incorrect kernels are used, regular and
predictable artifacts, such as over-sharpening or over-smoothing, are introduced into the super-
resolved image. This information can be leveraged to better estimate the blur kernel and the
high-resolution image. IKC is composed of three networks: a kernel estimation network, a high-
resolution image estimation network, and a kernel correction network. These networks are applied
iteratively eight times to refine the kernel and the high-resolution image. It is then trained in an
end-to-end manner to minimize the error between the estimated high-resolution image and the
ground truth. The training is done using known Gaussian blur kernels with varying sizes and
standard deviations, while other blur kernels which are more common in real-world scenarios,
such as motion blur, are said to be the subject of future work.

3.2 MULTISPECTRAL IMAGE SUPER-RESOLUTION (MSI-SR)

MSI-SR methods enhance the lower spatial resolution spectral bands of a Multispectral Image
(MSI) by leveraging the high spatial resolution spectral bands of the same MSI, exploiting the
correlation between the LR and HR spectral bands. The VIIRS satellite captures the panchro-
matic NTL image as well as 5 high-resolution spectral bands and 16 low-resolution spectral bands.
In theory, MSI-SR methods can be used to super-resolve the NTL image by leveraging the 5 high-
spatial resolution bands. Similar to SISR methods, these can be split into unsupervised and su-
pervised methods.

3.2.1 Unsupervised MSI-SR Methods

Unsupervised MSI-SR methods generally take a model-based approach, which solve for the super-
resolved image using a Bayesian framework. Specifically, they minimize a cost function that con-
sists of a data-fitting term, which models the physics of the imaging system, and a regularization
term, which models the prior distribution of expected high-resolution images. Since the spectral
bands are highly correlated, some model-based MSI methods use singular value decomposition to
reduce the dimensionality. The resulting optimization problem solves for the representation co-
efficients for the new subspace representation. One such example is SupReME [36], which uses
an L2 norm of spatial derivatives for regularization and minimizes the cost function iteratively
using C-SALSA [81]. SMUSH [37] extends upon SupReME by hierarchically super-resolving the
various resolutions and including a BM3D plug-and-play-based regularizer [82]. S2Sharp [38] also
extends on SupReME by minimizing both the subspace representation coefficients and the basis
vectors for the subspace. Other methods don’t explicitly reduce the dimensionality, but rather
use a learned sparse representation or enforce a low-rank solution [83, 85, 86, 87, 88, 89, 90, 91,
92, 84]. While these iterative methods can attain high-quality super-resolution results, they are
often computationally expensive, limiting their scalability. Recently, a computationally efficient
model-based method, ResSR [40], was proposed. By using only pixel-wise regularization and ap-
proximating the downsampling operator, ResSR significantly reduces the computation complexity
compared to alternative methods, enabling scalable processing of large data sets without loss of
reconstruction quality.
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3.2.2 Supervised MSI-SR Methods

Supervised MSI-SR methods generally use a neural network to learn the relationship between low-
resolution and high-resolution bands of an MSI. Various network architectures have been pro-
posed for this problem, ranging from CNNs to GANs. DSen2 [39] is a supervised CNN trained
on reduced resolution Sentinel-2 data, which consists of separate networks for different super-
resolution factors. RS-ESRGAN [93] is a similar supervised method that uses the ESRGAN ar-
chitecture [30] instead of a CNN. MoG-DCN [94] is an unrolled network that attempts to bridge
the gap between model-based and deep learning-based MSI-SR methods by unrolling each itera-
tion of the proximal gradient method into a layer in a network.

3.3 MULTIMODAL SUPER-RESOLUTION (MMSR)

MMSR refers to the process of enhancing the resolution of an image by integrating information
from multiple sources of information, such as different imaging modalities. These methods are
particularly useful when multiple, highly-correlated data sources are available. In this section,
we will restrict our discussion to MMSR methods for NTL super-resolution. In this context, the
goal is to enhance the spatial resolution of a NTL image by leveraging images from higher spatial
resolution auxiliary data, such as Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI), Land Surface Temperature (LST), and road networks. Similar
to SISR and MSI-SR methods, MMSR methods can be split into two categories: unsupervised
and supervised methods.

3.3.1 Unsupervised MMSR Methods

Unsupervised methods generally use spatial regression to determine a spatially-varying relation-
ship between the NTL image and the downsampled auxiliary images. Then they apply this rela-
tionship using the HR auxiliary images to reconstruct the super-resolved NTL image, assuming
that this relationship is scale-invariant [95, 96]. The National Aeronautics and Space Adminis-
tration (NASA) has developed a method, called BlackMarbleHD, which combines NTL images,
upsampled by cubic convolution interpolation, with NDVI, NDWI, and road maps, to produce a
HR NTL image [42]. Similarly, Ye et al propose an unsupervised MMSR NTL super-resolution
method based on Geographically Weighted Regression (GWR) [41]. GWR extends standard re-
gression by allowing the relationships to vary over space. This method uses the NDVI, LST, Au-
tomated Water Extraction Index (AWEI), and population density data. Liu et al [43] extends
this method by using Multiscale Geographically Weighted Regression (MGWR) instead of GWR,
which allows the use of an spatially-adaptive kernel. This method uses NDVI, Normalized Built-
Up Index (NDBI), LST, Land Use & Cover Change (LUCC), road density, and Point of Interest
(POI) density data. In a similar vein, [44] constructs a joint distribution of the NTL and NDVI
images, called Vegetation Nighttime Condition Index (VNCI), and uses this distribution to esti-
mate a HR NTL image from given LR NTL and HR NDVI images.

3.3.2 Supervised MMSR Methods

Unlike unsupervised methods, supervised approaches learn the relationship between the LR NTL
image, the auxiliary images, and a corresponding HR NTL image. In [46], the authors propose
a deep learning-based MMSR method called NTL-Conditional Multiscale Downscaling Model
(CMDM) that employs CNN blocks to extract features from the LR NTL image and road net-
works, impervious surfaces, and a custom highlight feature map. Additional CNN blocks then
model the relationships between these features, producing a super-resolved NTL image as the fi-
nal output. Similarly, DeepLight [45] utilizes MSI, elevation maps, and impervious surface data
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to super-resolve NTL images. DeepLight also introduces a learned alignment module that learns
to align the input LR NTL image with the auxiliary images. The alignment module consists of a
learned downsampling operator to reduce the resolution of the auxiliary images, and a transformed-
based alignment network to align the LR NTL image with the downsampled auxiliary images.
The features of each image are then extracted via a series of parallel residual networks with cross-
modality connections, and then fused together to produce the super-resolved NTL image.
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4. PROPOSED MMSR METHOD

While there are existing MMSR methods for NTL images (as outlined in Section 3.3), none of
them have public code or datasets, making their results very difficult to replicate. Instead, we use
the foundational ideas from existing supervised MMSR methods to create our own MMSR model
and dataset consisting of LR VIIRS DNB images, HR Luojia 1-01 images, HR OpenStreetMap
(OSM) images, and HR land use data from DynamicWorld. In this section, we first outline the
data that we use for our model. Then, we present an overview of the model architecture and im-
plementation details.

4.1 DATA

At inference time, our MMSR model requires a LR NTL image, along with two registered HR
auxiliary images. For training, our model also requires a paired HR NTL image that is used as
ground truth for computing the loss. Our LR NTL dataset consists of images from the Black
Marble product suite and our HR NTL dataset consists of images from the Luojia 1-01 satel-
lite. Additionally, our two HR auxiliary datasets consist of road networks from OSM and land use
data from DynamicWorld. The entire dataset contains 418 unique location-time pairs, each con-
sisting of a HR NTL image, a LR NTL image, a road network image, and a land use image. We
split this dataset into a training, validation, and testing dataset each with 281, 67, and 70 images
respectively.

While the image sizes vary, the LR NTL images are approximately 600×600 pixels, whereas the
HR NTL and auxiliary images are roughly 2400×2400 pixels. Figure 2 shows an example of each
image modality incorporated in our dataset. The top row of shows the auxiliary images from
OSM and DynamicWorld, while the bottom row shows the LR and HR NTL images from Black
Marble and Luojia 1-01 respectively. The full-sized image is shown on the left, while the right
side shows a zoomed-in view of the region in the red box. The remainder of this section outlines
the data specifications and preprocessing used for each of these image modalities.

4.1.1 LR NTL Dataset

For our LR NTL dataset, we use NASA’s Black Marble Nighttime Lights product [3], downloaded
from the NASA Level-1 and Atmosphere Archive and Distribution System Distributed Active
Archive Center (LAADS DAAC)1 using the Python library blackmarblepy [97].

The Black Marble product suite provides reliable and accurate global NTL images at 500 m res-
olution from January 2012 to the present. It addresses several issues with using raw DNB data
from VIIRS, such as the need to correct for atmospheric effects, light from the moon, light from
snow cover, and other sources of aberrations. Moreover, it fills missing data gaps by interpolating
between nearest available data points in time. NASA provides several versions of the Black Mar-
ble product, including daily, monthly, and yearly composites. Since some applications of this work
require high temporal resolution, we use the VNP46A2 product, which is a daily composite of the
corrected NTL radiance values in units of nW·cm−2·sr−1.

In order to ensure that the LR NTL images are suitable for training, we preprocess the images in
three steps. First, we remove the background noise by setting all values below 1.5 nW·cm−2·sr−1

1https://www.earthdata.nasa.gov/centers/laads-daac
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HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

Figure 2. Example images of the four modalities used in our dataset. The top row
shows the road network and land use images, while the bottom row shows the LR
and HR NTL images. The left side shows the full-sized image, while the right side

shows a zoomed-in view of the region in the red box.

to zero. This threshold was determined by examining the distribution of radiance values in re-
gions with no artificial light sources. Second, we clip the maximum value of the images to 300
nW·cm−2·sr−1 to prevent outliers from skewing the data, as done in [44]. Finally, we normalize
the images by the mean and standard deviation radiance of the entire training set, which were
found to be 1.15 and 6.85 nW·cm−2·sr−1 respectively.

4.1.2 HR NTL Dataset

For our HR NTL dataset, we use the Luojia 1-01 NTL dataset from the HR Earth Observation
System Hubei Data and Application Network [98]. This satellite was launched in 2018 and was
operational until mid-2019; it orbited Earth at an altitude of 645 kilometers and had a revisit
time of 15 days. This dataset consists of global NTL images at 130 m GSD captured on a 2048
× 2048 CMOS sensor, covering a spectral range from 480 nm to 800 nm at 15-bit radiometric res-
olution.

The data is stored as a Digital Number (DN) image, which is a raw image that has not been ra-
diometrically calibrated. To convert the DN image to radiance in units of nW·cm−2·sr−1, we use
the following formula [99]:

radiance = DN3/2 × 10−10 × 0.52, (2)

where the factor of 10−10 is a conversion factor from DN to radiance, and 0.52 is the bandwidth
of the sensor in micrometers.

Originally, the Luojia 1-01 NTL dataset contains 8671 images. However, a significant portion of
these images have partial cloud cover or other aberrations that make them unsuitable for training.
In order to select a suitable subset of training images, we manually inspected a random sample
of 1000 images. Using 800 of these, we trained a logistic regression classifier on feature vectors
extracted from ResNet50 [100] to predict whether an image is suitable for training based on the
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image’s features. The trained classifier was 86% accurate on the remaining 200 images. We then
used this classifier to predict the suitability of the remaining images in the dataset. Of those im-
ages the classifier predicted to be suitable, we manually selected a subset of 458 images to use for
training and testing. The location and time of these images are used as the base for extracting
the corresponding LR NTL images and auxiliary datasets.

Similar to the LR NTL dataset, we preprocess the HR NTL images by removing background
noise, clipping the maximum value, and normalizing the images by the mean and standard de-
viation of the training set. In this case, the noise threshold was set to 5 nW·cm−2·sr−1, as was
done in [46], the maximum value was clipped to 500 nW·cm−2·sr−1, and the mean and standard
deviation were found to be 1.11 and 10.81 nW·cm−2·sr−1 respectively.

4.1.3 HR Auxiliary Datasets

In addition to the HR NTL dataset, we use two HR auxiliary datasets – road networks and land
use data. These datasets serve as auxiliary inputs to our MMSR model, enhancing the quality
of the super-resolved images by providing additional regional information. They were specifically
chosen because they are publicly available, have global coverage, and are highly correlated with
NTL data.

For the road network dataset, we use OSM [101], a comprehensive open-source dataset contain-
ing roads, buildings, and other geographic features. OSM is structured as a network of nodes,
which contain the geographic coordinates of the feature, and edges which define connections be-
tween nodes. Additionally, the data contains information about the type of feature, such as the
type of road, building, or land use. Since roads are the primary features visible in NTL imagery,
we filter the OSM data to only include road nodes classified as motorways, trunks, primary, and
secondary roads. For each region in the HR NTL dataset, we extract the OSM data for that re-
gion and convert it to an image format. Each pixel in the image represents the number of road
nodes within that pixel’s area. We then create a binary image where each pixel is 1 if the number
of road nodes is greater than 0, and 0 otherwise.

For land use data, we use the DynamicWorld dataset [102], which classifies land cover into 10 cat-
egories, including urban areas, forests, and water bodies. Derived from Sentinel-2 satellite im-
agery, DynamicWorld provides land use classifications at a 10 m resolution. Using Google Earth
Engine, we extract the land use data for each region in the HR NTL dataset at the same reso-
lution as the HR NTL images (125 m). The ‘built’ land use class strongly correlates with NTL,
while other classes tend to correlate negatively. To leverage this information, we generate a binary
image where pixels are set to 1 if the predominant land use classification is ‘built’ and 0 other-
wise.

4.1.4 Image Alignment

The four images (LR NTL, HR NTL, road network, and land use) are not perfectly aligned due
to differences in the sensors, resolutions, and geolocation errors. To address this, we use Sim-
pleITK [103] to perform image registration by computing the affine transformation that minimizes
misalignment between the LR NTL images, HR NTL images, and auxiliary images. We use the
HR NTL image as the reference image and align the other images to it. The registration process
minimizes the mean squared error between the images with respect to the transformation param-
eters by gradient descent, and stops when the norm of the gradient is less than 10−6, ensuring
numerical convergence. We validated the alignment by visually inspecting the images. This align-
ment process is essential for MMSR, as it ensures that corresponding features across the images
are correctly mapped, allowing the model to leverage auxiliary information effectively.
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4.2 MODEL ARCHITECTURE

Figure 3 shows a pipeline of our proposed MMSR method. Our method is a multiscale super-
resolution method, which does 4× super-resolution by first super-resolving by a factor of 2 and
then super-resolving by a factor of 2 again. When compared to directly doing 4× super-resolution,
this approach has several advantages including a reduction in computational complexity, the abil-
ity to learn finer details, and more stable training. For each 2× super-resolution step, the LR
NTL image is first upsampled by a factor of 2 using bicubic interpolation. Then, the HR auxil-
iary images are rescaled to match the LR NTL resolution using bicubic downsampling. Finally, all
three of these images are input to the “2× super-resolution module,” which extracts features from
each image, fuses the features, and performs artifact reduction to generate the 2× super-resolved
image.

Figure 3. Pipeline of proposed MMSR method, which uses a multi-scale architecture
with feature extraction, feature fusion, and artifact reduction. The feature extraction

module consists of one convolutional layer with batch normalization and a
parametric ReLU activation function. The feature fusion module is concatenation.

The artifact reduction module consists of 8 convolutional layers with batch
normalization and a parametric ReLU activation function.

There are various approaches for the architecture used to do feature extraction, feature fusion,
and artifact reduction. In our MMSR model, the feature extraction module has one convolutional
layer with batch normalization and a parametric ReLU activation function. The convolutional
layer consists of 64 feature maps with 3× 3 convolutional kernels. The feature fusion module con-
catenates the features of the three input images. Finally, the artifact reduction module consists of
eight convolutional layers, where all but the last have batch normalization and parametric ReLU
activation functions. The convolutional layers consist of 64 feature maps with 3 × 3 convolutional
kernels.
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To train the model, we compute a multiscale loss which includes the loss for 2× and 4× super-
resolution. Namely, we compute the 2× loss after the first 2× super-resolution module by com-
paring the 2× super-resolved LR NTL image with the 2× downsampled HR NTL image. Addi-
tionally, we compute the loss after the second 2× super-resolution module by comparing the 4×
super-resolved LR NTL with the HR NTL image. Then the final loss is a weighted sum of the
two losses:

loss = γloss2× + loss4×. (3)

Experimentally, we use γ = 1.0, weighting the 2× loss equally with the 4× loss. The two losses,
loss2× and loss4×, are each computed as a weighted sum of the L2 and TV loss at the correspond-
ing scale. Formally, if x̂ and x are the super-resolved image and ground truth image respectively,
then

loss(x̂, x) = αL2L2(x̂, x) + αTV TV (x̂, x), (4)

where L2(x̂, x), TV (x̂, x) are the L2 and TV losses and αL2, αTV are weights corresponding to the
L2 and TV loss. For our experiments, we set αL2 = 1.0 and αTV = 0.1. The L2 loss is defined as:

L2(x̂, x) =
1

N

N∑
i=1

(x̂i − xi)
2, (5)

where N is the number of pixels in the batch and x̂i and xi are the pixel values of the super-
resolved and ground truth images respectively. The TV loss is defined as:

TV (x̂, x) =
1

N

N∑
i=1

√
|x̂i+1,j − x̂i,j |2 + |x̂i,j+1 − x̂i,j |2 + ε, (6)

where i and j are the pixel indices in the horizontal and vertical directions respectively, and ε =
10−6 ensures numerical stability. The TV loss is used to encourage spatial smoothness in the
super-resolved image, which is important for reducing artifacts and improving the overall quality
of the image.

We extract 100 patches of size 100 × 100 from each image in the training and validation datasets
introduced in Section 4.1. The patches are randomly selected from the images, where the proba-
bility of selecting a patch center is proportional to the average radiance in a small region around
the patch center. This ensures that the patches are selected from regions with a high density of
artificial light sources, which are the primary features of interest in NTL images. Using these
training and validation patches, we run a training loop for 250 epochs with an initial learning rate
of 1 × 10−3 that is gradually decreased using exponential scheduling with decay 0.99. At each
epoch, we backpropagate the loss computed over the training dataset and save the average Struc-
tural Similarity Index Measure (SSIM) over the validation patches. After all 250 training epochs,
we save the model with the best validation SSIM to use as our final model for testing.
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5. EXPERIMENTAL RESULTS

We chose a variety of super-resolution methods with open-source code from Section 3 to compare
performance, as outlined in Table 2. We do not include any MSI-SR methods because they de-
pend on high correlation between the low-resolution nighttime light image and the high-resolution
bands, which we have observed is not the case, causing severe deterioration in results. Addition-
ally, we do not include any unsupervised MMSR methods because they are generally not as effec-
tive as supervised methods.

5.1 IMPLEMENTATION DETAILS

We trained all of the methods using the same paired Black Marble and Luojia 1-01 images from
the dataset in Section 4.1 for 50 epochs. Our training was performed on one NVIDIA A100 GPU
with 80GB of memory with resources provided by ORNL Research Cloud Infrastructure at the
Oak Ridge National Laboratory. For all methods, we extract 100 patches of low-resolution size
128 × 128 (except for ESRGAN which uses patches of size 64× 64) selected with the same dis-
tribution as our MMSR method. Unless specified otherwise, the training optimizer is an ADAM
optimizer with β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8, and no weight decay. The rest of this subsec-
tion outlines the method-specific parameters that we used.

The plug-and-play method runs for 50 iterations with hyperparameter µ = 50. The prior that we
use is a BM3D denoiser for AWGN with standard deviation 0.01.

MDF also runs for 50 iterations with hyperparameters µ = 50 and σ = 0.01. The prior is a
DRUNet model trained to remove AWGN with σ = 0.1 using the architecture proposed in [106].
The model is trained for 50 epochs with an L1 loss using a learning rate of 1× 10−4.

DPSR runs for 50 iterations with hyperparameters µ = 50 and σ = 0.005. The prior is the SR-
ResNet+ model, with implementation details described below.

The architecture of SRCNN is the same as what was proposed in [24], including kernel size, num-
ber of filers, and activation, with an Mean Squared Error (MSE) loss. We use a learning rate of
1× 10−5 for the entire training process.

We use the proposed EDSR architecture from [27] with an MSE loss. We use an initial learning
rate of 1× 10−4, which decreases by a factor of 1

2 at epochs 3, 6, 13, and 20.

Method Reference Method Type
Plug-and-Play [104] Model-based, Unsupervised SISR

MDF [66] Model-based, Semi-supervised SISR
DPSR [28] Model-based, Supervised SISR

SRCNN [24] CNN, Supervised SISR
EDSR [27] CNN, Supervised SISR

ESRGAN [30] GAN, Supervised SISR
SRResNet+ [105] Supervised SISR

MMSR – Supervised MMSR

Table 2. Super-resolution methods used for testing
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Our ESRGAN network has the same architecture as originally proposed in [30]. The loss consists
of an L1 loss, an perceptual loss and an adversarial loss, weighted as 0.01, 1, and 0.005 respec-
tively. For the discriminator, we use a learning rate of 1 × 10−5. For the generator, we use an
initial learning rate of 1× 10−4, which decreases by a factor of 1

2 at every 10 epochs.

Most of the SRResNet+ architecture is the same as what was proposed in [30], but it addition-
ally includes a noise map as input to include denoising in the network as done in [28]. The noise
map consists of AWGN with standard deviation randomly chosen in the range [0, 0.1]. The loss is
MSE. We use an initial learning rate of 1× 10−4, which decreases by a factor of 1

2 at epoch 40.

5.2 METRICS

We compute a variety of metrics to assess the quality of a super-resolved image x̂ based on the
input Black Marble image y and the ground truth Luojia 1-01 image x. Namely, we compute the
Normalized Root Mean Square Error (NRMSE), LR consistency, SSIM, and Feature Similarity
Index Measure (FSIM). The NRMSE is given by

NRMSE(x, x̂) =
∥x̂− x∥
∥x∥

. (7)

Ideally, this value should be close to zero, indicating that the super-resolved image is close to the
ground truth image in terms of pixel intensity. The LR consistency is given by

LR Consistency(y, x̂) =
∥Ax̂− y∥

∥y∥
. (8)

The LR consistency metric measures how closely the super-resolved image x̂ produces the input
image y when downsampled by the matrix A as defined in Section 2. A low value of this metric
indicates that the super-resolved image is consistent with the data collected. The SSIM metric
measures the perceptual similarity between two images based on luminance, contrast, and struc-
ture. The SSIM is given by

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
, (9)

where µx and µx̂ are the mean intensities of x and x̂ respectively, σx and σx̂ are the standard de-
viations of x and x̂ respectively, σxx̂ is the covariance between x and x̂, and C1 and C2 are small
constants which prevent division by zero. We use the scikit-image implementation2. Similarly, the
FSIM is another perceptual metric that measures the similarity between two images based on the
low-level features [107]. We calculate the FSIM using the provided implementation3. For both
the SSIM and FSIM, a value close to 1 indicates that the super-resolved image is similar to the
ground truth image.

5.3 SUPER-RESOLUTION RESULTS

In this section, we show the results of the super-resolution methods from Table 2 on 7 test im-
ages: 00069, 00118, 00144, 00277, 00421, 00423, and 00451. These images were randomly selected
from the test set of 70 images. In order to show the details of the super-resolved images, we show
only a small patch of the full image.

2https://scikit-image.org/docs/stable/api/skimage.metrics.html
3https://github.com/nekhtiari/image-similarity-measures
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Figures 4–10 show the input auxiliary images (land-use and street maps), the HR Luojia 1-01
NTL image, and the LR Black Marble NTL image, as well as the super-resolved images from
each of the methods shown in Table 2. The super-resolved images presented in these figures show-
case the tendencies of the different methods. The Plug-and-Play and MDF methods tend to pro-
duce images similar to the input Black Marble image, with very little improved quality, while the
DPSR and ESRGAN methods produce images with patterns which do not resemble natural night-
time light images. The SRCNN and EDSR methods produce images with some improved quality,
and even begin to extract some features of the HR NTL images, such as roads and waterways,
but they still have some artifacts and do not resemble the ground truth images. This is partic-
ularly clear in Figure 5, 9 and 10, where the road-like structures are pronounced in the super-
resolved images, but they do not match the HR Luojia 1-01 images. The SRResNet+ method
produces images generally sharper than the SRCNN and EDSR methods, with improved qual-
ity. However, this method struggles to produce fine details in dense urban areas, as evident in
Figure 6 and 7. Our MMSR method produces the highest quality images, with the most natu-
ral appearance and the least artifacts. Our MMSR method is able use the contextual information
from the land-use and street maps to improve the super-resolved images — learning the relation-
ship between the auxiliary images and the nighttime light images. This allows the network to pro-
duce images with more features that resemble the HR Luojia 1-01 image, while also maintaining
the overall structure and appearance of the input nighttime light image. Importantly, the net-
work generally does not hallucinate features in the auxiliary images that are not present in the
NTL images. For example, in Figure 6, the auxiliary images show a large region of built-up area
with roads, but both NTL images show no light in this region. The super-resolved image from the
MMSR method does not produce any light in this region.

In Figure 11, we show scatter plots of the pixel intensity of the Black Marble and super-resolved
images against the ground truth Luojia 1-01 image for the test images 00069, 00118, 00144, 00277,
00421, 00423, and 00451. For each test image, we show the scatter plot of the pixel intensity of
the Black Marble image (left) and the super-resolved image using our MMSR method (right)
against the ground truth Luojia 1-01 image. The x-axis is the pixel intensity of the Black Marble
or super-resolved image and the y-axis is the pixel intensity of the ground truth Luojia 1-01 im-
age. The color indicates the number of pixels in each bin. We also show a line of best fit (in red)
for each scatter plot, which is computed as the least squares regression line. The black dashed
line indicates a perfect prediction (i.e. the predicted pixel intensity is equal to the ground truth
pixel intensity). The scatter plots and their line of best fit show that the super-resolved images
using our MMSR method are more closely aligned with the ground truth than the Black Marble
images, indicating that our method is able to produce high-quality super-resolved images that are
more consistent with the ground truth.

In Table 3, we show the image quality metrics for each of the test images. We show the NRMSE,
LR consistency, SSIM, and FSIM for each of the considered methods. In Table 4, we show the
average image quality metrics for all of the test images. Note that the images in Table 3 are com-
puted over the small patches that are displayed in figures, so they contain less background area
than the full-size testing images. The NRMSE and LR consistency metrics are known to favor
blurrier images, a phenomena known as the variance-bias tradeoff. This explains the fact that
EDSR, SRCNN, and SRResNet+ are achieving lower values for these metrics compared to MMSR,
which generates sharper images. On the other hand, SSIM and FSIM metrics are higher for im-
ages that have similar structure to the ground truth, which is consistent with the qualitative SR-
ResNet+ and MMSR results we have observed. It is important to note that while these metrics
are commonly used for evaluating natural image super-resolution techniques, they may not ade-
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Test Image Metric PnP MDF DPSR SRCNN EDSR ESRGAN SRResNet+ MMSR

00069

NRMSE (↓) 0.856 0.856 0.914 0.863 0.853 0.896 0.873 0.856
LR Cons. (↓) 0.224 0.223 0.465 0.118 0.121 0.235 0.178 0.136

SSIM (↑) 0.901 0.902 0.905 0.915 0.906 0.895 0.917 0.901
FSIM (↑) 0.622 0.624 0.565 0.643 0.614 0.611 0.630 0.536

00118

NRMSE (↓) 0.921 0.921 1.003 0.738 0.734 1.042 0.712 0.688
LR Cons. (↓) 0.220 0.220 0.553 0.116 0.124 0.205 0.251 0.175

SSIM (↑) 0.780 0.790 0.831 0.849 0.835 0.810 0.865 0.881
FSIM (↑) 0.539 0.542 0.491 0.596 0.581 0.556 0.597 0.606

00144

NRMSE (↓) 0.920 0.920 0.957 0.929 0.929 0.945 0.937 0.937
LR Cons. (↓) 0.238 0.239 0.369 0.068 0.072 0.218 0.102 0.099

SSIM (↑) 0.759 0.769 0.787 0.811 0.797 0.779 0.806 0.824
FSIM (↑) 0.481 0.495 0.452 0.534 0.518 0.503 0.519 0.537

00277

NRMSE (↓) 0.857 0.857 0.999 0.805 0.797 0.947 0.782 0.781
LR Cons. (↓) 0.239 0.239 0.650 0.112 0.121 0.260 0.185 0.177

SSIM (↑) 0.433 0.437 0.396 0.572 0.590 0.451 0.582 0.663
FSIM (↑) 0.400 0.402 0.290 0.440 0.449 0.414 0.461 0.402

00421

NRMSE (↓) 0.894 0.894 0.959 0.850 0.851 0.958 0.855 0.854
LR Cons. (↓) 0.237 0.237 0.589 0.133 0.133 0.282 0.188 0.161

SSIM (↑) 0.800 0.806 0.803 0.871 0.859 0.797 0.855 0.869
FSIM (↑) 0.497 0.503 0.428 0.554 0.533 0.478 0.551 0.539

00423

NRMSE (↓) 1.087 1.088 1.250 0.759 0.766 1.281 0.644 0.738
LR Cons. (↓) 0.227 0.227 0.742 0.142 0.136 0.299 0.255 0.250

SSIM (↑) 0.668 0.676 0.719 0.778 0.782 0.703 0.836 0.857
FSIM (↑) 0.481 0.481 0.382 0.539 0.526 0.435 0.570 0.599

00451

NRMSE (↓) 0.606 0.606 0.914 0.567 0.539 0.818 0.492 0.652
LR Cons. (↓) 0.245 0.246 0.647 0.093 0.105 0.281 0.152 0.576

SSIM (↑) 0.622 0.622 0.467 0.661 0.671 0.544 0.700 0.710
FSIM (↑) 0.441 0.441 0.328 0.490 0.498 0.436 0.527 0.556

Table 3. Image quality metrics for test images 00069, 00118, 00144, 00277, 00421,
00423, and 00451.

quately capture the quality of NTL images due to the unique properties of NTL images, such as
low contrast in dark regions and a wide dynamic range of brightness values. We discuss this fur-
ther in Section 7.
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Plug-and-Play MDF DPSR SRCNN

EDSR ESRGAN SRResNet+ MMSR

HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

Figure 4. Comparison of input, ground truth, and super-resolved images for test
image 00069. (Top) Input land-use and street maps, the HR Luojia 1-01 NTL image,
and the LR Black Marble NTL image. (Bottom) Super-resolved images from each of

the methods shown in Table 2.
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Plug-and-Play MDF DPSR SRCNN

EDSR ESRGAN SRResNet+ MMSR

HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

Figure 5. Comparison of input, ground truth, and super-resolved images for test
image 00118. (Top) Input land-use and street maps, the HR Luojia 1-01 NTL image,
and the LR Black Marble NTL image. (Bottom) Super-resolved images from each of

the methods shown in Table 2.
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Plug-and-Play MDF DPSR SRCNN

EDSR ESRGAN SRResNet+ MMSR

HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

Figure 6. Comparison of input, ground truth, and super-resolved images for test
image 00144. (Top) Input land-use and street maps, the HR Luojia 1-01 NTL image,
and the LR Black Marble NTL image. (Bottom) Super-resolved images from each of

the methods shown in Table 2.
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Plug-and-Play MDF DPSR SRCNN

EDSR ESRGAN SRResNet+ MMSR

HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

Figure 7. Comparison of input, ground truth, and super-resolved images for test
image 00277. (Top) Input land-use and street maps, the HR Luojia 1-01 NTL image,
and the LR Black Marble NTL image. (Bottom) Super-resolved images from each of

the methods shown in Table 2.
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Plug-and-Play MDF DPSR SRCNN

EDSR ESRGAN SRResNet+ MMSR

HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

Figure 8. Comparison of input, ground truth, and super-resolved images for test
image 00421. (Top) Input land-use and street maps, the HR Luojia 1-01 NTL image,
and the LR Black Marble NTL image. (Bottom) Super-resolved images from each of

the methods shown in Table 2.
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Plug-and-Play MDF DPSR SRCNN

EDSR ESRGAN SRResNet+ MMSR

HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

Figure 9. Comparison of input, ground truth, and super-resolved images for test
image 00423. (Top) Input land-use and street maps, the HR Luojia 1-01 NTL image,
and the LR Black Marble NTL image. (Bottom) Super-resolved images from each of

the methods shown in Table 2.
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Plug-and-Play MDF DPSR SRCNN

EDSR ESRGAN SRResNet+ MMSR

HR Luojia 1-01 LR Black Marble

HR Dynamic World HR OSM

Figure 10. Comparison of input, ground truth, and super-resolved images for test
image 00451. (Top) Input land-use and street maps, the HR Luojia 1-01 NTL image,
and the LR Black Marble NTL image. (Bottom) Super-resolved images from each of

the methods shown in Table 2.
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Method NRMSE (↓) LR Consistency (↓) SSIM (↑) FSIM (↑)
PnP 0.946 0.235 0.768 0.499
MDF 0.946 0.235 0.764 0.505
DPSR 1.039 0.585 0.752 0.437

SRCNN 0.805 0.587 0.756 0.504
EDSR 0.815 0.141 0.818 0.535

ESRGAN 1.088 0.309 0.760 0.495
SRResNet+ 0.797 0.225 0.828 0.555

MMSR 0.953 0.495 0.840 0.552

Table 4. Image quality metrics averaged over all test images.

(a) Test Image 00069 (b) Test Image 00118

(c) Test Image 00144 (d) Test Image 00277

(e) Test Image 00421 (f) Test Image 00423

(g) Test Image 00451

Figure 11. Scatter plots of Black Marble (left) and the MMSR super-resolved image
(right) against the ground truth Luojia 1-01 image for the test images 00069, 00118,

00144, 00277, 00421, 00423, and 00451.
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6. A CASE STUDY: 2025 NEW YEAR’S POWER OUTAGE IN PUERTO RICO

In this section, we present a preliminary case study of the 2025 New Year’s wide-area power out-
age in Puerto Rico, which was caused by a line failure in the transmission system. The outage oc-
curred on December 31, 2024. The outage was reported to have affected 1.2 million customers,
with the majority of the island experiencing a blackout. To analyze the outage, we use super-
resolved NTL images of Puerto Rico before and after the outage from our proposed MMSR method
described in Section 3.3. We hope to demonstrate the utility of the MMSR method for analyzing
the spatial extent of the outage and assess the subsequent recovery of the power supply.

To construct a consistent temporal dataset, we downloaded NTL data from Black Marble over
Puerto Rico for each night between December 1, 2024, and January 31, 2025. This timeframe al-
lows us to capture pre-outage baseline conditions, the immediate effects of the blackout, and the
gradual restoration of electricity. To apply the MMSR method, we also extracted the OSM and
DynamicWorld data for each night. Since DynamicWorld is a near real-time product of Sentinel-
2, there is some temporal variance between this data and the NTL data, which may affect the
results of the MMSR network.

To analyze the outage, we compare the NTL images of Puerto Rico before and after the power
outage. We compare the outage occurrence on the night of January 1, 2025 with a base compos-
ite image, which is obtained by averaging the NTL images from December 1st, 2024 to Decem-
ber 31st, 2024. In Figure 12, we show the NTL images of Puerto Rico before and after the power
outage. The left column shows the base composite NTL image, while the right column shows the
NTL image on the night of the power outage. The top row shows the LR NTL image, while the
bottom row shows the HR NTL output by the proposed MMSR method.

Additionally, we compute outage and recovery images, which are measures of the percentage of
light that was lost during the outage and restored after the outage respectively. We calculate
these images as follows:

Outage =
NTLPre − NTLJan. 1st

NTLPre
× 100%, (10)

and
Recovery =

NTLPost − NTLJan. 1st

NTLPost
× 100%, (11)

where NTLPre is a composite image computed by averaging the NTL images prior to the out-
age, NTLJan. 1st is the NTL image on the night of the outage, and NTLPost is a composite image
computed by averaging the NTL images after the outage. These measurements are shown in Fig-
ure 13 for both the Black Marble and MMSR images. Here red and blue indicate light lost and
gained respectively, with darker colors indicating a larger percentage of light lost or gained.

A common method for analyzing the instability of electric power is to compute the standard de-
viation of NTL images over time [108]. Regions with high standard deviation, particularly when
compared to the mean, may indicate an unreliable power supply, areas of high human activity,
or areas with seasonal activities. In this case study, we examine the temporal instability of NTL
images for both the Black Marble and MMSR images of Puerto Rico during the two months of
December 2024 and January 2025. This is illustrated in Figure 14.

In Figure 15, we a show a scatter plot of the mean and standard deviation of the NTL images
over time for both the Black Marble and MMSR images. Each point in the scatter plot represents
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Figure 12. Comparison of the NTL images of Puerto Rico before and after the power
outage on January 1, 2025. The change in radiance is evident in both Black Marble
and MMSR, but the MMSR reconstruction is sharper. This sharpness allows for
discernment of point sources of light, allowing for a fine-grained outage analysis.

a pixel in the image, with the x-axis representing the mean value of the pixel over time and the
y-axis representing the standard deviation of the pixel over time. Of special concern are regions
with a high standard deviation relative to the mean; the red line indicates when the standard de-
viation exceeds twice the mean. This line helps identify areas that are have unstable NTL values
over time. In Figure 16, we plot the points which are above the red line in the scatter plot on the
mean NTL image. The increased resolution provided by the MMSR method allows us to identify
regions of instability more precisely.

In all three of these outage metrics, MMSR offers more localized detections as compared to Black
Marble. However, since we do not have access to HR NTL images for this data, it’s difficult to
determine correctness of these detections. In future work, we would like to do a more thorough
case study which compares our findings with reported outage and recovery data to verify that
accuracy of this localization.
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(a) Black Marble Outage
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Figure 13. Comparison of outage computed from Black Marble and MMSR images.
The outage index is a measure of the percentage of light that was lost during the

outage, and the recovery index is a percentage of light restored. In both outage and
recovery, MMSR precisely indicates location and severity more accurately than

Black Marble.
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Figure 14. Mean and standard deviation of the NTL images over time for both the
Black Marble and MMSR images of Puerto Rico over the months of December 2024
and January 2025. The top row shows the mean image, while the bottom row shows

the standard deviation image.
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Figure 15. Mean and standard deviation scatter plot for the (a) Black Marble and
(b) MMSR images of Puerto Rico over the months of December 2024 and January

2025. The red line indicates the threshold for instability, where the standard
deviation is greater than twice the mean. Points above this line are plotted in

Figure 16.
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Figure 16. Instability of the NTL images over time for both the (a) Black Marble
and (b) MMSR images of Puerto Rico over the months of December 2024 and

January 2025. The red dots indicate regions determined to be unstable by the line
shown in Figure 15. MMSR is able to localize areas of high variance better than

Black Marble.
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7. PROPOSED FUTURE WORK

Our experimental results focused mainly on investigating the super-resolution quality; however,
the preliminary results in our case study imply that super-resolution can help to detect and lo-
calize power outages. In future work, we plan to do a more thorough investigation of the impact
of super-resolution power outage detection, using existing power outage prediction methods from
NTL [8, 109, 110].

Additionally, the proposed MMSR method can be extended in several ways. The first is to in-
corporate more auxiliary inputs, such as the NDVI or other bands from the VIIRS sensor. This
would allow for a more comprehensive analysis of the relationship between the LR and HR im-
ages, potentially leading to improved super-resolution results. Second, the MMSR architecture
can be modified to include more advanced techniques, such as residual networks, transformers, or
masked autoencoders. These architectures have shown promise in various image processing tasks
and could enhance the performance of the MMSR method. Third, the MMSR architecture could
incorporate a learned image registration or deformation process. This would allow the model to
learn the optimal transformation between the LR, HR images, and auxiliary inputs, potentially
improving the super-resolution results [45, 111].

A consistent theme in the literature of NTL image super-resolution is the need for a metric that
accurately reflects the quality of the generated HR images. Current metrics, such as the ones used
in this work, Peak Signal-to-Noise Ratio (PSNR), SSIM, and Naturalness Image Quality Eval-
uator (NIQE), are not well-suited due to the variation in radiance values recorded by different
sensors. Moreover, current perceptual metrics, such as SSIM and NIQE, are designed for natu-
ral images and do not capture the unique characteristics of NTL images. Developing a perceptual
metric specifically for NTL images would be a valuable contribution to the field and could signifi-
cantly improve the evaluation of super-resolution methods.

Finally, the proposed MMSR method could be combined with temporal super-resolution in the
HR domain. In [112], the authors use HR images at different times to guide the super-resolution
of the LR image at a time in which the HR image is not available. This approach could be ex-
tended to the multimodal super-resolution framework by incorporating the auxiliary inputs into
the temporal super-resolution process. Due to its limited time in orbit, Luojia 1-01 is not suitable
for this approach. However, there are other satellites that could be used for this purpose such as
the SDGSAT-1 or EROS-B satellites.
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8. CONCLUSION

This report demonstrates the capabilities of super-resolution for enhancing the spatial detail and
analysis of NTL imagery. Through a comprehensive literature review and evaluation of existing
super-resolution methods, we identified the shortcomings of traditional super-resolution tech-
niques when applied to NTL images, which exhibit distinct statistical properties compared to
natural images. Furthermore, our proposed multimodal super-resolution approach demonstrates
that integrating contextual information such as road networks and land use data with NTL im-
agery can improve the super-resolution quality. These advancements provide a proof of concept
for the role of super-resolution in more nuanced assessments of urbanization, infrastructure, and
energy dynamics.

To the best of our knowledge, this research serves as the first comprehensive exploration of super-
resolution methods tailored for NTL imagery, offering valuable insights for future studies in this
domain. By making our code and data available to other researchers at ORNL, we aim to foster
reproducibility and encourage further advancements in NTL image processing and analysis.
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