

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.**

# WHOLESCALE FINAL TECHNICAL REPORT: SAN EMIDIO 2020—2024

KURT L. FEIGL, SABRINA L. BRADSHAW, AND THE WHOLESCALE TEAM

|                                  |                                                                                            |
|----------------------------------|--------------------------------------------------------------------------------------------|
| Federal Agency and Organization: | DOE EERE – Geothermal Technologies Program                                                 |
| Recipient Organization:          | University of Wisconsin System                                                             |
| DUNS Number:                     | 161202122                                                                                  |
| Recipient Address:               | Research and Sponsored Programs<br>21 N. Park Street, Suite 6401; Madison, WI 53715-1218   |
| Award Number:                    | DE-EE0009032                                                                               |
| Project Title:                   | WHOLESCALE – Water & Hole Observations Leverage Stress Calculations And Lessen Expenses    |
| Effective                        |                                                                                            |
| Project Period <sup>1,2</sup> :  | July 31 <sup>st</sup> 2020 through October 31 <sup>st</sup> 2024                           |
| Principal Investigator:          | Kurt Feigl, Professor, <a href="mailto:feigl@wisc.edu">feigl@wisc.edu</a> , (608) 262 0176 |
| Report Submitted by:             | Kurt Feigl, Professor, <a href="mailto:feigl@wisc.edu">feigl@wisc.edu</a> , (608) 262 0176 |
| Date of Report Submission:       | June 18th, 2025                                                                            |
| Project Partners:                |                                                                                            |

Signature: Kurt L Feigl Date 2025/06/18

\*The Prime Recipient certifies that the information provided in this report is accurate and complete as of the date shown.

Acknowledgment: "This material is based upon work supported by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Geothermal Technologies Office under Award Number DE-EE0009032."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

<sup>1</sup> The award document was signed on September 9th, 2020.

<sup>2</sup> Modification 004 extended the project period through October 31<sup>st</sup> 2024.

## Table of Contents

|    |                                                      |     |
|----|------------------------------------------------------|-----|
| 39 | Section I. Executive summary                         | 3   |
| 40 | Section II. Introduction                             | 4   |
| 41 | Definitions                                          | 5   |
| 42 | Background                                           | 6   |
| 43 | Project Timeline and PERT                            | 11  |
| 44 | Section III. Field Work                              | 17  |
| 45 | Infrastructure                                       | 17  |
| 46 | 2016 Deployment                                      | 18  |
| 47 | 2021 Deployment                                      | 19  |
| 48 | 2022 Deployment                                      | 23  |
| 49 | Section IV. Data Analysis                            | 26  |
| 50 | Geologic Structure                                   | 26  |
| 51 | Borehole Data (Subtasks 3.3 & 4.2)                   | 43  |
| 52 | Borehole Data (Subtasks 6.2, 6.3, & 8.3)             | 47  |
| 53 | Geodesy - InSAR                                      | 61  |
| 54 | Section V. Calibrating Stress Models on Observations | 107 |
| 55 | Section VI: Discussion –Improving Conceptual Models  | 125 |
| 56 | Simple Conceptual Model                              | 126 |
| 57 | Critical value of pore-fluid pressure                | 127 |
| 58 | Cyclic behavior                                      | 129 |
| 59 | Section VII. Conclusions                             | 141 |
| 60 | Section IX. Data Management Plan                     | 143 |
| 61 | Section X. Project Output                            | 145 |
| 62 | Publications, conference papers, and presentations   | 145 |
| 63 | Section XIII. Field Photos                           | 163 |
| 64 | Section XIV. Acknowledgements                        | 169 |
| 65 | Section XV. Bibliography                             | 170 |
| 66 | Last Page                                            | 183 |
| 67 |                                                      |     |
| 68 |                                                      |     |
| 69 |                                                      |     |

70

## SECTION I. EXECUTIVE SUMMARY

71 The WHOLESCALE acronym stands for Water & Hole Observations Leverage Effective  
72 Stress Calculations and Lessen Expenses. The goal of the WHOLESCALE project is to simulate  
73 the spatial distribution and temporal evolution of stress in the geothermal system at San Emidio  
74 in Nevada, United States. To reach this goal, the WHOLESCALE team has developed a  
75 methodology to incorporate and interpret data from four methods of measurement into a multi-  
76 physics model that couples thermal, hydrological, and mechanical (T-H-M) processes. The  
77 WHOLESCALE team has applied this methodology at the San Emidio geothermal field, located  
78 ~100 km north of Reno, Nevada in the northwestern Basin and Range province.

79 The WHOLESCALE team includes 30 individuals working at two universities, two national  
80 laboratories, and one industry partner. Two master-degree students and five post-doctoral  
81 researchers have gained professional experience and earned partial financial support via the  
82 WHOLESCALE project.

83 The WHOLESCALE team has taken advantage of the perturbations created by changes in  
84 pumping operations during planned shutdowns in 2016, 2021, and 2022 to infer temporal  
85 changes in the state of stress in the geothermal system at San Emidio, Nevada, U.S.

86 The WHOLESCALE results support the working hypothesis that increasing pore-fluid  
87 pressure reduces the effective normal stress acting across fault zones. During normal operations,  
88 pumping in deep production wells decreases fluid pressures and thus increases the effective  
89 normal stresses on faults, reducing microseismicity. During planned shutdowns, the cessation of  
90 production increases pore-fluid pressure and reduces effective normal stress.

91 The WHOLESCALE products generated during the 4-year period between 2020 and 2024  
92 include: three articles published in the open-access, peer-reviewed scientific literature, two  
93 master's theses, 20 presentations or papers at scientific conferences, and 17 data sets available on  
94 public repositories.

95 The WHOLESCALE project has been completed in two phases that included three  
96 performance periods separated by two Go/No-go Stage Gate Reviews. Tasks were classified by  
97 data type (i.e., Geologic Structure, Borehole, Geodesy, Hydrology, Seismology, and Modeling).

98 The first phase of the project started July 31, 2020 and included ongoing project coordination  
99 (Task 1), a project kickoff (Task 2), analysis of existing data (Task 3), development of the initial  
100 stress model & deployment design (Task 4), and Go/No-go Decision Point #1 (Task 5). Phase II  
101 began with implementing the 2022 deployment (Task 6), followed by Go/No-go Decision Point  
102 #2 (Task 7). The remainder of Phase II consisted of analyzing data collected during deployment  
103 (Task 8), calibration of the stress model on all observations (Task 9), and the Final Review  
104 (August 23, 2024) & Reporting (Task 10).

105

106

## SECTION II. INTRODUCTION

107 The WHOLESCALE team includes personnel from two universities (UW & UNR, two  
 108 national laboratories (LLNL and NREL), and one industry partner (Ormat) (Table 1). We count  
 109 as members of the WHOLESCALE team those individuals who have performed at least two of  
 110 the CRediT<sup>3</sup> roles.

111 *Table 1. List of individuals who contributed to the WHOLESCALE project.*

| Name              | Title                    | Writing – original draft | Writing – review & editing | ORCID               | Org.          | State       |          |           |            |                                                                                           |          |
|-------------------|--------------------------|--------------------------|----------------------------|---------------------|---------------|-------------|----------|-----------|------------|-------------------------------------------------------------------------------------------|----------|
| Conceptualization | Data curation            | Project administration   | Methodology                | Funding acquisition | Investigation | Supervision | Software | Resources | Validation | Visualization                                                                             |          |
| Kurt Feigl        | PI                       | 1                        | 1                          | 1                   | 1             | 1           | 1        | 1         | 1          | <a href="https://orcid.org/0000-0002-2059-6708">https://orcid.org/0000-0002-2059-6708</a> | UW WI    |
| Hiroki Sone       | Co-PI                    | 1                        |                            | 1                   | 1             |             |          | 1         | 1          | <a href="https://orcid.org/0000-0001-5525-1294">https://orcid.org/0000-0001-5525-1294</a> | UW WI    |
| Jesse Hampton     | Co-PI                    | 1                        |                            | 1                   | 1             |             |          | 1         | 1          | <a href="https://orcid.org/0000-0001-8568-3100">https://orcid.org/0000-0001-8568-3100</a> | UW WI    |
| Michael Cardiff   | Co-PI                    | 1                        |                            | 1                   | 1             |             |          | 1         | 1          | <a href="https://orcid.org/0000-0002-6720-6084">https://orcid.org/0000-0002-6720-6084</a> | UW WI    |
| Cliff Thurber     | Faculty                  | 1                        | 1                          | 1                   | 1             |             |          | 1         | 1          | <a href="https://orcid.org/0000-0002-4940-4618">https://orcid.org/0000-0002-4940-4618</a> | UW WI    |
| Herb Wang         | Faculty                  | 1                        |                            | 1                   | 1             |             |          | 1         | 1          | <a href="https://orcid.org/0000-0002-1631-4608">https://orcid.org/0000-0002-1631-4608</a> | UW WI    |
| Corné Kreemer     | Faculty                  |                          | 1                          | 1                   | 1             |             |          | 1         | 1          | <a href="https://orcid.org/0000-0001-6882-9809">https://orcid.org/0000-0001-6882-9809</a> | UNR NV   |
| Chris Sherman     | Staff Scientist          | 1                        |                            | 1                   | 1             |             |          | 1         | 1          | <a href="https://orcid.org/0000-0003-3550-0657">https://orcid.org/0000-0003-3550-0657</a> | LLNL CA  |
| Ian Warren        | Staff Scientist (a)      |                          |                            |                     | 1             | 1           |          | 1         | 1          | <a href="https://orcid.org/0000-0002-5870-8891">https://orcid.org/0000-0002-5870-8891</a> | NREL CO  |
| Sabrina Bradshaw  | Asst Project Manager     | 1                        |                            | 1                   | 1             |             |          | 1         | 1          | <a href="https://orcid.org/0000-0002-3846-4893">https://orcid.org/0000-0002-3846-4893</a> | UW WI    |
| Sui "Jay" Tung    | Associate Scientist (b)  |                          | 1                          | 1                   |               |             | 1        | 1         | 1          | <a href="https://orcid.org/0000-0002-4708-2133">https://orcid.org/0000-0002-4708-2133</a> | UW WI    |
| Hao Guo           | Postdoctoral, Scientist  | 1                        | 1                          |                     | 1             |             | 1        | 1         | 1          | <a href="https://orcid.org/0000-0001-8287-3689">https://orcid.org/0000-0001-8287-3689</a> | UW WI    |
| Ben Heath         | Postdoctoral (c)         |                          | 1                          | 1                   | 1             |             | 1        |           |            | <a href="https://orcid.org/0000-0002-9460-3042">https://orcid.org/0000-0002-9460-3042</a> | UW WI    |
| Erin Cunningham   | Postdoctoral (d)         |                          | 1                          | 1                   | 1             |             | 1        |           |            | <a href="https://orcid.org/0000-0002-9680-6812">https://orcid.org/0000-0002-9680-6812</a> | UW WI    |
| Xi Luo            | Postdoctoral (e)         |                          | 1                          | 1                   | 1             |             | 1        |           |            | <a href="https://orcid.org/0009-0004-6401-9971">https://orcid.org/0009-0004-6401-9971</a> | UW WI    |
| Matteo Cusini     | Postdoctoral             |                          |                            |                     |               | 1           | 1        |           |            | <a href="https://orcid.org/0000-0002-6024-861X">https://orcid.org/0000-0002-6024-861X</a> | LLNL CA  |
| Oddy Mudatsir     | Graduate Student         |                          | 1                          |                     |               |             | 1        |           |            | <a href="https://orcid.org/0009-0005-8958-3381">https://orcid.org/0009-0005-8958-3381</a> | UW WI    |
| Zirou Jin         | Graduate Student         |                          |                            | 1                   |               |             |          | 1         |            | <a href="https://orcid.org/0000-0001-7056-8281">https://orcid.org/0000-0001-7056-8281</a> | UW WI    |
| Collin Roland     | Graduate Student (f)     | 1                        |                            | 1                   | 1             |             | 1        |           |            | <a href="https://orcid.org/0000-0003-1004-0746">https://orcid.org/0000-0003-1004-0746</a> | UW WI    |
| Ben Jahnke        | Graduate Student (g)     |                          | 1                          |                     |               |             | 1        | 1         | 1          | <a href="https://orcid.org/0000-0002-1837-7522">https://orcid.org/0000-0002-1837-7522</a> | UW WI    |
| Samantha Kleich   | Graduate Student (h)     |                          | 1                          | 1                   |               |             | 1        | 1         | 1          | <a href="https://orcid.org/0000-0002-5999-0710">https://orcid.org/0000-0002-5999-0710</a> | UW WI    |
| Anya Wolterman    | Research Specialist (i)  | 1                        |                            | 1                   | 1             |             | 1        |           |            | <a href="https://orcid.org/0000-0003-4250-578X">https://orcid.org/0000-0003-4250-578X</a> | UW WI    |
| Sam Batzli        | Staff Scientist          | 1                        |                            |                     |               |             |          |           |            | <a href="https://orcid.org/0000-0002-9597-5614">https://orcid.org/0000-0002-9597-5614</a> | UW WI    |
| Neal Lord         | Technician               | 1                        |                            | 1                   |               |             |          |           |            | <a href="https://orcid.org/0000-0003-1457-0381">https://orcid.org/0000-0003-1457-0381</a> | UW WI    |
| Peter Sobol       | Technician               | 1                        |                            | 1                   |               |             |          |           |            | <a href="https://orcid.org/0009-0003-2083-6323">https://orcid.org/0009-0003-2083-6323</a> | UW WI    |
| John Murphy       | Resource Manager         |                          |                            |                     | 1             | 1           | 1        |           |            | <a href="https://orcid.org/0000-0003-4911-0027">https://orcid.org/0000-0003-4911-0027</a> | Ormat NV |
| John Akerley      | Resource Manager         | 1                        |                            | 1                   |               | 1           |          |           |            | <a href="https://orcid.org/0000-0001-7055-3450">https://orcid.org/0000-0001-7055-3450</a> | Ormat NV |
| Matthew Folsom    | Project Geophysicist (j) |                          | 1                          |                     |               |             | 1        | 1         | 1          | <a href="https://orcid.org/0000-0002-9079-6684">https://orcid.org/0000-0002-9079-6684</a> | Ormat NV |
| Courtney Brailo   | Project Geologist        |                          |                            |                     | 1             | 1           |          |           |            | <a href="https://orcid.org/0009-0000-6156-7762">https://orcid.org/0009-0000-6156-7762</a> | Ormat NV |
| Gabrielle Ramirez | Project Geologist        |                          |                            |                     | 1             | 1           |          |           |            | <a href="https://orcid.org/0009-0007-7271-9208">https://orcid.org/0009-0007-7271-9208</a> | Ormat NV |

- (a) now Principal Geoscientist at Zanskar Geothermal & Minerals, ID
- (b) now Assistant Professor at Texas Tech University, TX
- (c) now Duty Scientist at National Tsunami Warning Center, AK
- (d) now Geophysicist at now at Oak Ridge National Laboratory, TN
- (e) now pursuing Master's Degree in Data Science
- (f) now Hydrologist at U.S. Geologic Survey
- (g) now Associate Geologist at Cella Mineral Storage, NY
- (h) now Geotech Staff now at Shannon & Wilson, OR
- (i) now pursuing Master's Degree Civil & Environmental Engineering
- (j) now Senior Project Geoscientist at Geologica

University of Wisconsin-Madison (UW) <http://geoscience.wisc.edu/>  
 University of Nevada-Reno (UNR) <http://geodesy.unr.edu/>  
 Lawrence Livermore National Laboratory (LLNL)  
<https://www.llnl.gov/>  
 National Renewable Energy Laboratory (NREL)  
<https://www.nrel.gov/>  
 Ormat Technologies, Inc. (Ormat) <http://www.ormat.com/>

<sup>3</sup> Contributor Roles Taxonomy (CRediT) <https://credit.niso.org/>

112

### Definitions

113

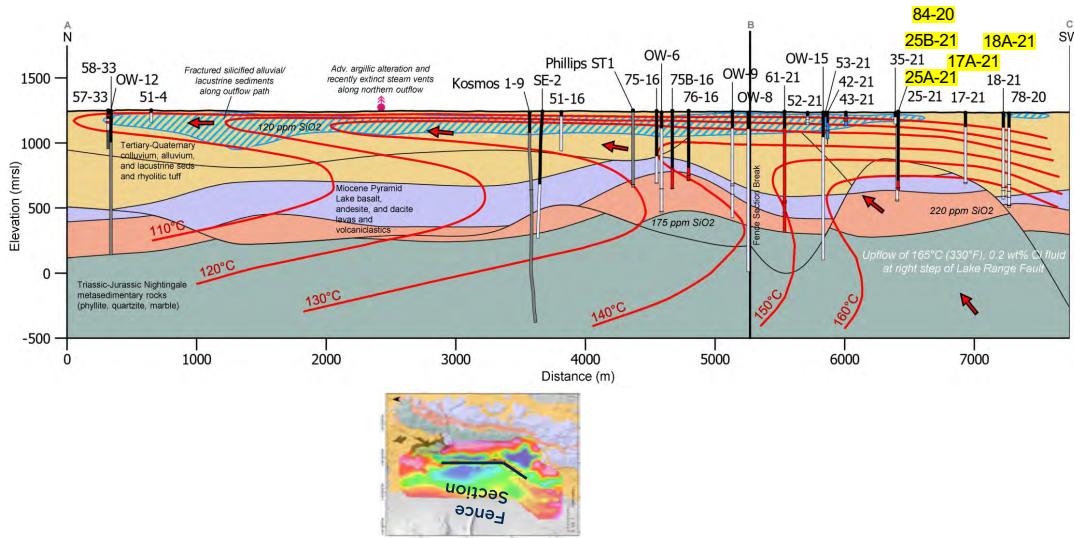
The following table lists acronyms and defines terms used in this report.

114

Table 2. Acronyms & Glossary

|     |             |                                                                                                                                                               |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 115 | 3DFFS       | 3-dimensional far-field sonic log                                                                                                                             |
| 116 | AF          | Antithetic Fault                                                                                                                                              |
| 117 | ASF         | Alaska Satellite Facility <a href="https://ASF.alaska.edu/">https://ASF.alaska.edu/</a>                                                                       |
| 118 | BBF         | Basin Bounding Fault                                                                                                                                          |
| 119 | Brady       | Brady Hot Springs, Nevada (field site for POROTOMO)                                                                                                           |
| 120 | CReditT     | Contributor Roles Taxonomy (CReditT) <a href="https://credit.niso.org/">https://credit.niso.org/</a>                                                          |
| 121 | DAS         | Distributed Acoustic Sensing                                                                                                                                  |
| 122 | DMP         | Data Management Plan                                                                                                                                          |
| 123 | DOE         | Department of Energy                                                                                                                                          |
| 124 | DITF        | drilling-induced tensile fracture                                                                                                                             |
| 125 | EERE        | <a href="#">Office of energy efficiency and renewable energy</a>                                                                                              |
| 126 | EPIC        | EarthScope Primary Instrument Center <a href="https://epic.earthscope.org/">https://epic.earthscope.org/</a><br>(formerly the IRIS PASSCAL Instrument Center) |
| 127 | ESA         | European Space Agency                                                                                                                                         |
| 128 | FF          | Fan Fault                                                                                                                                                     |
| 129 | FOA         | Funding Opportunity Announcement                                                                                                                              |
| 130 | FTR         | Final Technical Report                                                                                                                                        |
| 132 | Gantt chart | <a href="#">Bar chart showing a project schedule originally designed by Henry Gantt</a>                                                                       |
| 133 | GEOS        | Open-source modeling software <a href="https://www.geos.dev/">https://www.geos.dev/</a>                                                                       |
| 134 | GPS         | Global Positioning System                                                                                                                                     |
| 135 | InSAR       | Interferometric Synthetic Aperture Radar                                                                                                                      |
| 136 | MSE         | Microseismic Events                                                                                                                                           |
| 137 | NF          | Nightingale Fault                                                                                                                                             |
| 138 | NWF         | NW-striking Fault.                                                                                                                                            |
| 139 | OSTI        | Office of Scientific and Technical Information at U.S. Department of Energy                                                                                   |
| 140 | PERT        | Program Evaluation Review Technique                                                                                                                           |
| 141 | PF          | Piedmont Fault                                                                                                                                                |
| 142 | POROTOMO    | Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology                                                            |
| 144 | REST        | Regressive ESTimator (REST) autopicking package                                                                                                               |
| 145 | ROP         | Rate of penetration                                                                                                                                           |
| 146 | RFF         | Range Front Fault                                                                                                                                             |
| 147 | RPPR        | Research Performance Progress Report                                                                                                                          |
| 148 | SEF         | San Emidio Fault                                                                                                                                              |
| 149 | $S_{HMax}$  | Maximum horizontal stress (reckoning compression positive)                                                                                                    |
| 150 | $S_{hmin}$  | Minimum horizontal stress (reckoning compression positive)                                                                                                    |
| 151 | $S_v$       | Vertical stress (reckoning compression positive)                                                                                                              |
| 152 | SOPO        | Statement of Project Objectives                                                                                                                               |
| 153 | TLA         | Three Letter Acronym                                                                                                                                          |
| 154 | TPM         | Technical Performance Metric                                                                                                                                  |
| 155 | TRL         | <a href="#">Technology Readiness Level</a>                                                                                                                    |
| 156 | UTC         | Universal Time Coordinated                                                                                                                                    |
| 157 | WHOLESCALE  | Water & Hole Observations Leverage Effective Stress Calculations and Lessen Expenses                                                                          |
| 158 | WOB         | Weight on bit                                                                                                                                                 |

159


160

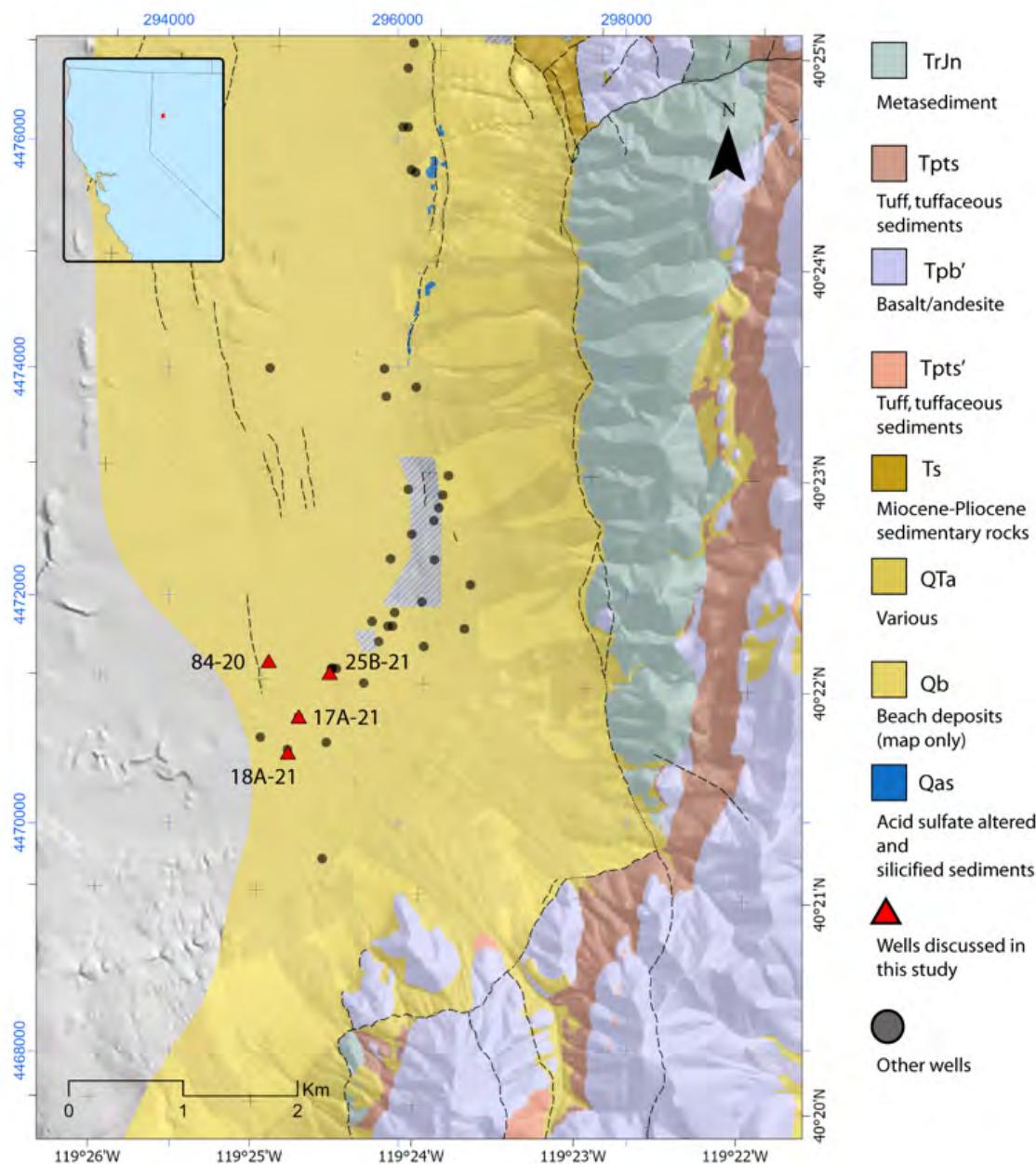
### *Background*

161 The goal of the WHOLESCALE project is to simulate the spatial distribution and temporal  
162 evolution of stress in a geothermal system. To reach this goal, the WHOLESCALE team  
163 proposed to develop a methodology that will incorporate and interpret data from four methods of  
164 measurement into a multi-physics model that couples thermal, hydrological, and mechanical (T-  
165 H-M) processes over spatial scales ranging from the diameter of a borehole (~0.1 m) to the  
166 extent of the entire field (~10 km) and temporal scales ranging from the duration of a  
167 microseismic event (~1 second) to the typical lifetime of a producing field (3 decades).

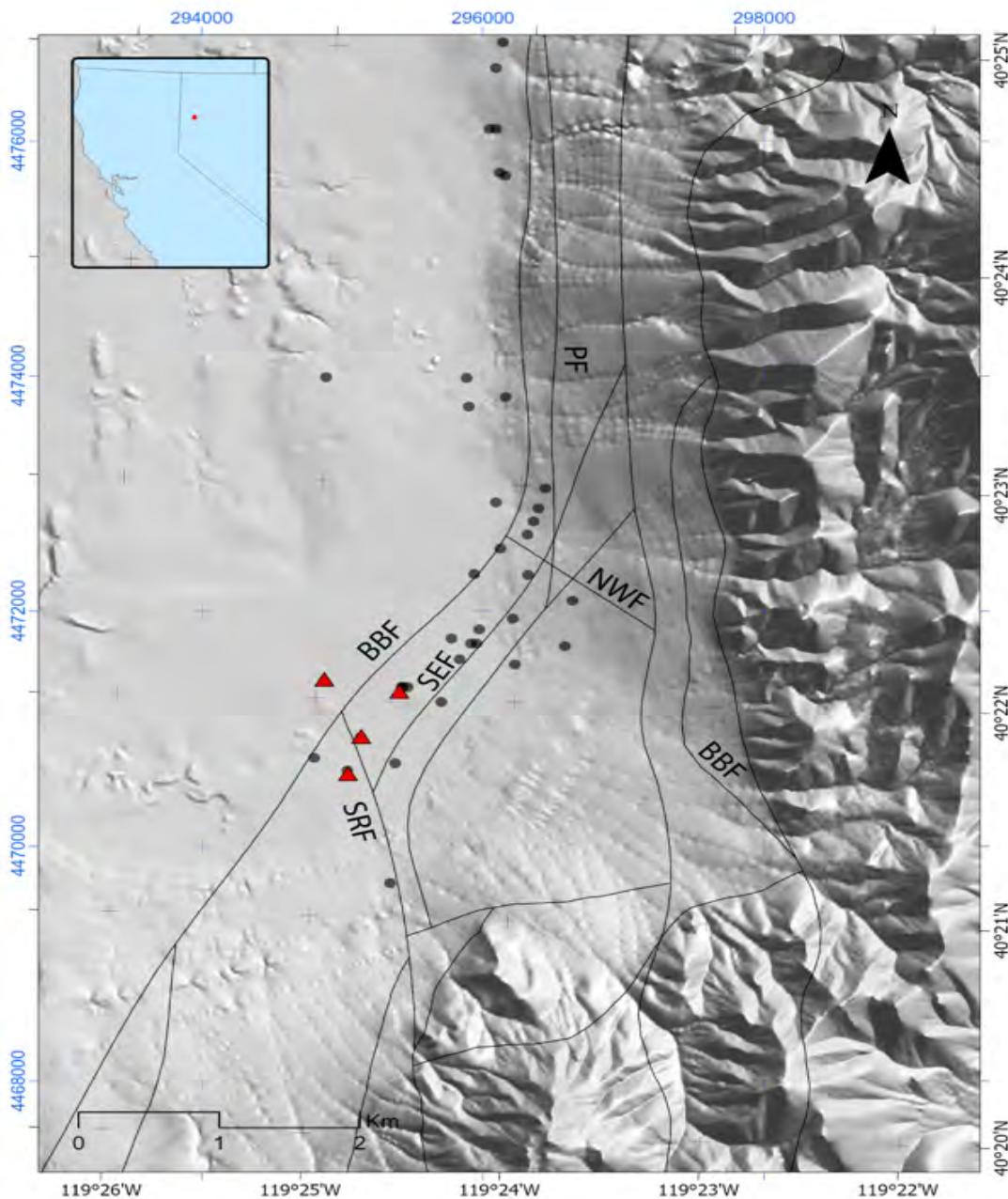
168 To do so, the WHOLESCALE team has taken advantage of the perturbations created by  
169 pumping operations to infer temporal changes in the state of stress in the geothermal system.  
170 This rheological experiment applied the key idea that increasing pore-fluid pressure reduces the  
171 effective normal stress acting across preexisting faults. The work included: (1) manipulating the  
172 stress field via hydraulic and thermal methods, (2) measuring the resulting response by  
173 geophysical methods, and (3) calculating the stress, strain, pressure, and temperature in the  
174 geothermal system using an open-source, numerical simulator named GEOS.

175 The WHOLESCALE team has applied this methodology at the San Emidio geothermal field,  
176 located ~100 km north of Reno, Nevada in the northwestern Basin and Range province. Figure 1  
177 shows a conceptual model in vertical cross section. The geology, geophysics, and geothermics  
178 have been described previously (Matlick, 1995; Rhodes et al., 2010; Warren, 2010; Eneva et al.,  
179 2011; Moeck, 2011; Rhodes, 2011; Rhodes et al., 2011; Faulds, 2014; UNR, 2014; Teplow and  
180 Warren, 2015; Pulliam et al., 2019; Reinisch et al., 2019; Warren et al., 2019a; Feigl et al., 2020;  
181 Folsom et al., 2020; Folsom et al., 2021; Feigl et al., 2022b; Guo et al., 2022; Jahnke, 2022;  
182 Jahnke et al., 2022; Akerley et al., 2023; Jahnke et al., 2023; Sone et al., 2023).




183 *Figure 1: Vertical cross section of conceptual model of WHOLESCE study area at*  
 184 *San Emidio, showing geologic units (color), wells (vertical line segments, black*  
 185 *where cased, white where open, red where tapping feed zone), and contours of*  
 186 *“native state” temperature (red curves) (Folsom et al., 2020). The cross section*  
 187 *follows the two black line segments shown in map view (lower panel) with a bend at*  
 188 *point B. Names of wells are indicated (highlighted in yellow if drilled since 2020).*

189 The San Emidio geothermal system occupies a right step in a North-striking, West-dipping,  
190 normal fault zone, as mapped in Figure 2 and Figure 3.


191 Minor dilation and high fault density within the right step likely produce the permeability  
192 necessary for deep fluid circulation (e.g., Eneva et al., 2011). Power was first produced in 1987  
193 with a 3.6-MW binary plant, and average production increased to 9 MW (net) following  
194 commissioning of a new power plant in 2012. Production has ranged from less than 190 L/s to  
195 more than 280 L/s at temperatures of 140–148°C. Drilling, geological, geophysical, and  
196 geochemical data sets collected since the 1970s help constrain controls on the geothermal  
197 resource and the structural setting.

198 At San Emidio, Ormat has provided access to four types of observational data collected by  
199 innovative techniques in seismology, drilling, geodesy, and hydrology. To interpolate and  
200 interpret these rich data sets, GEOS uses the finite-element method to solve the coupled  
201 differential equations governing the physics of a fractured, poroelastic medium under stress. The  
202 study site at San Emidio includes a volume with length of ~6 km, width ~5 km, and depth ~2  
203 km. At each point within a mesh of this volume, the resulting numerical solution determines the  
204 complete stress tensor as a function of time as well as its sensitivity to perturbations in the input  
205 parameters. The numerical GEOS solution also calculates modeled values for each of the four  
206 types of observable quantities. By optimizing the goodness of fit between the observations and  
207 the modeled value calculated by the GEOS simulator, the methodology determines the model  
208 configuration that best fits the data and thus the best prediction of the spatial distribution and  
209 temporal evolution of the complete stress tensor.

210 The WHOLESCALE project should make an important impact because geothermal operators  
211 need quantitative information about the subsurface stress to successfully develop and sustainably  
212 manage a geothermal reservoir. The applied methodology has advanced capabilities “to directly  
213 measure or infer the stress state” which, as noted in the FOA, “are woefully inadequate,  
214 especially away from boreholes”. By reducing the uncertainty of in-situ stress estimates, the  
215 WHOLESCALE project should reduce the cost of geothermal energy.



216 *Figure 2. Geologic map of field area. As part of the North Valley Project in the San*  
 217 *Emidio geothermal area, Ormat has drilled three new production wells (17A-21,*  
 218 *18A-21, and 25B-21) and two new injection wells (84-20 and 25-28), shown as red*  
 219 *triangles. Geologic units simplified from earlier work (Rhodes, 2011; Rhodes et al.,*  
 220 *2011) by Matt Folsom (2020). Black tick marks and labels on the east and south*  
 221 *edges give geographic (WGS84) latitude and longitude, respectively in degrees and*  
 222 *minutes. Blue ticks and labels on north and west edges give easting and northing*  
 223 *coordinates, respectively, in meters in Zone 11 of the Universal Transverse Mercator*  
 224 *(UTM) projection.*



225  
226  
227  
228  
229  
230  
231  
232  
233

Figure 3. Map of the WHOLESCE study area at San Emidio, showing fault traces  
in the geologic structural model updated in 2022 by Matt Folsom. The background  
gray image shows the topography. Fault names include: RFF, Range front fault; NF,  
Nightingale fault; FF, Fan fault; AF, Antithetic fault; SEF, San Emidio fault; BBF,  
Basin Bounding fault; PF, Piedmont fault; NWF, NW fault. Black tick marks and  
labels on the east and south edges give geographic (WGS84) latitude and longitude,  
respectively in degrees and minutes. Blue ticks and labels on north and west edges  
give easting and northing coordinates, respectively, in meters in Zone 11 of the  
Universal Transverse Mercator (UTM) projection.

234

### *Project Timeline and PERT*

235 The WHOLESCALE project tasks and timeline are illustrated in Figure 4 (Phase I) and  
236 Figure 5 (Phase II) as charts according to the “program evaluation and review technique”  
237 (PERT). The project was completed in two phases that included three performance periods  
238 separated by two Go/No-go Stage Gate Reviews. Tasks were classified by data type (i.e.,  
239 Geologic Structure, Borehole, Geodesy, Hydrology, Seismology, and Modeling).

240 The first phase of the project started July 31, 2020<sup>4</sup> and included ongoing project  
241 coordination (Task 1), a project kickoff (Task 2), analysis of existing data (Task 3), development  
242 of the initial stress model & deployment design (Task 4), and Go/No-go Decision Point #1 (Task  
243 5). In this phase, the WHOLESCALE team demonstrated that the “expected goodness-of-fit  
244 measure will meet minimum requirement” (Figure 6) and was completed June 25, 2021 with an  
245 official “go” given August 25, 2021 .

246 Phase II began with implementing the 2022 deployment (Task 6) followed by Go/No-go  
247 Decision Point #2 (Task 7) which demonstrated “data were successfully collected according to  
248 plan” (Figure 7) which was completed June 22, 2022 with an official “go” given August 12,  
249 2022. In May of 2022, the WHOLESCALE team requested and received approval in October  
250 2022 for a 10-month extension of the Project Period through October 31, 2024<sup>5</sup>. The remainder  
251 of Phase II consisted of analyzing the data collected during the deployment (Task 8), calibrating  
252 the stress model on all observations (Task 9), and preparing the Final Review (August 23, 2024)  
253 & Final Technical Report (Task 10).

254 The team at UW-Madison coordinated twice-monthly teleconferences to ensure progress by  
255 exchanging information as well as identifying and resolving any technical difficulties. Minutes  
256 of teleconferences, including action items, were distributed to all team members. All of the  
257 WHOLESCALE team meetings held over the duration of the project are summarized in Table 1.

---

<sup>4</sup> The award document was signed on September 9th, 2020.

<sup>5</sup> Modification 004 extended the project period through October 31<sup>st</sup> 2024.

| TASK<br>CLASSIFICATION                                         | PHASE I<br>2020/7/31* through 2021/07/31                                             |                                                                      |                                                                         |                                                                                                |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                | Task 1<br>Coordination                                                               | Task 2<br>Kickoff Meeting                                            | Task 3<br>Analyze existing data                                         | Task 4<br>Calibrate initial stress model<br>with existing data &<br>optimize deployment design |
| 1.1 Communications<br>(Bradshaw, Feigl, ALL)                   |                                                                                      |                                                                      |                                                                         |                                                                                                |
| 1.2 Meetings<br>(Feigl, Bradshaw)                              | 2.1 Host kickoff meeting<br>(Ormat, Bradshaw)                                        |                                                                      | Fortnightly teleconferences                                             | Fortnightly teleconferences                                                                    |
| 1.3 Reporting<br>(Feigl, Bradshaw, ALL)                        |                                                                                      |                                                                      |                                                                         |                                                                                                |
| 1.4 Permitting<br>(Ormat)                                      |                                                                                      |                                                                      |                                                                         |                                                                                                |
| 1.5 Data management<br>(Feigl, Bradshaw, ALL)                  |                                                                                      |                                                                      |                                                                         |                                                                                                |
| 1.6 Conceptual models<br>(Cardiff, Sone, Wang, Feigl, Sherman) |                                                                                      |                                                                      |                                                                         |                                                                                                |
| Geologic structure &<br>material properties                    | 2.2 Conduct Field Trip to San Emidio<br>(Warren, Ormat)                              | 3. 1 Share Data & Models<br>(Ormat)                                  | 4.1 Upscaling<br>(Hampton, Kleich, Sone)                                |                                                                                                |
|                                                                | 2.3 Geologic Structure &<br>Material Properties<br>(Hampton, Folsom, Sone)           | 3.2 Test Samples<br>(Hampton, Kleich, Sone)                          |                                                                         |                                                                                                |
| Borehole                                                       |                                                                                      | 3.3 Interpret Regional Stress<br>(Warren, Sone)                      | 4.2 Define Prestress<br>(Sone, Jahnke)                                  |                                                                                                |
|                                                                | 2.4 Identify Locations for GPS Stations<br>(Kreemer, Feigl, Ormat)                   | 3.4 Collect & Analyze InSAR Data<br>(Feigl, Batzli, Kreemer)         |                                                                         |                                                                                                |
| Geodesy                                                        |                                                                                      | 3.5 Analyze GPS Data<br>(Kreemer, Feigl, Ormat)                      |                                                                         |                                                                                                |
|                                                                | 2.5 Visit Wells with Sensors<br>(Cardiff, Ormat)                                     | 3.6 Compile Hydrologic Data<br>(Ormat, Cardiff)                      | 4.3 H-T Modeling<br>(Ormat, Cardiff, Roland)                            |                                                                                                |
| Hydrology                                                      |                                                                                      | 3.7 Analyze Existing Hydrologic Data<br>(Cardiff, Roland, Ormat)     | 4.4 Design Network of Sensors for P, T, Q<br>(Cardiff, Roland, Ormat)   |                                                                                                |
|                                                                | 2.6 Evaluate Conditions for<br>Seismic Network<br>(Thurber, Guo, Heath, Lord, Ormat) | 3.8 Analyze Existing Seismic Data<br>(Thurber, Guo, Heath)           | 4.5 Design Seismic Network<br>(Thurber, Guo, Heath, Lord)               |                                                                                                |
| Seismology                                                     |                                                                                      | 3.9 Interpret PSET<br>(Warren)                                       |                                                                         |                                                                                                |
|                                                                |                                                                                      |                                                                      |                                                                         |                                                                                                |
| Modeling                                                       |                                                                                      | 3.10 Build Macroscale Configuration<br>(Sherman, Feigl, Tung, Sone)  | 4.6 Calibrate Macroscale Stress Model<br>(Sherman, Tung, Feigl, Sone)   |                                                                                                |
|                                                                |                                                                                      | 3.11 Build Mesoscale Configuration<br>(Sherman, Morency, Wang, Tung) | 4.7 Calibrate Mesoscale Stress Model<br>(Sherman, Tung, Feigl, Cardiff) |                                                                                                |

Task 5 (Go/No-go Decision Point #1): **Completed 2021/06/25**

| TASK<br>CLASSIFICATION                                         | PHASE II                                                                      |                                                           |                                                                          |                                                                                     |                                    |
|----------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------|
|                                                                | 2021/08/01 through 2024/10/31**                                               |                                                           | 2022/08/01 through 2024/10/31**                                          |                                                                                     |                                    |
| Task 1<br>Coordination                                         | Task 6<br>Deploy Integrated technology<br>at San Emidio                       | Task 7 (Go/No-go Decision Point #2): Completed 2022/06/22 | Task 8<br>Analyze Data collected<br>during deployment                    | Task 9<br>Calibrate stress model<br>on observations                                 | Task 10 Final review and reporting |
| 1.1 Communications<br>(Bradshaw, Feigl, ALL)                   |                                                                               |                                                           |                                                                          |                                                                                     |                                    |
| 1.2 Meetings<br>(Feigl, Bradshaw)                              | Fortnightly teleconferences                                                   |                                                           | Fortnightly teleconferences                                              | Fortnightly teleconferences                                                         |                                    |
| 1.3 Reporting<br>(Feigl, Bradshaw, ALL)                        |                                                                               |                                                           |                                                                          |                                                                                     |                                    |
| 1.4 Permitting<br>(Ormat)                                      |                                                                               |                                                           |                                                                          |                                                                                     |                                    |
| 1.5 Data management<br>(Feigl, Bradshaw, ALL)                  |                                                                               |                                                           |                                                                          |                                                                                     |                                    |
| 1.6 Conceptual models<br>(Cardiff, Sone, Wang, Feigl, Sherman) |                                                                               |                                                           |                                                                          |                                                                                     |                                    |
| Geologic structure &<br>material properties                    | 6.1 Coordinate Field Operations<br>(Ormat, Warren, Feigl, Lord, Bradshaw)     |                                                           | 8.1 Geologic Constraints and<br>Interpretation<br>(Ormat, Warren, Sone)  |                                                                                     |                                    |
| Borehole                                                       | 6.2 Mud Logging<br>(Ormat, Hampton, Wang)                                     |                                                           | 8.2 Lab Testing<br>(Hampton, Sone, Jin)                                  | 9.1 Calibrate Mechanical Model<br>on Borehole Observations<br>(Sherman, Sone, Wang) |                                    |
| Geodesy                                                        | 6.3 Wireline Logging<br>(Ormat, Sone, Wang)                                   |                                                           | 8.3 Geophysical Analysis of Well Logs<br>(Sone, Mudatsir)                |                                                                                     |                                    |
| Hydrology                                                      | 6.4 Collect & Analyze InSAR Data<br>(Feigl, Batzli, Kreemer)                  |                                                           | 8.4 Collect & Analyze InSAR Data<br>(Feigl, Batzli)                      | 9.2 Calibrate Mechanical Model<br>on Geodetic Data<br>(Sherman, Feigl, Kreemer)     |                                    |
| Seismology                                                     | 6.5 Collect & Analyze GPS Data<br>(Kreemer, Feigl, Ormat)                     |                                                           | 8.5 Collect & Analyze GPS Data<br>(Kreemer, Feigl, Ormat)                |                                                                                     |                                    |
| Modeling                                                       | 6.6 Install Additional P, T, Q Sensors<br>(Ormat, Cardiff)                    |                                                           | 8.6 Quality Control, Interpretation<br>of P,Q,T Data<br>(Ormat, Cardiff) | 9.3 Calibrate HT Model on Hydrologic Data<br>(Sherman, Cardiff)                     |                                    |
|                                                                | 6.7 Quality Control on Hydrologic Data<br>(Ormat)                             |                                                           |                                                                          |                                                                                     |                                    |
|                                                                | 6.8 Install and Operate Seismic Network<br>(Lord, Thurber, Feigl, Guo, Heath) |                                                           | 8.7 Analyze Seismic Data<br>(Thurber, Guo, Cunningham, Lord)             | 9.4 Calibrate HM Model on Seismic Data<br>(Sherman, Thurber, Sone)                  |                                    |
|                                                                |                                                                               |                                                           | 8.8 Slip and Dilatation Tendency Analysis<br>(Warren)                    |                                                                                     |                                    |
|                                                                | 6.9 Recalibrate Macroscale Stress Model<br>(Sherman, Feigl, Thurber, Sone)    |                                                           |                                                                          | 9.5 Calibrate THM Model on ALL Data<br>(Sherman, ALL)                               |                                    |
|                                                                | 6.10 Recalibrate Mesoscale Stress Model<br>(Sherman, Feigl, Cardiff)          |                                                           |                                                                          |                                                                                     |                                    |

Figure 5. Tasks and schedules for Phase II of the WHOLESCALE project displayed as a PERT diagram (\*\*Denotes the revised project end date.)

## Task 5: Go/No-Go Decision Point - Stage Gate Review I (M12)

We have evaluated the results from existing data sets Phase I of the project.

With one exception\*, the realized values of the technology performance metrics meet or exceed the minimum requirement for these observable quantities:

- ✓ Location of microseismic events (TPM 1)
- ✓ Stress indicators – orientation (TPM 2a)
- \* Stress indicators – magnitude (TPM 2b)
- ✓ Pressure in observation wells (TPM 3)
- ✓ Vertical displacement (TPM 4)

*\* Borehole imaging logs in a well to be drilled in 2022 will help infer stress magnitude.*

**We are confident that meeting the technology performance metrics of goodness of fit will be feasible during Phase II of the project.**

**The WHOLESCALE project is poised for success in Phase II.**

**Today's evaluation constitutes the milestone at M12.**

262  
263

*Figure 6. Summary slide for Task 5: Go/No-go Decision Point #1, demonstrating that “the expected goodness-of-fit measure will meet the minimum requirement.”*

**WHOLESCALE**  
**Task 7: Go/No-Go Decision Point - Stage Gate Review II (M24)**

At this in-person meeting, ***the team will evaluate if the technical specifications for the data collection were met in terms of quality and quantity.***

In terms of quantity, the target goal and minimum requirement for each data type will be to collect at least 75% and 50%, respectively, of the data planned for the deployment.

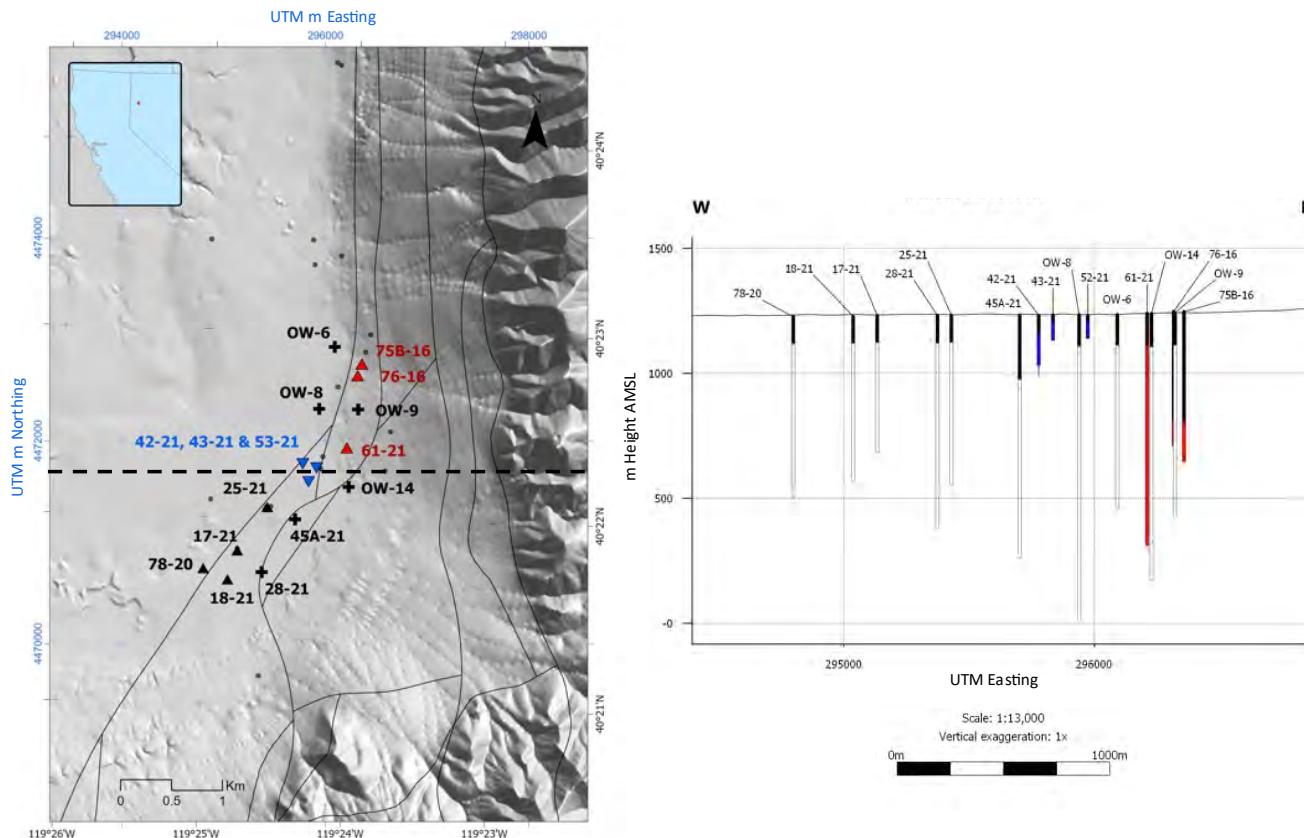
| Data Type                                                     | Quantity                                                                                                    | Quality                                                                     | Go?                                                                                                                                                                            |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Seismic recordings (Subtask 6.8)<br/>– Erin Cunningham</i> | 450 stations * 28 days over April 2022 shutdown * 500 samples/s                                             | Data recovered, days recorded, volume data, % data duration, regional event |          |
| <i>InSAR (Subtask 6.4)<br/>– Sam Batzli</i>                   | images acquired on dates before (> 2 dates), during (1 date), and after (> 2 dates) the April 2022 shutdown | Spatial coherence for pairwise combinations of successive images            |          |
| <i>GPS (Subtask 6.5)<br/>– Nina Miller</i>                    | 2 stations * time series (24 hr interval) * over April 2022 shutdown                                        | Standard deviation of typical estimate < 3 mm horizontal and <5 mm vertical |          |
| <i>Hydrologic measurements (Subtask 6.7) — Mike Cardiff</i>   | P,T in 13 monitoring wells * 1 sample/1 min * 28 days over the April 2022 shutdown                          | Standard deviation of no expected pressure change < 3 kPa                   |         |
| <i>Outcrop samples (Subtask 3.2)<br/>– Jesse Hampton</i>      | 1 sample * 5 targeted formations                                                                            | 3 unbroken plugs per formation                                              |      |
| <i>Mudlogging (Subtask 6.2)<br/>– Hiroki Sone</i>             | 1 new wells * drilling information                                                                          | Recognize formation boundaries                                              |      |
| <i>Wireline logging (Subtask 6.3)<br/>– Hiroki Sone</i>       | 1 new well * image logs                                                                                     | Correctly oriented, recognize formation boundaries                          |   42 |

264  
265

*Figure 7. Summary slide for Task 7: Go/No-go Decision Point #2 demonstrating that the “data were successfully collected according to plan.*

Table 3. List of WHOLESCALE team meetings.

| Meeting #           | Date      | Meeting #           | Date      | Meeting #           | Date      |
|---------------------|-----------|---------------------|-----------|---------------------|-----------|
| Teleconference #003 | 24-Jan-20 | Teleconference #042 | 06-Aug-21 | Teleconference #079 | 03-Feb-23 |
| Teleconference #004 | 07-Feb-20 | Teleconference #043 | 27-Aug-21 | SWG In-Person       | 08-Feb-23 |
| Teleconference #005 | 06-Mar-20 | Teleconference #044 | 10-Sep-21 | -Meeting #080a      |           |
| Teleconference #006 | 20-Mar-20 | Teleconference #045 | 24-Sep-21 | Teleconference #080 | 17-Feb-23 |
| Teleconference #007 | 03-Apr-20 | Teleconference #046 | 08-Oct-21 | Teleconference #081 | 03-Mar-23 |
| Teleconference #008 | 17-Apr-20 | Teleconference #047 | 22-Oct-21 | Teleconference #082 | 24-Mar-23 |
| Teleconference #009 | 01-May-20 | Teleconference #048 | 05-Nov-21 | Teleconference #083 | 07-Apr-23 |
| Teleconference #010 | 15-May-20 | Teleconference #049 | 19-Nov-21 | Teleconference #084 | 21-Apr-23 |
| Teleconference #011 | 29-May-20 | Teleconference #050 | 03-Dec-21 | Teleconference #085 | 05-May-23 |
| Teleconference #012 | 12-Jun-20 | Teleconference #051 | 17-Dec-21 | Teleconference #086 | 19-May-23 |
| Teleconference #013 | 26-Jun-20 | Teleconference #052 | 07-Jan-22 | Teleconference #087 | 09-Jun-23 |
| Teleconference #014 | 24-Jul-20 | Teleconference #053 | 21-Jan-22 | Teleconference #088 | 23-Jun-23 |
| Teleconference #015 | 07-Aug-24 | Teleconference #054 | 04-Feb-22 | Teleconference #089 | 21-Jul-23 |
| Teleconference #016 | 28-Aug-24 | Teleconference #055 | 18-Feb-22 | Teleconference #090 | 28-Jul-23 |
| Teleconference #017 | 11-Sep-20 | Teleconference #056 | 04-Mar-22 | Teleconference #091 | 11-Aug-23 |
| Teleconference #018 | 25-Sep-20 | Teleconference #057 | 11-Mar-22 | Teleconference #092 | 25-Aug-23 |
| Teleconference #019 | 09-Oct-20 | Teleconference #058 | 25-Mar-22 | Teleconference #093 | 08-Sep-23 |
| Teleconference #020 | 23-Oct-20 | Teleconference #059 | 15-Apr-22 | Teleconference #094 | 22-Sep-23 |
| Teleconference #021 | 06-Nov-20 | Teleconference #060 | 22-Apr-22 | Teleconference #095 | 06-Oct-23 |
| Teleconference #022 | 20-Nov-20 | Teleconference #061 | 29-Apr-22 | Teleconference #096 | 20-Oct-23 |
| Teleconference #023 | 04-Dec-20 | Teleconference #062 | 13-May-22 | Teleconference #097 | 03-Nov-23 |
| Teleconference #024 | 18-Dec-20 | Teleconference #063 | 10-Jun-22 | Teleconference #098 | 17-Nov-23 |
| Teleconference #025 | 08-Jan-21 | Teleconference #064 | 17-Jun-22 | Teleconference #099 | 01-Dec-23 |
| Teleconference #026 | 22-Jan-21 | Teleconference #065 | 22-Jun-22 | Teleconference #100 | 08-Dec-23 |
| Teleconference #027 | 05-Feb-21 | Teleconference #066 | 22-Jul-22 | Teleconference #101 | 08-Jan-24 |
| Teleconference #028 | 19-Feb-21 | Teleconference #067 | 05-Aug-22 | Teleconference #102 | 16-Jan-24 |
| Teleconference #029 | 05-Mar-21 | Teleconference #068 | 26-Aug-22 | Teleconference #103 | 02-Feb-24 |
| Teleconference #030 | 19-Mar-21 | Teleconference #069 | 09-Sep-22 | Teleconference #104 | 16-Feb-24 |
| Teleconference #031 | 02-Apr-21 | Teleconference #070 | 23-Sep-22 | Teleconference #105 | 01-Mar-24 |
| Teleconference #032 | 16-Apr-21 | Teleconference #071 | 07-Oct-22 | Teleconference #106 | 22-Mar-24 |
| Teleconference #033 | 22-Apr-21 | Teleconference #072 | 21-Oct-22 | Teleconference #107 | 05-Apr-24 |
| Teleconference #034 | 07-May-21 | Teleconference #073 | 04-Nov-22 | Teleconference #108 | 19-Apr-24 |
| Teleconference #035 | 21-May-21 | Teleconference #074 | 18-Nov-22 | Teleconference #109 | 03-May-24 |
| Teleconference #036 | 04-Jun-21 | Teleconference #075 | 02-Dec-22 | Teleconference #110 | 17-May-24 |
| Teleconference #037 | 11-Jun-21 | Teleconference #076 | 16-Dec-22 | Teleconference #111 | 31-May-24 |
| Teleconference #038 | 18-Jun-21 | UW In-Person        | 06-Jan-23 | Teleconference #112 | 14-Jun-24 |
| Teleconference #039 | 25-Jun-21 | -Meeting #076.5     |           | Teleconference #114 | 19-Jul-24 |
| Teleconference #040 | 09-Jul-21 | Teleconference #077 | 13-Jan-23 | Teleconference #115 | 02-Aug-24 |
| Teleconference #041 | 23-Jul-21 | Teleconference #078 | 27-Jan-23 | Teleconference #116 | 16-Aug-24 |


267

### SECTION III. FIELD WORK

268

#### Infrastructure

269 Major infrastructure operated at San Emidio from 2016 onward includes: (a) four production  
270 wells (75B-16, 76-16, 61-21, and – since 2018 – 25A-21) targeting depths from approximately  
271 100 m to 930 m below land surface; and (b) three shallow wells (42-21, 43-21, and 53-21) where  
272 water is re-injected under ambient pressure. Other idle wells that access the reservoir are shown  
273 in black in Figure 8, and represent locations where reservoir pressure changes can be monitored.  
274 Pressure change data from pumping tests in 2016 and 2017 were recorded by Ormat  
275 independently, and provided as part of the WHOLESCALE project. Most recently, observed  
276 pressure changes were recorded at 13 idle wells in Spring 2022 as part of the WHOLESCALE  
277 project.



278  
279  
280  
281  
282

Figure 8. Infrastructure at San Emidio operating in 2016. Left: Map-view locations  
of all active wells relative to estimated fault traces. Right: Well locations, projected  
to a plane of UTM Zone 11T 4,471,700m N. Elevation H is orthometric height above  
mean sea level (WGS84 geoid).

283

### 2016 Deployment

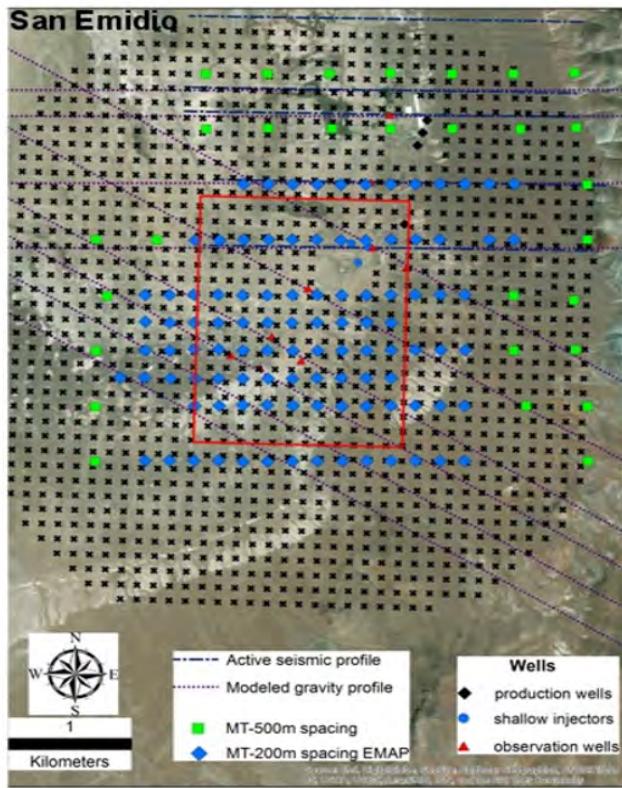
284 *The following section includes excerpts (some verbatim), from several sources (Warren et al., 2016b;*  
285 *Warren et al., 2018; Warren et al., 2019a; Warren et al., 2019b).*

286 In 2016, passive seismic data were collected at San Emidio as part of the DOE-funded  
287 Subsurface Technology and Engineering R&D (SubTER) project to advance imaging and  
288 characterization of geothermal permeability (DE-EE0007698). Microseismic Incorporated (MSI)  
289 installed a seismic network consisting of 1302 stations with 6 wired geophones connected to  
290 OYO GXR recorders. They collected data for nearly 180 hours. The survey was designed to  
291 focus on a volume approximately 1700 m by 2200 m by 300 m (Figure 9).

292 The passive seismic data collected at the San Emidio site were processed using passive  
293 seismic imaging techniques based on beamforming of the high-frequency approximation of the  
294 wave equation. The first technique aims at identifying discrete events with an impulsive  
295 character using an algorithm known as Passive Seismic Emission Tomography (PSET) (Duncan  
296 and Eisner, 2010). In this case, the time window was 50 milliseconds. The direction of first  
297 motion and the observed amplitude across the array were used to derive focal mechanisms for  
298 several discrete events at San Emidio.

299 The second technique, Ambient Passive Seismic Imaging, is a close analog to the more  
300 conventional approach described above and accomplished using MSI's repetitive Passive  
301 Seismic Emission Tomography using a time window for imaging of 1 hour. The technique  
302 provides a holistic view of acoustic history using the long duration aggregation of multiple  
303 formed beams (Jeremic et al., 2016).

304 Magnetotelluric (MT) data collection started in late 2016; due to low natural signals the  
305 results were not satisfactory, and measurements over a portion of the survey area were repeated  
306 and completed in summer 2017. The MT data acquisition (250 Hz-0.001 Hz) was done by  
307 Quantec Geoscience USA Inc.


308 MSI delivered a catalog of microseismic events (MSEs) with locations and focal  
309 mechanisms. In analyzing the catalog, Ian Warren noticed that the number of events increased  
310 around the time that pumping operations were suspended for planned maintenance. MSI also  
311 delivered a PSET volume of acoustic energy transformed into Z-scores. The WHOLESCALE  
312 team submitted the metadata for the seismic survey<sup>6</sup> (Lord et al., 2016b), the raw seismic  
313 waveforms<sup>7</sup> (Lord et al., 2016a), and the PSET volume<sup>8</sup> (Warren et al., 2016a) to the Geothermal  
314 Data Repository (GDR)<sup>9</sup>.

<sup>6</sup> <https://doi.org/10.15121/1872549>

<sup>7</sup> <https://doi.org/10.15121/2008357>

<sup>8</sup> <https://dx.doi.org/10.15121/1924268>

<sup>9</sup> Citations to data sets available on the GDR are dated with the date of collection, not submission.



315 *Figure 9. Map showing locations of passive seismic and electromagnetic data*  
316 *collections at San Emidio in 2016 and 2017. Red box shows the focus area. Figure*  
317 *and caption (Warren et al., 2018).*

318 2021 Deployment

319 The WHOLESCALE team designed and deployed an "exploratory" seismic array in April  
320 2021. The experiment was designed to monitor seismic activity before, during, and after the  
321 planned three-day plant maintenance shutdown April 19-21, 2021. Following permitting, postdoc  
322 Ben Heath visited the field site at San Emidio in April 2021 to install the temporary seismic  
323 instruments for the exploratory deployment. Seismic data was recorded using 37 tri-axial short-  
324 period seismographs that were deployed in a 1.8 km diameter cluster centered on 40.367278 N,  
325 119.409019 W (Figure 10). The first data record started at 2021-04-06T07:09:10Z UTC and the  
326 last record ended at 2021-05-11T02:58:52Z UTC. The pumping stopped at 2021/04/19 12:51:45  
327 UTC and resumed about 2021/04/21 21:00:00 UTC. The 37 stations included 29 SmartSolo  
328 IGU-16HR 3C all-in-one 5 Hz seismographs and 8 DataCube seismographs with 4.5 Hz HGS  
329 HG-6(B coil) tri-axial geophones. In May 2021, Neal Lord traveled to San Emidio to retrieve the  
330 seismic instruments. In total, the stations were deployed for more than 30 days. Recovered  
331 instruments show that data were recorded during the entire shutdown period (April 19 - 22,  
332 2021) by all instruments, however some instruments stopped recording prior to retrieval due to  
333 discharged batteries. Three stations have one day's worth of data missing at the beginning of the  
334 deployment. These stations were retrieved after initial deployment as a "spot test" to ensure

335 accurate data collection, and then redeployed. The experience and data from the exploratory  
336 deployment were used to provide guidance regarding site conditions to help plan the 2022  
337 seismic array deployment (Figure 12).

338 Deploying the instruments in the field was straightforward because the vegetative cover is  
339 sparse, consisting mostly of low sagebrush rarely exceeding 60 cm in height. The soil is mostly  
340 loose sand and silt. Meteorologic conditions were dry, simplifying walking. During the  
341 deployment, several cattle were observed. During the recovery, footprints from cattle were  
342 observed near some of the instruments. The locations of cattle fences and gates were collected.  
343 This information was used to avoid external noise sources (such as cattle and vehicles) as well as  
344 to minimize the time required for the deployment and retrieval of seismic instruments in 2022.

345 Work on design of the seismic instrument deployment configuration mainly involved the  
346 examination of the data from the 2021 deployment. It provided critical information for planning  
347 the deployment in 2022. The 2021 deployment was configured to surround a relatively recently  
348 drilled injection well, 25A-21, anticipating that microseismicity would likely occur there during  
349 the planned April 2021 plant shutdown. Preliminary analysis of the 2021 seismic data suggested  
350 that in fact the microseismicity that followed the plant shutdown occurred in the same general  
351 area as during the December 2016 shutdown. Thus, we designed the 2022 deployment  
352 configuration encompass the region that experienced microseismicity in 2016, as well as  
353 encompassing Well 25A-21 in case microseismicity occurred there as well. We decided to  
354 increase the number of instruments to be deployed in 2022 to about 450 to achieve adequate  
355 coverage of the areas of interest.

356 The dataset entitled *WHOLESCALE: Seismic Survey Data from San Emidio Nevada 2021*  
357 (Lord et al., 2021b) is publicly available on the GDR<sup>10</sup>. The seismic data sets include: (a) raw  
358 format (level 0) data with 353 GB SmartSolo data sampled at 500 samples/second in native DLD  
359 format, (b) 113 GB DataCube data sampled at 400 samples/second in native DataCube format,  
360 (c) 3.4 GB of GPS data collected during the RTK GPS survey, and (d) 564 GB of (level 1)  
361 hourly files from all 37 instruments in SAC format. The dataset is hosted in an AWS data lake.  
362 The associated metadata, entitled *WHOLESCALE: Seismic Survey Metadata from San Emidio*  
363 *Nevada 2021* is also available on the GDR<sup>11</sup> (Lord et al., 2021a).

364 We have generated a preliminary catalog of microseismic events for only one day of the  
365 2021 shutdown using the REST workflow (Comte et al., 2023; Yarce et al., 2023). Additional  
366 details on the REST workflow are provided in the section on analyzing the seismic data collected  
367 in 2022. We relocated these events using the triple-difference location method (Guo and Zhang,  
368 2017). Two types of differential arrival time data, including the station-pair and double-pair P-  
369 wave differential time data, were constructed from the absolute P-wave arrival time data  
370 determined by REST. The station-pair differential time data from common events observed at  
371 pairs of stations can better constrain the absolute locations, although the accuracy of absolute  
372 locations is also dependent on the velocity model. The double-pair differential time data from  
373 pairs of events observed at pairs of stations can refine relative event locations by mitigating the  
374 effects of velocity model errors. During the inversion process, we initially weighted the station-

<sup>10</sup> <https://gdr.openei.org/submissions/1478>

<sup>11</sup> <https://gdr.openei.org/submissions/1463>

pair data more heavily to constrain absolute locations, and in later iterations, we weighted the double-pair data more heavily to refine relative locations. Figure 11 shows our relocation results for 574 events, which reveal multiple clusters of seismicity. The results show a more southerly distribution of seismicity than for the 2016 events, indicating that the 2022 field deployment should extend further to the south rather than simply surround our refined event locations from the 2016 Microseismic, Inc. event set.

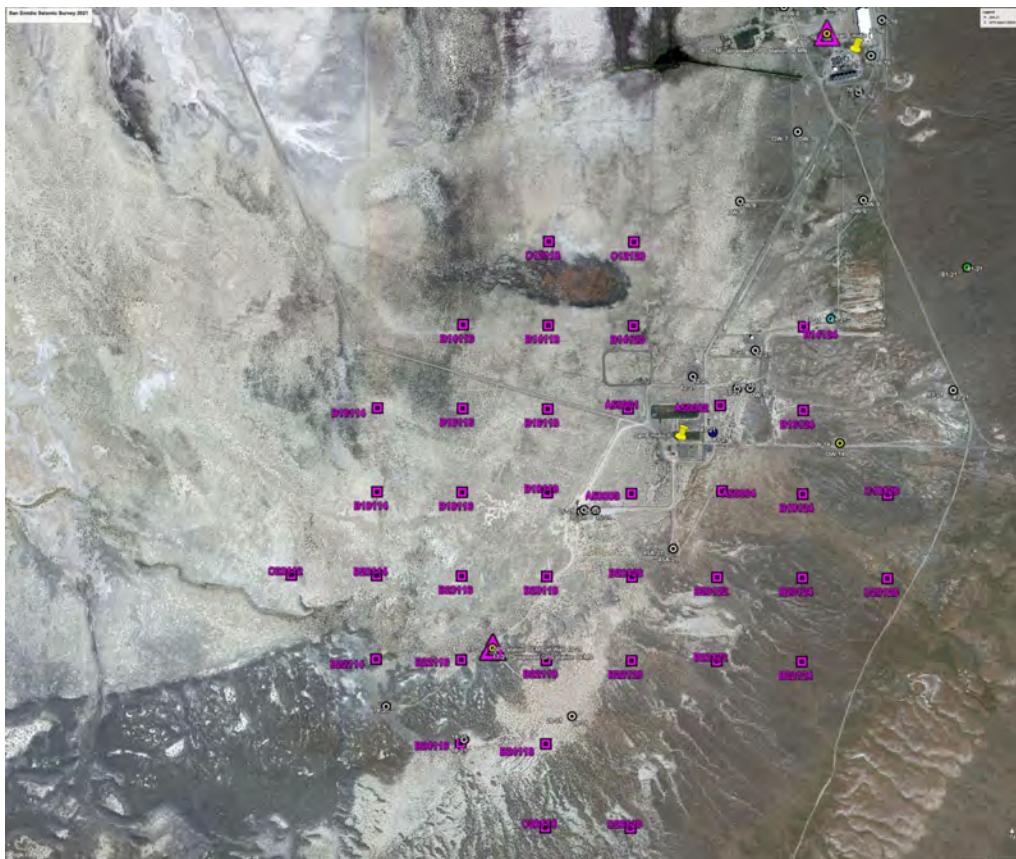
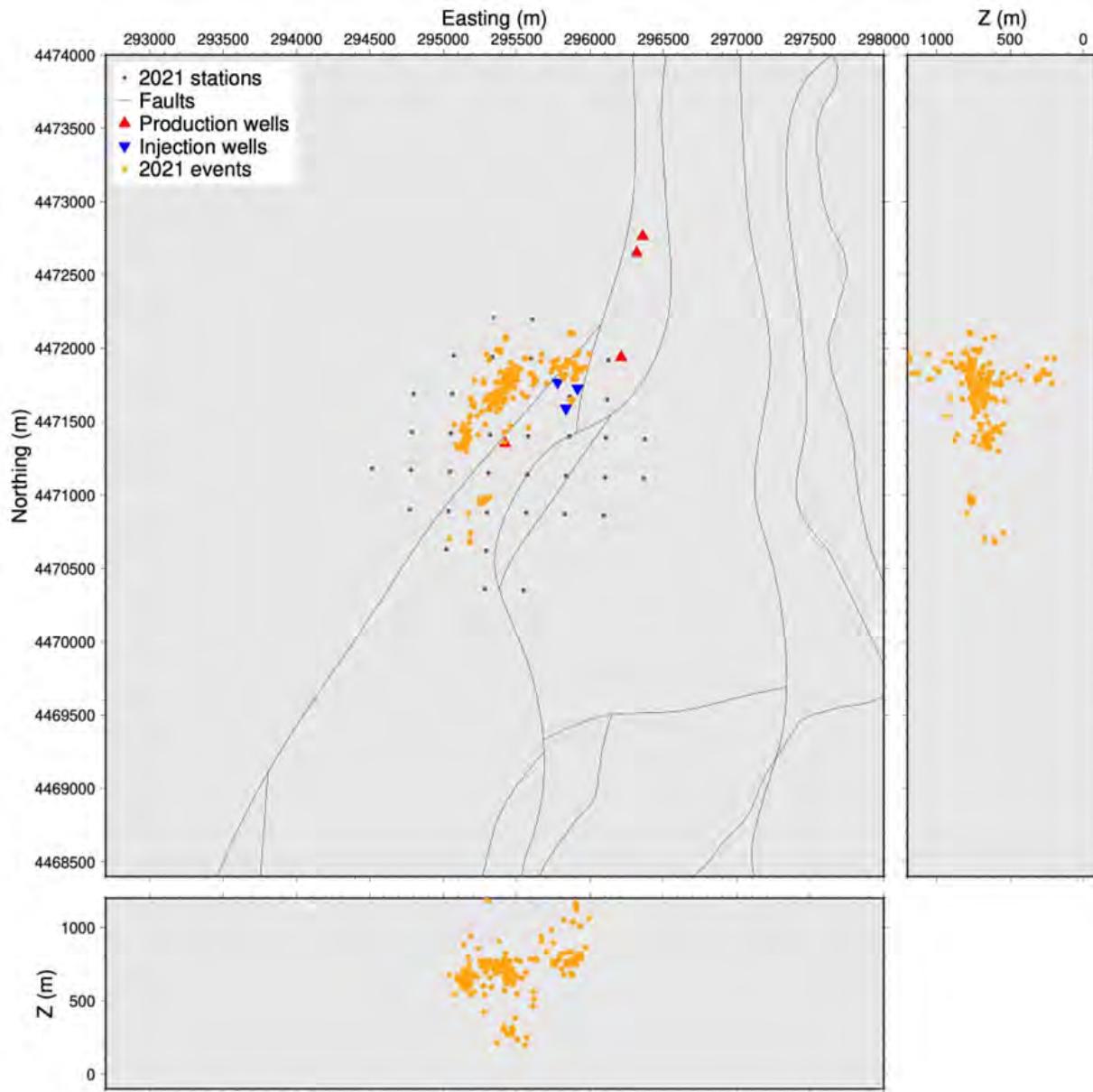




Figure 10. Map showing locations of seismic stations deployed in April 2021 (small triangles). Magenta triangles indicate GPS stations SEMN and SEMS to the north and south of the seismic array, respectively.

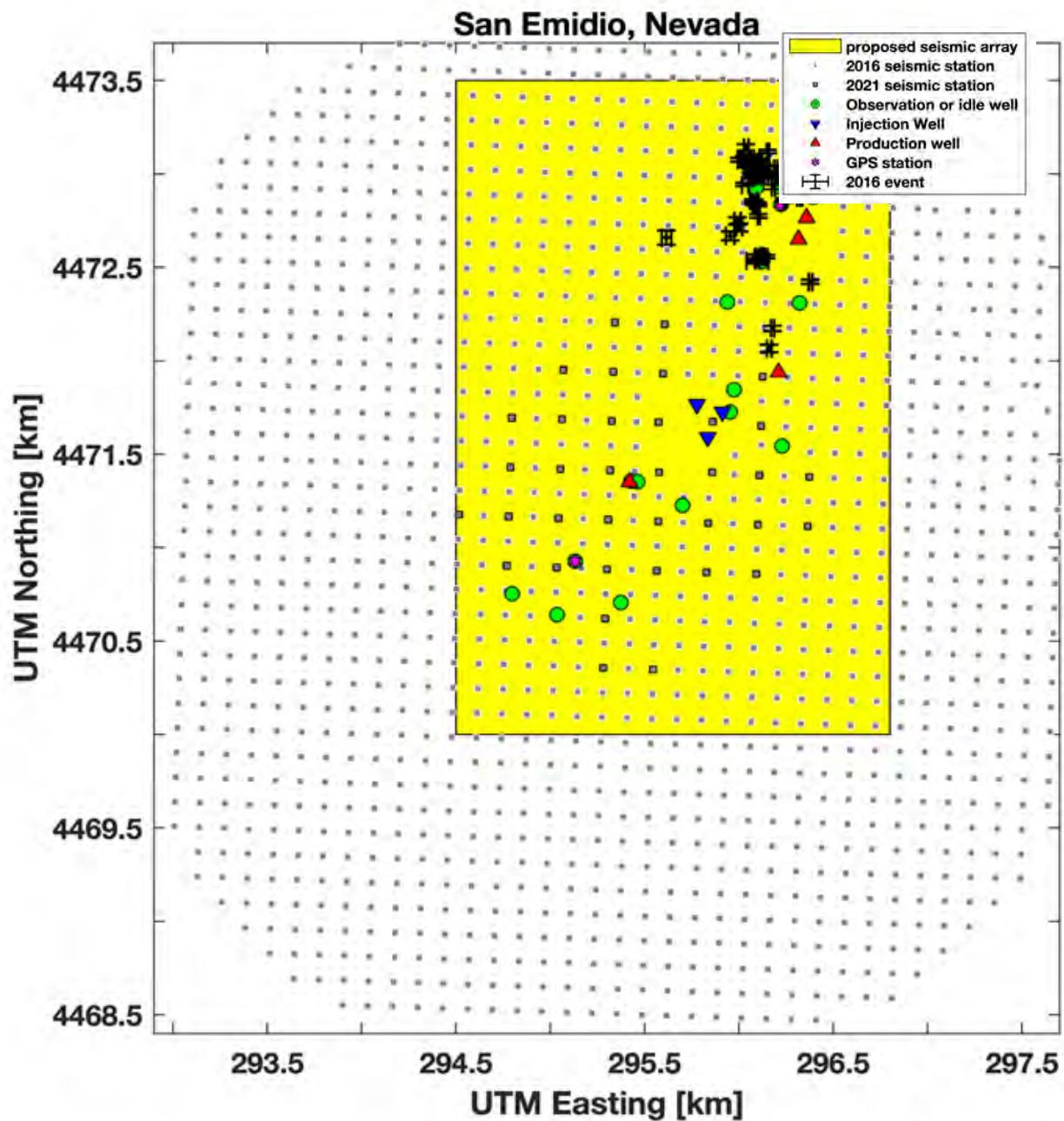


384 *Figure 11. Map and cross sections showing moderate-precision relocations for 574*  
385 *events (orange circles) on shutdown day in 2021, fault traces, injection wells (blue*  
386 *triangles), production wells (red triangles), and the location of the seismic stations*  
387 *deployed in 2021 (small black circles).*

388

### 2022 Deployment

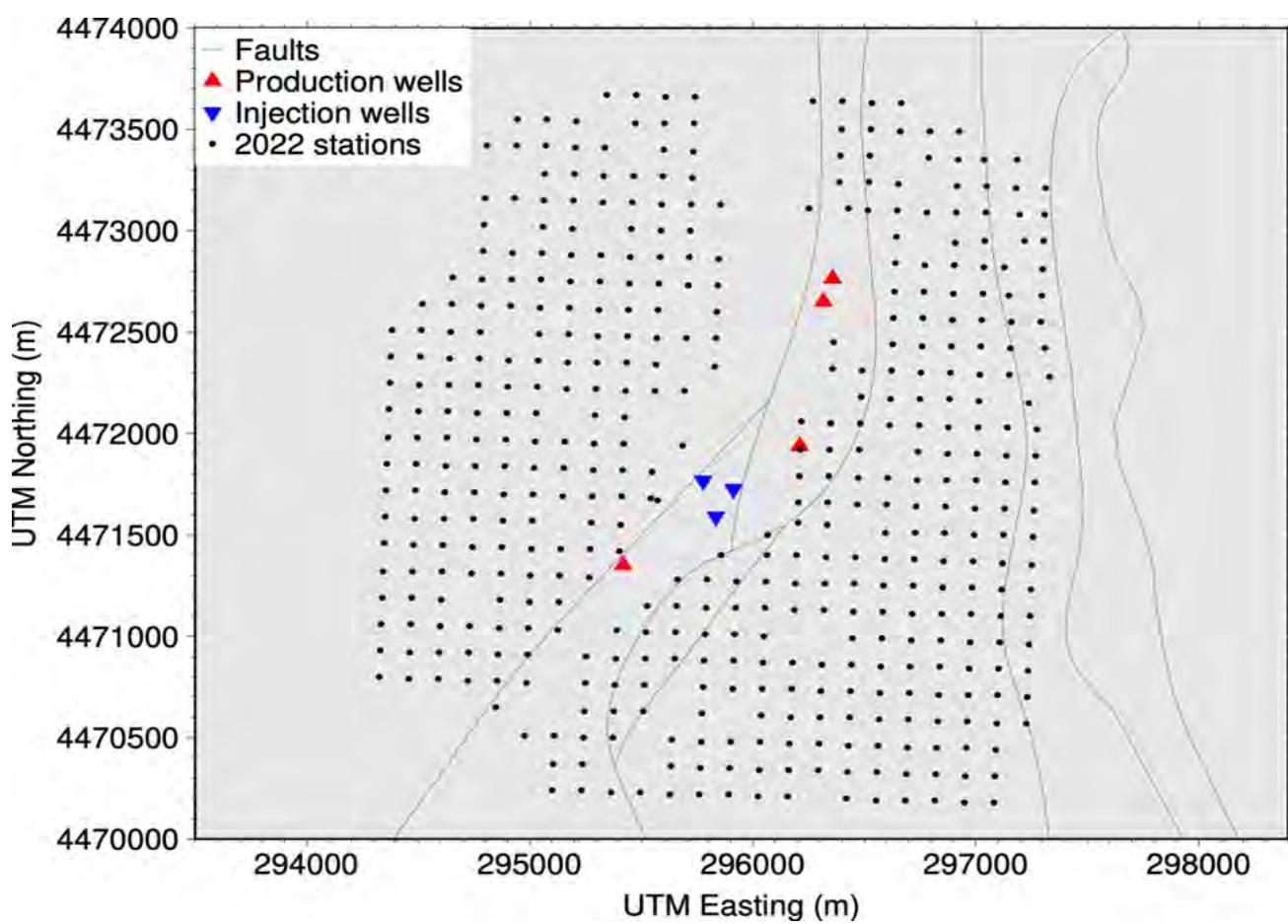
389 In the spring of 2022, the WHOLESCALE team deployed 450 SmartSolo seismic  
390 instruments at the San Emidio geothermal field in Nevada (Figure 13). The seismic instruments  
391 used were provided by EarthScope Consortium through the EarthScope Primary Instrument  
392 Center (EPIC) at New Mexico Tech. The deployment was executed in three phases: stakes were  
393 placed in the ground at locations using hand-held GPS receivers, seismographs were implanted  
394 next to the stakes, and seismographs were turned on to begin recording data in April. Three  
395 phases were necessary due to the combination of limits on the seismographs' battery life and  
396 personnel availability. This was the first project to use the low-power A-to-D mode instead of the  
397 standard high-resolution mode, which allowed a trade of a decrease in the digitizer's effective  
398 number of bits (from 21.8 to 21.5) for a 30% increase in battery life.


399 After approximately one month of observation, the seismographs were turned off, removed  
400 from the ground, and cleaned on May 6th (157 sites), May 7th (157 sites), and May 8th (136  
401 sites). The data files were downloaded onto portable hard drives. The seismographs were then  
402 shipped to EPIC where the data were converted from the original (raw) SmartSolo (DLD) format  
403 to the more standard SAC format at UW and also at EPIC.

404 The methods for and results from evaluating the quality of the seismic data collected at San  
405 Emidio in 2022 are included in a GDR submission entitled, *WHOLESCALE: Seismic Waveform*  
406 *Data from San Emidio, Nevada 2022. United States*<sup>12</sup> (Lord et al., 2022). This GDR submission  
407 points to the raw seismic waveform data<sup>13</sup> (Feigl et al., 2022a) that are archived by EarthScope  
408 as part of the International Federation of Digital Seismograph Networks.

409 The quality and quantity of the data were assessed in Task 7. The analysis of these data is  
410 discussed below.

<sup>12</sup> <https://gdr.openei.org/submissions/1610>


<sup>13</sup> <https://doi.org/10.7914/m5qt-mh37>



411  
412  
413

Figure 12. Map showing the planned location for the 2022 seismic array, based on locations of the microseismic events in 2016 (crosses), the seismic stations deployed in 2016 (small squares) and in 2021 (large squares).

414



415

*Figure 13. Map of seismic stations deployed in April 2022. The gap running roughly north-south through the area accommodates roads and pipeline construction.*

416

417

## SECTION IV. DATA ANALYSIS

418

### *Geologic Structure*

419

#### Mechanical and Poroelastic Rock Properties

420 *The following section includes excerpts, some verbatim, from several sources (Hampton et al., 2022; Kleich et al., 2022a; Kleich, 2022a; Kleich et al., 2022b; Kleich et al., 2022c; Kleich, 2022b).*

422 To better model the stress in the San Emidio geothermal reservoir, it is important to obtain  
423 mechanical and poroelastic rock properties of each lithologic unit (i.e., metasediment, basaltic  
424 andesite, etc.). To do this, we use oriented plug specimens from rock samples collected at the  
425 San Emidio geothermal site. To limit confusion, the sample scale will refer to the shoebox-sized  
426 rock samples collected from surface outcrops in the field and the plug specimen scale will refer  
427 to the 1-inch cylindrical specimens cored from these rock samples.

428 We can then measure the elastic stiffnesses and effective stress coefficients at the plug scale  
429 on each rock type which can be used to more accurately model stress in the geothermal reservoir.  
430 However, to properly determine the correct mechanical and poroelastic rock properties, the plug  
431 specimens must be categorized as either isotropic, anisotropic and/or containing heterogeneities.  
432 Our focus is on determining whether plug deformation is controlled by structural/textural  
433 anisotropy and/or heterogeneities, which is necessary for properly orienting strain  
434 instrumentation and stresses at the laboratory-scale to measure interpretable elastic stiffnesses  
435 and Biot coefficients.

436 Materials used in this study were collected from surface outcrops at the San Emidio  
437 geothermal site due to the absence of drill core. Therefore, collection of samples from the  
438 lithologic units within the area were limited to those that have surface expressions. As a result,  
439 these samples are not under the same state of stress as they otherwise would be in subsurface  
440 conditions and have been subjected to additional weathering, likely altering the physical  
441 properties of the rock materials, including strength and stiffness. Although sample collection and  
442 sample condition (i.e., weathering, heavy fracturing) limited the range of samples obtained, a  
443 majority of the subsurface lithologic units are represented within this testing suite.

444 The lithologic units of most concern for this study include QTa (Quaternary basin fill  
445 alluvium), Tpb' (Tertiary sparsely porphyritic basaltic andesite), Tpts (Tertiary tuffaceous and  
446 volcanioclastic sedimentary rocks), and TrJn (Triassic and Jurassic metasedimentary rocks) due to  
447 their location within the geothermal reservoir and their volumetric contribution to the model  
448 area. However, because of the lack of surface outcrops and/or integrity of the rock type, QTa and  
449 Tpts were not feasible for testing. Therefore, samples of Tpb' and TrJn, as well as Tss (Tertiary  
450 silicified sediments) are the primary lithologic units investigated during this study. Estimations  
451 of rock properties from wellbore logs, mineralogy, and elemental chemistry will aid in providing  
452 constraints for the unmeasured rock types, QTa and Tpts.

453 Before determining whether a sample was isotropic, anisotropic and/or contained  
454 heterogeneities, thin sections were made from numerous rock samples to examine any significant  
455 textural or structural features. Three thin sections were made for each rock sample at  
456 approximate orthogonal angles to one another (Figure 14). By determining whether one

457 orientation had a more prominent feature than another, we could use this information when  
458 coring new samples or infer how this may affect the rock behavior when applying stress. Many  
459 of the orientations from each rock sample did not display any noticeable and/or quantifiable  
460 fabric.

461 Some orientations of TrJn samples contained plagioclase grains that aligned with one another  
462 in a linear fashion, whereas other quartz dominated TrJn samples contained a clear gradation  
463 from coarse-grained to fine-grained quartz. In addition, few orientations of TrJn contained  
464 structural joint patterns. Likewise, a limited number of orientations of Tpb' samples contained a  
465 well-defined lineation of plagioclase grains. For the Tss samples, there was a clear interlayering  
466 between quartz layers and a fine-grained matrix. However, the fabrics discussed in each of these  
467 cases could be dependent on scale and may not be ubiquitous throughout the entire rock sample  
468 (i.e., heterogeneity).

469 To measure mechanical and poroelastic properties of each lithologic unit, we first needed to  
470 obtain cylindrical core specimens from the rock samples collected in the field. If possible, three  
471 specimens were cored from the same rock sample at approximate orthogonal angles to one  
472 another depending on textural/structural information obtained from thin sections (Figure 14). The  
473 viability of coring a cylindrical specimen is based on the integrity of the rock samples; for  
474 example, degree of weathering, presence of surficial fractures, shape and size of the rock sample  
475 (i.e., jagged, small), and rock type. Samples that were heavily weathered, heavily fractured, too  
476 small or jagged, or rock types such as tuffaceous and volcaniclastic sedimentary rocks were  
477 deemed not feasible to obtain cylindrical specimens, as the preparation process would not result  
478 in a testable specimen. Samples considered to be in good condition were used to core cylindrical  
479 plug specimens that were 1-inch in diameter and between 1.5 inches to 2 inches in length. The  
480 surficial location of these plugs on the sample exterior was free of imperfections and relatively  
481 homogeneous. However, in many instances underlying imperfections such as voids and fractures  
482 often damaged the plug, rendering it useless, or were visible in the plug specimen. Once the  
483 sample is cored and cut to the desired length, each end of the sample is surface ground to achieve  
484 parallelism. Parallelism is essential to all types of testing to ensure stress is evenly applied to the  
485 sample ends and to inhibit bending of the sample.

486 Depending on the type of testing being conducted, specimens were jacketed accordingly  
487 (Table 5). Two different jacketing methods will be discussed: (1) radial velocity jacketing and  
488 (2) copper jacketing. For this study, the radial velocity jacket is used for radial velocity testing  
489 and the copper jacketing is used for static stiffness and Biot measurements. A section of viton  
490 tubing is used for the radial velocity jacket. This material is a pliable membrane that will contain  
491 the sample and prevent leakage of the external fluid used for confining pressure. Two holes are  
492 cut 180 degrees from one another in the viton tubing and replaced with radial velocity pucks  
493 (Figure 15). It is critical that the pucks sit flush against the specimen surface to properly measure  
494 the velocity across the diameter of the plug specimen, therefore curved titanium spacers are used  
495 to mate the velocity transducer to the specimens. Epoxy is used to connect the pucks to the viton  
496 jacket and fill in any gaps to block leakage. Lastly, each of the jacket ends is secured to the  
497 appropriate transducer using annealed steel wire to prohibit leaking. Copper jacketing is used for  
498 static stiffness and Biot measurements, as it is a pliable material that conforms to the sample and  
499 enables strain gauges to be glued directly to the copper. A piece of 0.13 mm-thick annealed

500 copper sheet is wrapped around the plug specimen and soldered together. After filing down the  
501 excess solder, the specimen is placed inside a vessel where the copper is seated to the specimen  
502 by applying 13 MPa of hydrostatic confining pressure. Once the strain gauges are applied to the  
503 copper surface, the jacketed specimen can be attached to the source transducer and receiver  
504 transducer by using viton tubing and steel wire to prevent leaking of the external fluid and  
505 internal fluid, like that for the radial velocity jacket (Figure 15).

506 Using the viton jacketed sample with the radial velocity transducers, ultrasonic velocities  
507 were measured at 45-degree increments around the circumference of the cylindrical plug  
508 specimens (Figure 16). The specimens are tested in a high-pressure triaxial testing apparatus with  
509 10 MPa confining pressure applied. A single compressional and two orthogonally polarized  
510 shear wave velocities are measured at each orientation to provide valuable information about the  
511 lithologic unit, and further compared to axial velocities taken during static mechanical testing.  
512 The implications of measuring the velocity at four different orientations pertains to quantifying  
513 any anisotropy and/or heterogeneities that may be present within the plug specimen. If the  
514 specimen is isotropic (i.e., has a physical property which has the same value when measured in  
515 different directions), then the velocity measurements will be approximately the same in all four  
516 orientations. If the specimen is anisotropic (i.e., has a physical property which has a different  
517 value when measured in different directions), then the velocity measurements would differ  
518 between orientations due to interactions with supposed layering, grain texture, fractures, etc.

519 The combination of qualitatively observing textural and structural anisotropy and/or  
520 heterogeneities and quantitatively measuring the radial velocity in four different orientations  
521 became useful for a number of reasons. First, geological and textural descriptions from thin  
522 sections were used to determine the direction to core the plug specimens. Secondly, by  
523 comparing velocity measurements to the thin section descriptions and photographs, we can see if  
524 the difference in velocity of a certain orientation is a result of observed fabric. Lastly, if the  
525 radial velocity data depicts anisotropy that is not in line with the currently plugged X-Y-Z  
526 orientations, we can quantify as necessary and re-core plug specimens in an orientation that  
527 would align with the anisotropy.

528 Using the copper jacketing preparation technique, a plug specimen can undergo differential  
529 stress, confining pressure, and pore pressure perturbations to measure the associated stiffnesses  
530 and Biot coefficients for each specimen. The number of independent elastic constants needed to  
531 characterize each rock type is dependent on the categorization made by the radial velocity data  
532 and geological/textural descriptions. If a sample is isotropic, only two independent elastic  
533 constants are needed to characterize that material (i.e., one Young's modulus and one Poisson's  
534 ratio). In contrast, if a sample is characterized as transversely isotropic (i.e., a material with  
535 physical properties that are symmetric about an axis that is normal to a plane of isotropy), five  
536 independent elastic constants are needed to characterize the material (i.e., two Young's moduli  
537 and three Poisson's ratios).

538 To conduct static mechanical testing, a sample is placed into the triaxial testing apparatus. A  
539 confining pressure of 20 MPa and a differential stress of 5 MPa is applied. The sample is then  
540 subjected to four different cycles to measure different moduli: (1) Bulk cycle to obtain bulk  
541 modulus  $K$ ; (2) Unistress cycle to obtain Young's modulus  $E$  and Poisson's ratio  $\nu$ ; (3) Shear  
542 cycle to obtain shear modulus  $G$ ; and (4) Hydrostatic cycle. The Bulk cycle modulates confining

543 pressure only, the Unistress cycle will ramp differential stress only, and the Shear cycle and  
544 Hydrostatic cycle modulate both confining pressure and differential stress (Figure 17). Our focus  
545 is on measurements of Young's Modulus and Poisson's ratio. Using radial velocity data and the  
546 Unistress cycle data, we can respectively obtain dynamic and static  $E$  and  $v$  for isotropic  
547 specimens.

548 Four radial velocity measurements were made on each cylindrical specimen at 45-degree  
549 increments around its circumference. Therefore, measurements were made at 0, 45, 90, and 135  
550 degrees (Figure 16). An increment of 45 degrees was chosen as it provided an accurate  
551 representation of the possible velocity variations while maintaining a practical testing schedule.  
552 Picks of P-wave velocity, S1-wave velocity, and S2-wave velocity were chosen based on the  
553 head-to-head picks from a standard 1-inch aluminum sample, to accurately remove transit times  
554 within the titanium pucks when rock materials are tested. An example of ultrasonic waveforms  
555 with their corresponding velocity picks are displayed in Figure 18. Waveforms did not always  
556 result in a well-defined picking location, which can be attributed to the complexities and  
557 variations that come from using imperfect rock samples collected in the field. The ramifications  
558 and solutions for overcoming complications in velocity picking will be discussed later.

559 Table 6 provides a summary of radial velocity testing for specimens from lithologic units that  
560 were of prime interest to the San Emidio geothermal reservoir (i.e., Tpb', TrJn, and Tss) due to  
561 their volumetric component. Overall, most samples appear to be isotropic and display very few  
562 signs of anisotropy. This is quantified by the differences in velocity measurements between the  
563 four orientations tested. Samples that had velocity differences of 250 m/s or less between  
564 orientations were classified as isotropic. Samples that had velocity differences of greater than  
565 250 m/s were flagged as potentially being anisotropic and/or containing heterogeneities. Using  
566 250 m/s is a judgment call as it is approximately 6% of the observed velocity values, considering  
567 the overall average velocity value measured from all specimens was about 4,000 m/s. For  
568 example, if a P-wave velocity pick at the 0-degree orientation was 3,900 m/s and at the 45-  
569 degree orientation was 3,830 m/s, then this would be a difference of 70 m/s and classified as  
570 isotropic. If this difference was more than 250 m/s, say between velocities of 3,900 m/s and  
571 4,300 m/s, then the sample would be further investigated for anisotropy and/or heterogeneities.  
572 Samples that are isotropic will have similar velocity values and thus, the shape of the radar chart  
573 will be more uniform and circular in shape. Samples that are anisotropic will have velocity  
574 values that significantly differ from one another and thus, the radar chart may be more irregular  
575 or oblong in shape. However, this is dependent on the scale being used to compare velocity  
576 measurements. In addition to comparing orientations from the same cylindrical specimen, a  
577 comparison of velocities can be made between different plug orientations (i.e., X, Y, Z) from the  
578 same rock sample. The same criterion of a difference of 250 m/s in velocity is used for  
579 comparing velocities across plug specimens.

580 One specimen was classified as having a velocity difference of greater than 250 m/s.  
581 Specimen 03-05, was slightly over a difference of 250 m/s with a P-wave velocity difference of  
582 about 256 m/s between the 0-degree orientation and the 90-degree orientation. However, the  
583 percent difference between the fastest and slowest velocity orientations was still very small. The  
584 percent difference between the fastest P-wave velocity and the slowest P-wave velocity was  
585 about 1.04% and therefore, the sample is still considered isotropic.

586 Between plug specimens from the same rock sample (i.e., specimens 03-03, 03-04, and 03-05  
587 from sample 21KF03), a larger variation in velocities was found. Therefore, this may indicate  
588 anisotropy at the sample scale that is not apparent at the plug scale. Using velocity measurements  
589 displayed in Table 6, the largest differences between P-wave and S-wave velocities amongst all  
590 specimens from a rock sample (i.e., 21KF03) were considered. For sample 21KF03, a TrJn  
591 sample, the largest P-wave velocity difference was 363 m/s and the largest S-wave velocity  
592 difference was 512 m/s between three plugs in three different orientations: X, Y, and Z. For  
593 sample 21KF06, a Tpb' sample, the largest P-wave velocity difference was 986 m/s and the  
594 largest S-wave velocity difference was 507 m/s between two plugs in two different orientations:  
595 Y and Z. The large velocity differences between plug samples of the same rock type could  
596 indicate either anisotropy or heterogeneity at the rock sample scale. For sample 21KF20, a Tss  
597 sample, there was not a significant velocity difference between plugs from the same rock, thus  
598 indicating isotropy throughout the rock sample. The largest P-wave velocity difference was 134  
599 m/s and the largest S-wave velocity difference was 246 m/s for three plugs in two different  
600 orientations: one in the X-orientation and two in the Y-orientation.

601 To confirm the presence of anisotropy within a sample with significant velocity differences,  
602 fabrics were analyzed within thin sections to compare to the measured velocity values. In rock  
603 samples 21KF03, 21KF06, and 21KF20 the results are quite interesting. Although the velocity  
604 differences are significant between plug orientations for samples 21KF03 and 21KF06, the thin  
605 sections do not display any quantifiable or noticeable fabric that can explain the apparent  
606 mechanical anisotropy. For sample 21KF03, the thin section is described as having equigranular  
607 quartz grains that are not elongated in any preferential direction and no layering is visible (Figure  
608 19). For sample 21KF06, the thin section is described as having plagioclase grains that are rarely  
609 aligned with one another and many void spaces that are not elongated in any preferential  
610 direction (Figure 20). If plagioclase grains were lineated or quartz grains were elongated, this  
611 could explain the velocity differences. In contrast sample 21KF20, which had relatively  
612 consistent velocity measurements between plug orientations, does display evidence of a  
613 quantifiable fabric in thin sections. Although dependent on scale, the interlayering between  
614 quartz-grain layers and a finer-grained matrix could result in sample anisotropy for sample  
615 21KF20, yet this is not indicated through velocity measurements (Figure 21).

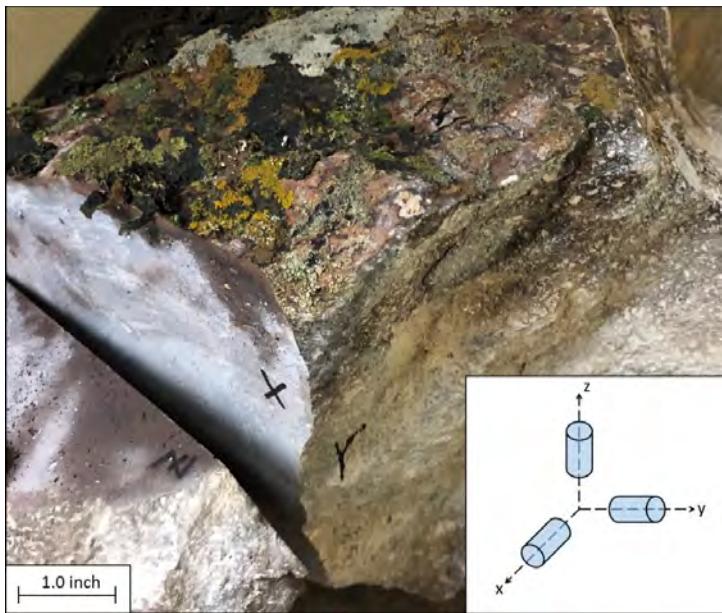
616 However, as mentioned previously, there were often complications when picking velocities.  
617 Frequently, a waveform did not have a well-defined pattern or arrival pick location that  
618 resembled that of the head-to-head waveform. This could lead to errors in the velocity  
619 differences mentioned above and may over- or under-predict the velocity differences, thus  
620 altering the classification of isotropic or anisotropic. To quantify the error brought about by  
621 picking, velocities were picked at multiple locations representing possible arrival energy. This  
622 allowed us to give a range of possible velocities for each specimen rather than assigning it a  
623 single velocity value (Figure 22).

624 Using radial P-wave and average S-wave velocity measurements, dynamic  $E$  and  $v$  can be  
625 calculated using the following two equations, respectively, for isotropic samples (Kuttruff,  
626 1991).

$$E_d = \rho V_s^2 \left[ \frac{3V_p^2 - 4V_s^2}{V_p^2 - V_s^2} \right] \quad (1)$$

627 where  $E_d$ ,  $\rho$ ,  $V_p$ ,  $V_s$  are dynamic Young's Modulus, sample density, P-wave velocity, and average  
628 S-wave velocity, respectively.

$$v_d = \frac{V_p^2 - 2V_s^2}{2(V_p^2 - V_s^2)} \quad (2)$$


630 where  $v_d$ ,  $V_p$ ,  $V_s$  are dynamic Poisson's ratio, P-wave velocity, and average S-wave velocity,  
631 respectively.

632 An average value of P-wave and S-wave velocity from the four radial velocity measurements  
633 were used to obtain a single value of  $E$  and  $v$  for each plug specimen. Each sample was plotted to  
634 compare resulting values and compare amongst rock types (Figure 23 and Figure 24). TrJn  
635 samples had a dynamic Young's modulus  $E_d$  that ranged from about 78 GPa to 86 GPa and a  
636 dynamic Poisson's ratio  $v_d$  that ranged from 0.19 to 0.23. Tpb' samples had an  $E_d$  that ranged  
637 from about 28 GPa to 42 GPa and an  $v_d$  that ranged from 0.26 to 0.28. Tss has an  $E_d$  that ranged  
638 from 57 GPa to 58 GPa and a  $v_d$  that ranged from 0.24 to 0.25. Therefore, we see here that the  
639 lithologic unit, TrJn, has the highest Young's Modulus and the lithologic unit, Tpb', has the  
640 highest value of Poisson's ratio. Tpb' samples contain numerous voids of ranging sizes (Table  
641 7).

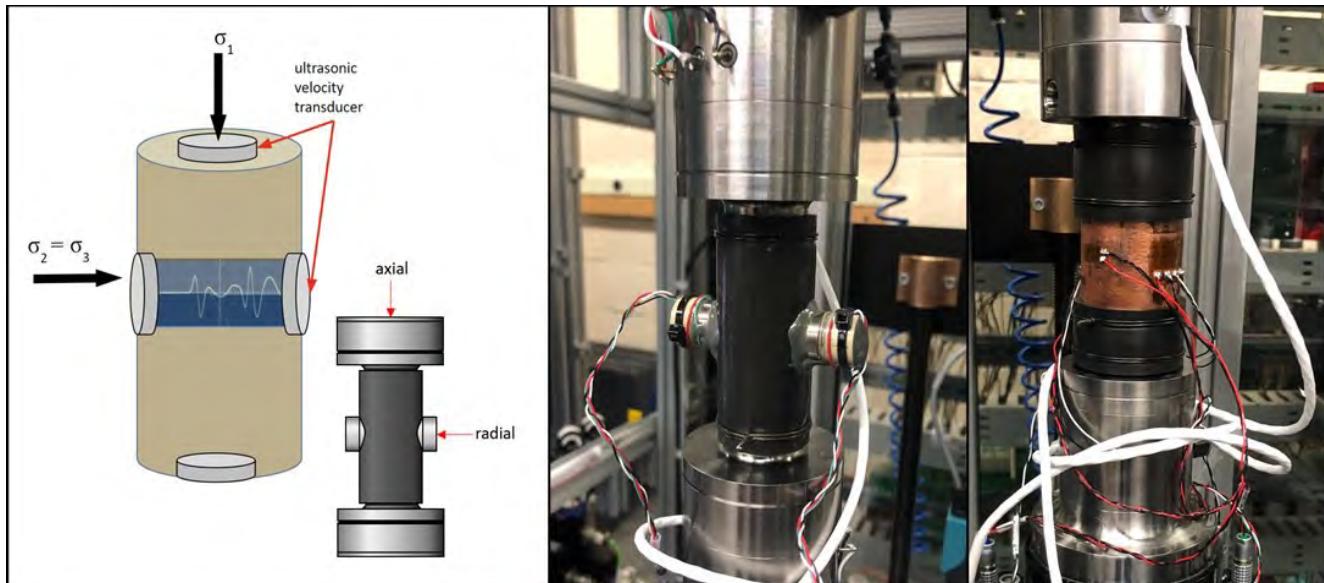
642 Using the unistress cycle from static mechanical testing, static values of  $E$  and  $v$  are  
643 measured. Each sample was plotted to compare resulting values and compare amongst rock types  
644 (Figure 23 and Figure 24). TrJn samples had a static Young's modulus  $E_s$  that ranged from 52  
645 GPa to 90 GPa and a static Poisson's ratio  $v_s$  that ranged from 0.14 to 0.17 based on  
646 measurements from three different plug sample of 21KF03. Tpb' samples had an  $E_s$  of about 35  
647 GPa and a  $v_s$  of about 0.21 based on measurements from one plug sample of 21KF06. Lastly, Tss  
648 samples had an  $E_s$  of about 71 GPa and a  $v_s$  of about 0.09 based on measurements from one plug  
649 sample of 21KF20. Therefore, we see here that the lithologic units, TrJn and Tss, have the larger  
650 values of Young's Modulus and the lithologic unit, Tpb', has the highest value of Poisson's ratio  
651 (Table 7).

652 Relatively large differences between static and dynamic elastic properties are observed but  
653 consistent with literature. Between static and dynamic  $E$  and  $v$  values of TrJn the largest  
654 difference of  $E$  is about 34 GPa and the largest difference of  $v$  is about 0.09. For Tpb' samples,  
655 the largest difference between static and dynamic values was about 7 GPa for  $E$  and about 0.07  
656 for  $v$ . For Tss samples, the largest difference between static and dynamic values was about 14  
657 GPa for  $E$  and about 0.16 for  $v$ .

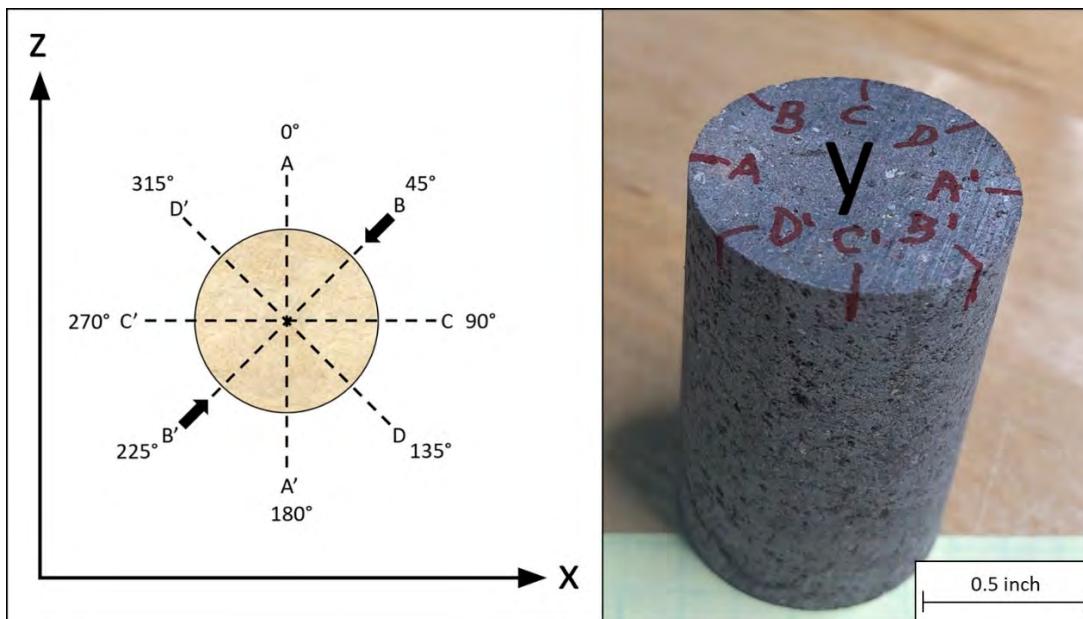
658 By classifying these plug specimens before future data analysis, we can properly obtain the  
659 correct number of independent elastic constants needed to fully characterize each plug specimen.  
660 We also show the observed differences between static and dynamic moduli, which is important  
661 when the stress model incorporates dynamic well log estimations of elastic modulus.



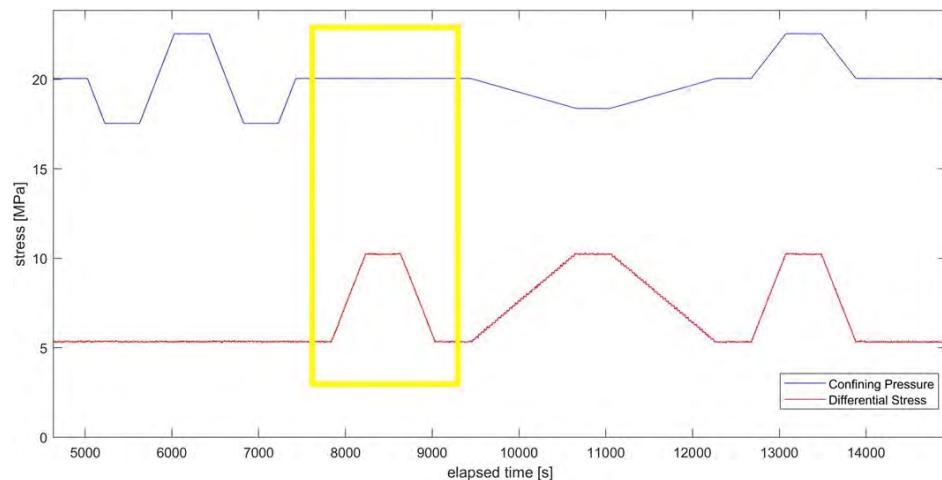
*Figure 14. Image of 21KF06 Tpb' sample with markings of X-Y-Z orientations that are approximately orthogonal to one another. Thin sections taken from slabs of each orientation. The inset shows a schematic illustration of plug orientations retrieved from samples. It should be noted that plugs from all three orientations were not taken for every rock sample due to the feasibility of coring and specimen preparation.*


664  
665  
666  
667  
668

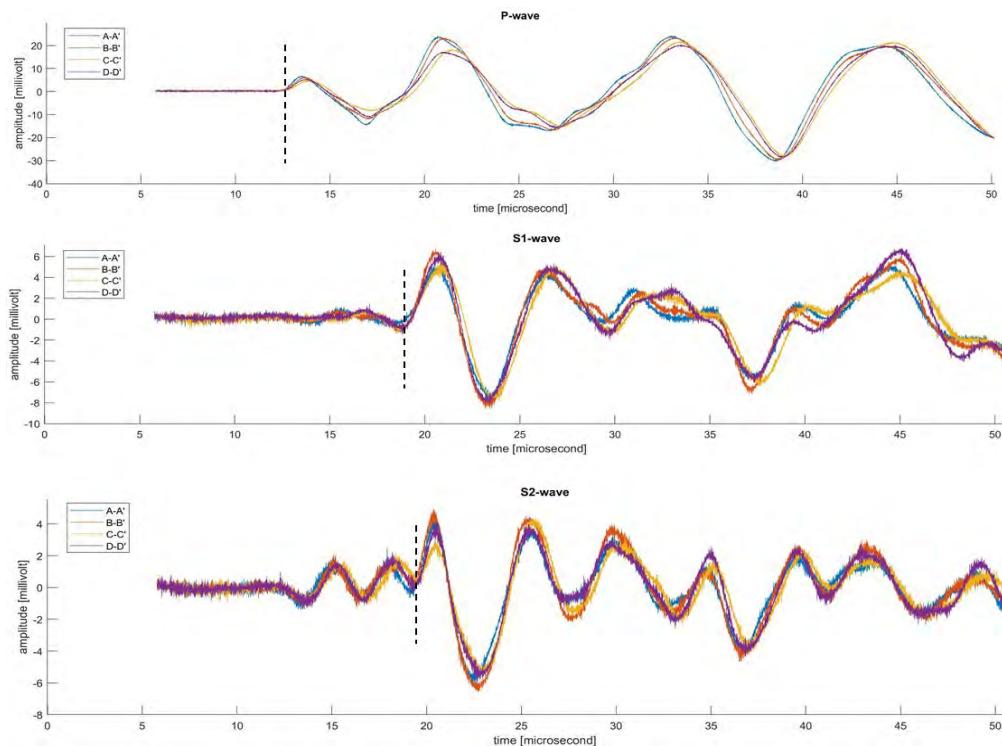
*Table 4. Three lithologic units of primary interest to this study that were capable of being plugged are shown within the table below. Three thin sections were taken at approximate orthogonal angles for each sample. Orientations (X-Y-Z) of each sample that had quantifiable fabric within its thin section are indicated by a check mark.*


| Sample ID | Formation (short name) | Formation (long name)                  | Thin Section Orientation (X/Y/Z) | Quantifiable Fabric from Thin Section |
|-----------|------------------------|----------------------------------------|----------------------------------|---------------------------------------|
| 21KF03    | TrJn                   | Triassic and Jurassic Nightingale      | X                                |                                       |
|           |                        |                                        | Y                                |                                       |
|           |                        |                                        | Z                                |                                       |
| 21KF06    | Tpb'                   | Tertiary Porphyritic Basaltic Andesite | X                                |                                       |
|           |                        |                                        | Y                                |                                       |
|           |                        |                                        | Z                                |                                       |
| 21KF20    | Tss                    | Tertiary Silicified Sediments          | X                                |                                       |
|           |                        |                                        | Y                                | ✓                                     |
|           |                        |                                        | Z                                | ✓                                     |

670  
671 *Table 5. Summary of sample testing. Check marks indicate that a specimen was*  
672 *tested using the method stated in the column heading. Radial velocity testing was*  
673 *conducted on a total of eight specimens discussed during this study. Static*  
674 *mechanical testing and Biot testing was conducted on a total of five specimens for*  
*this study.*


| Sample ID | Formation<br>(short name) | Formation<br>(long name)                        | Specimen<br>ID | Specimen<br>Orientation<br>(X/Y/Z) | Radial<br>Velocity<br>Testing | Static<br>Mechanical<br>Testing | Biot<br>Testing |
|-----------|---------------------------|-------------------------------------------------|----------------|------------------------------------|-------------------------------|---------------------------------|-----------------|
| 21KF03    | TrJn                      | Triassic and<br>Jurassic<br>Nightingale         | 03-03          | X                                  | ✓                             | ✓                               | ✓               |
|           |                           |                                                 | 03-04          | Y                                  | ✓                             | ✓                               | ✓               |
|           |                           |                                                 | 03-05          | Z                                  | ✓                             | ✓                               | ✓               |
| 21KF06    | Tpb'                      | Tertiary<br>Porphyritic<br>Basaltic<br>Andesite | 06-01          | Y                                  | ✓                             | ✓                               | ✓               |
|           |                           |                                                 | 06-02          | Z                                  | ✓                             |                                 |                 |
| 21KF20    | Tss                       | Tertiary<br>Silicified<br>Sediments             | 20-01          | X                                  | ✓                             |                                 |                 |
|           |                           |                                                 | 20-02          | Y                                  | ✓                             | ✓                               | ✓               |
|           |                           |                                                 | 20-03          | Y                                  | ✓                             |                                 |                 |




676 *Figure 15. Schematic diagram of radial and axial velocity transducers where  $\sigma_1 = \sigma_2$*   
677  *$= \sigma_3$  (left). Image of sample stack for conducting radial velocity tests (center).*  
678 *Radial velocity measurements were taken at 10 MPa confining pressure. Image of sample*  
679 *stack for static stiffness and Biot measurements (right).*



680 *Figure 16 . Schematic illustration depicting orientation of radial velocity*  
681 *measurements (left). Image of Tpb' plug sample, 06-01, with markings indicating*  
682 *orientations for velocity measurements (A-A', B-B', C-C', D-D') (right). Plug*  
683 *specimen cored parallel to the y-axis. Four radial velocity measurements were made*  
684 *at 45-degree increments around the circumference of plug specimens.*



685  
686  
687 *Figure 17. Protocol for static stiffness measurements. Unistress cycle used to obtain*  
*static E and v for isotropic specimens is highlighted in yellow. A ramp of 5 MPa*  
*differential stress is applied in this case.*



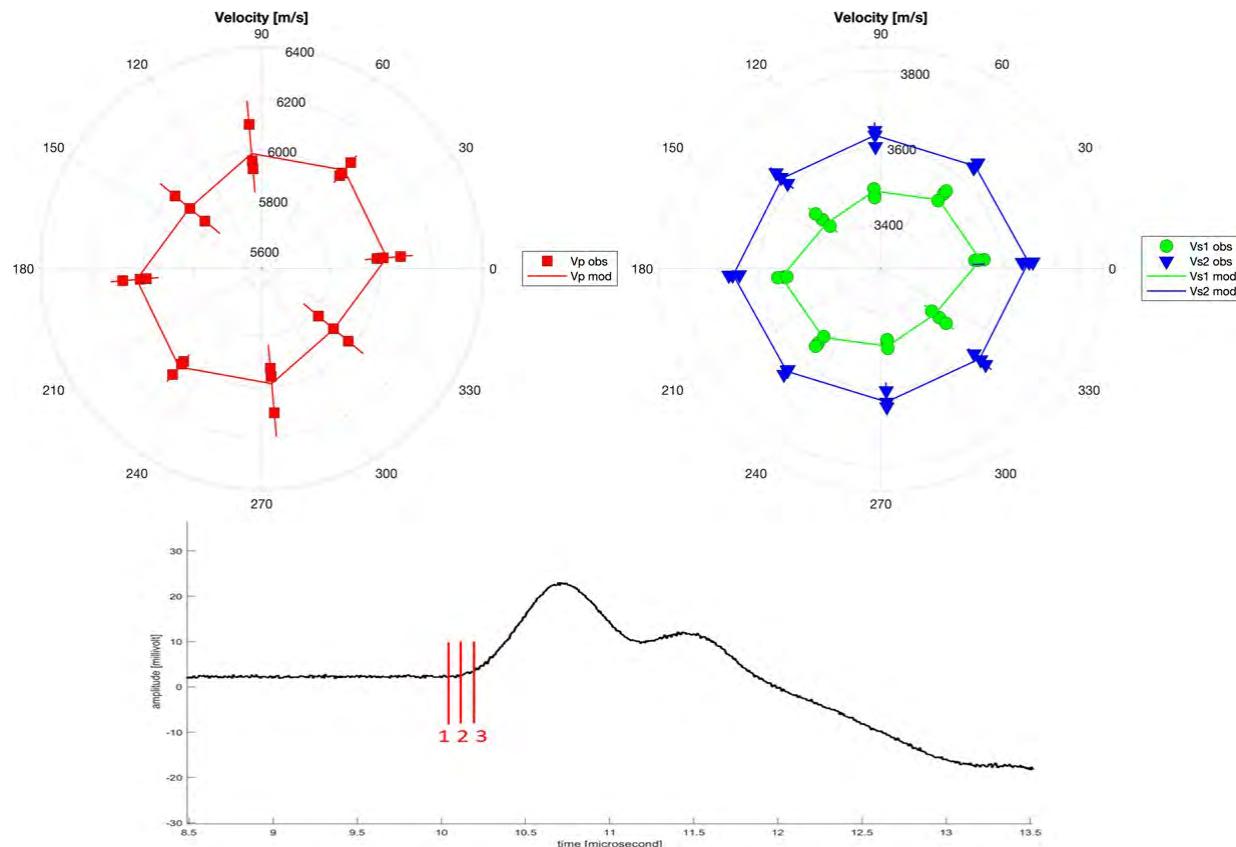
688  
689  
690  
691  
692  
693 *Figure 18. Example ultrasonic radial velocity waveforms of Tpb' specimen, 06-02.*  
*P-wave seismogram (top), S 1-wave seismogram (middle), and S 2-wave seismogram*  
*(bottom). Velocities taken at 45-degree increments around circumference of*  
*specimen in orientations A-A' (blue), B-B' (orange), C-C' (yellow), and D-D'*  
*(purple). Dotted black line indicates position of picked velocity. This test was*  
*conducted under a confining pressure of 10 MPa.*

694  
695  
696  
697  
698  
699  
700  
701

*Table 6. Summary table of radial velocity testing of plug specimens. Table includes designation of specimen orientation, the ultrasonic velocity measurements at each direction (i.e., 0, 45, 90, 135), average radial velocities and standard deviations for each specimen, and the classification assigned on a plug-scale based on radial velocity measurements along with geological/textural descriptions. Averages and standard deviations are obtained from four ultrasonic velocity measurements made at each direction around the circumference of the specimen at one picking location on the seismogram.*

| Sample ID | Specimen ID | Specimen Orientation (X/Y/Z) | Angle [degrees] | P-wave [m/s] | S1-wave [m/s] | S2-wave [m/s] | P-wave        |                          | S1-wave       |                          | S2-wave       |                          | Specimen Classification (Isotropic/Anisotropic) |
|-----------|-------------|------------------------------|-----------------|--------------|---------------|---------------|---------------|--------------------------|---------------|--------------------------|---------------|--------------------------|-------------------------------------------------|
|           |             |                              |                 |              |               |               | Average [m/s] | Standard Deviation [m/s] | Average [m/s] | Standard Deviation [m/s] | Average [m/s] | Standard Deviation [m/s] |                                                 |
| 21KF03    | 03-03       | X                            | 0               | 6013         | 3538          | 3671          | 5971          | 45                       | 3508          | 30                       | 3646          | 15                       | Isotropic                                       |
|           |             |                              | 45              | 6011         | 3538          | 3644          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 90              | 5959         | 3474          | 3633          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 135             | 5902         | 3482          | 3636          |               |                          |               |                          |               |                          |                                                 |
|           | 03-04       | Y                            | 0               | 5788         | 3582          | 3338          | 5797          | 58                       | 3534          | 50                       | 3333          | 21                       | Isotropic                                       |
|           |             |                              | 45              | 5893         | 3585          | 3334          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 90              | 5739         | 3501          | 3359          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 135             | 5766         | 3469          | 3302          |               |                          |               |                          |               |                          |                                                 |
|           | 03-05       | Z                            | 0               | 6102         | 3684          | 3812          | 5945          | 95                       | 3601          | 69                       | 3768          | 54                       | Isotropic                                       |
|           |             |                              | 45              | 5905         | 3542          | 3814          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 90              | 5846         | 3524          | 3767          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 135             | 5926         | 3653          | 3680          |               |                          |               |                          |               |                          |                                                 |
| 21KF06    | 06-01       | Y                            | 0               | 4821         | 2535          | 2647          | 4701          | 73                       | 2518          | 27                       | 2643          | 19                       | Isotropic                                       |
|           |             |                              | 45              | 4668         | 2495          | 2643          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 90              | 4624         | 2488          | 2613          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 135             | 4690         | 2553          | 2667          |               |                          |               |                          |               |                          |                                                 |
|           | 06-02       | Z                            | 0               | 3912         | 2246          | 2197          | 3884          | 33                       | 2247          | 12                       | 2182          | 15                       | Isotropic                                       |
|           |             |                              | 45              | 3872         | 2263          | 2196          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 90              | 3835         | 2249          | 2160          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 135             | 3915         | 2229          | 2176          |               |                          |               |                          |               |                          |                                                 |
| 21KF20    | 20-01       | X                            | 0               | 5238         | 2965          | 3106          | 5205          | 28                       | 2981          | 12                       | 3089          | 14                       | Isotropic                                       |
|           |             |                              | 45              | 5225         | 2977          | 3073          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 90              | 5190         | 2986          | 3078          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 135             | 5168         | 2996          | 3100          |               |                          |               |                          |               |                          |                                                 |
|           | 20-02       | Y                            | 0               | 5158         | 2938          | 3074          | 5213          | 51                       | 2965          | 18                       | 3116          | 42                       | Isotropic                                       |
|           |             |                              | 45              | 5292         | 2969          | 3183          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 90              | 5222         | 2988          | 3116          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 135             | 5182         | 2966          | 3089          |               |                          |               |                          |               |                          |                                                 |
|           | 20-03       | Y                            | 0               | 5193         | 2965          | 3057          | 5194          | 13                       | 2969          | 7                        | 3050          | 6                        | Isotropic                                       |
|           |             |                              | 45              | 5212         | 2968          | 3046          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 90              | 5194         | 2962          | 3055          |               |                          |               |                          |               |                          |                                                 |
|           |             |                              | 135             | 5176         | 2981          | 3044          |               |                          |               |                          |               |                          |                                                 |

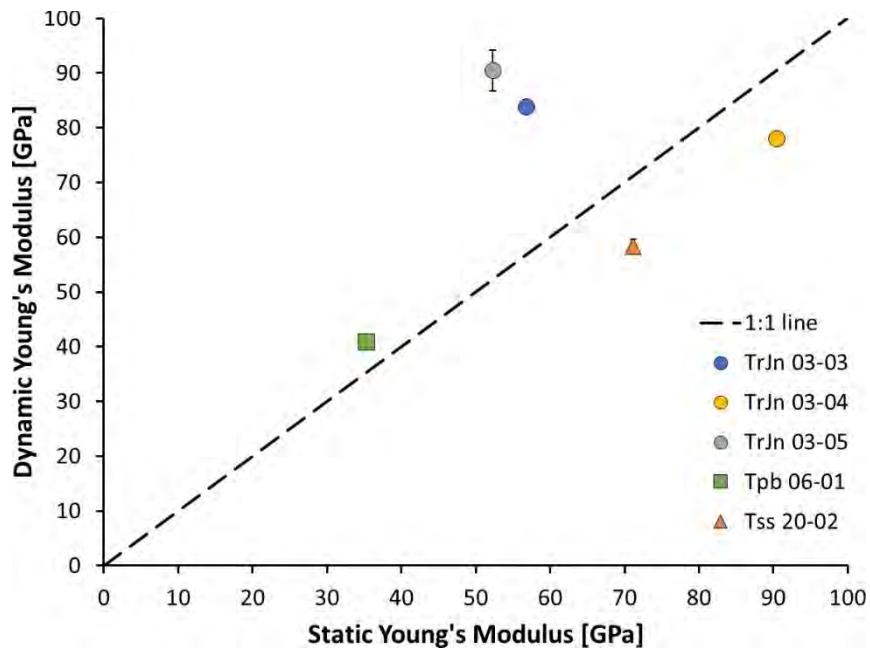



702 *Figure 19. Thin section images from TrJn sample, 21KF03, at three approximate*  
703 *orientations. X-orientation (left), Y- orientation (center), and Z-*  
704 *orientation (right). All orientations display fairly equigranular quartz grains with*  
705 *small masses of fine- grained biotite and muscovite throughout. Few cross-cutting*  
706 *fractures throughout thin sections.*

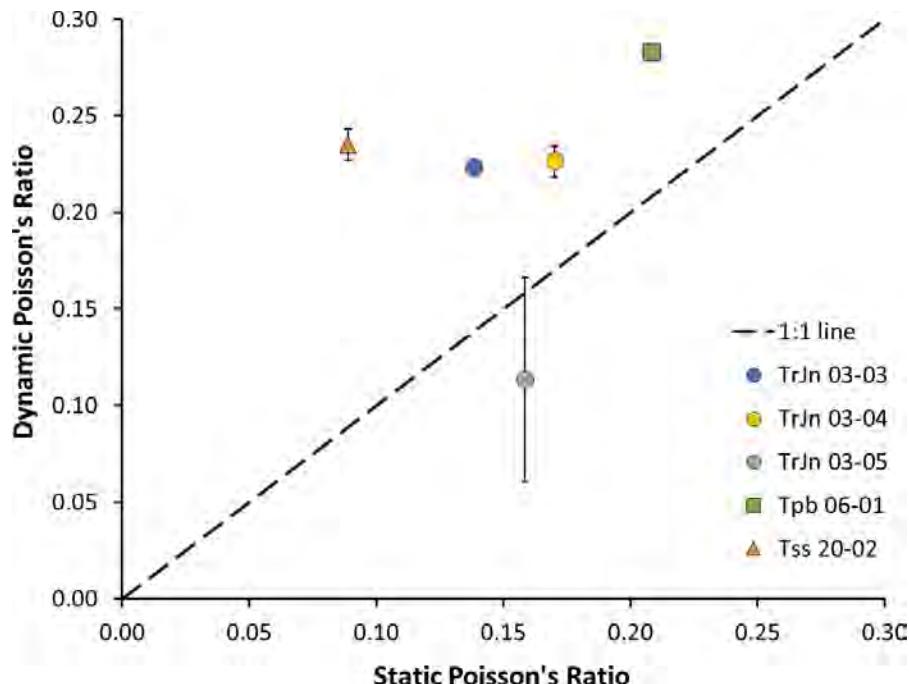


707 *Figure 20. Thin section images from Tpb' sample, 21KF06, at three approximate*  
708 *orientations. X-orientation (left), Y- orientation (center), and Z-*  
709 *orientation (right). All orientations display chaotic orientation of plagioclase grains*  
710 *with no clear lineated pattern. Many void spaces within thin section on account of*  
711 *being a vesicular basalt, but no preferential direction of elongation. Some larger*  
712 *plagioclase and clinopyroxene phenocrysts throughout thin section.*




713 *Figure 21. Thin section images from Tss sample, 21KF20, at three approximate*  
714 *orientations. X-orientation (left), Y- orientation (center), Z-orientation*  
715 *(right). X-orientation displays clasts of fine-grained quartz within grey fine-grained*  
716 *matrix and some linear red iron-stained features. No clear elongation of grains or*  
717 *layering. Y- and Z- orientations both display interlayering between fine-grained*  
718 *quartz and grey/dark red iron-stained matrix. Although these linear features are*  
719 *present on the thin-section scale, they may not be representative or ubiquitous*  
720 *throughout the sample scale.*




722 *Figure 22. Polar plots of velocity picks from TrJn sample, 03-03. Observed P-wave*  
 723 *velocity picks indicated by red squares (top left). Observed S1-wave velocity picks*  
 724 *indicated by green circles and S 2-wave velocity picks indicated by blue triangles*  
 725 *(top right). Error bars for each pick indicated by a line in top two figures. The*  
 726 *straight lines connecting the observed velocity values at each orientation is the best*  
 727 *fitting curve, not predictions. Example P-wave seismogram depicts three different*  
 728 *locations for velocity picks (bottom). The range of error varies based on the two*  
 729 *other velocity picks shown in red on the seismogram. The relatively circular shape*  
 730 *shown above and the fact that velocities do not vary by more than 250 m/s between*  
 731 *orientations, indicates that this sample is classified as isotropic.*

732 *Table 7. Summary table for dynamic and static Young's modulus E and Poisson's*  
733 *ratio v values from three different velocity pick locations. Dynamic E and n values*  
734 *calculated using 1 and 2, respectively. Static E and v values measured using*  
735 *unistress cycle from static mechanical testing. E values are in GPa and v values are*  
736 *unitless. See Figure 23 (bottom seismogram image) for example of three ultrasonic*  
737 *velocity pick locations.*

| Specimen ID | Pick | Dynamic E<br>[GPa] | Dynamic v | Static E<br>[GPa] | Static v |
|-------------|------|--------------------|-----------|-------------------|----------|
| 03-03       | 1    | 84                 | 0.22      | 57                | 0.14     |
|             | 2    | 85                 | 0.23      |                   |          |
|             | 3    | 83                 | 0.22      |                   |          |
| 03-04       | 1    | 78                 | 0.23      | 90                | 0.17     |
|             | 2    | 79                 | 0.23      |                   |          |
|             | 3    | 77                 | 0.22      |                   |          |
| 03-05       | 1    | 86                 | 0.19      | 52                | 0.16     |
|             | 2    | 95                 | 0.08      |                   |          |
|             | 3    | 90                 | 0.08      |                   |          |
| 06-01       | 1    | 42                 | 0.28      | 35                | 0.21     |
|             | 2    | 39                 | 0.28      |                   |          |
|             | 3    | 41                 | 0.28      |                   |          |
| 06-02       | 1    | 28                 | 0.26      | N/A               | N/A      |
|             | 2    | 28                 | 0.27      |                   |          |
|             | 3    | 26                 | 0.24      |                   |          |
| 20-01       | 1    | 58                 | 0.24      | N/A               | N/A      |
|             | 2    | 59                 | 0.24      |                   |          |
|             | 3    | 56                 | 0.21      |                   |          |
| 20-02       | 1    | 58                 | 0.24      | 71                | 0.09     |
|             | 2    | 60                 | 0.24      |                   |          |
|             | 3    | 57                 | 0.22      |                   |          |
| 20-03       | 1    | 57                 | 0.25      | N/A               | N/A      |
|             | 2    | 59                 | 0.25      |                   |          |
|             | 3    | 56                 | 0.23      |                   |          |

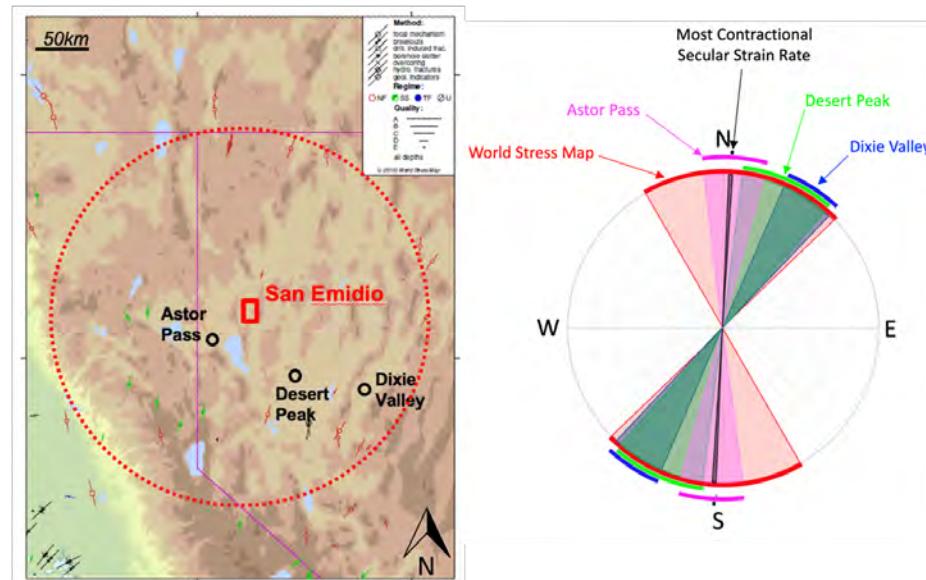


738 *Figure 23. Average dynamic and static Young's modulus used for each plug*  
739 *specimen. Plug specimens are categorized by lithologic unit: circles indicating TrJn*  
740 *specimens, squares indicating Tpb' specimens, and triangles indicating Tss*  
741 *specimens. The dashed black line represents a static to dynamic ratio of 1. Samples*  
742 *that are over this 1:1 line have a dynamic E that is greater than the static E, and vice*  
743 *versa.*



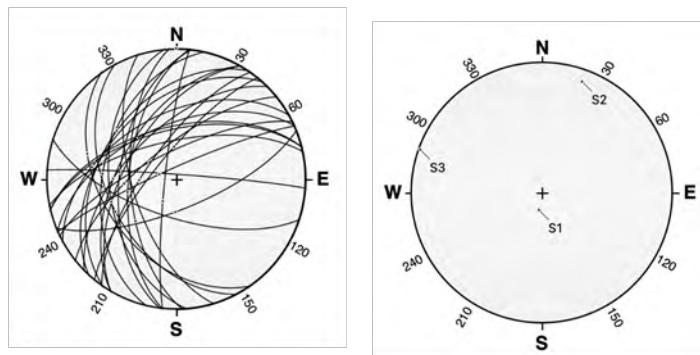
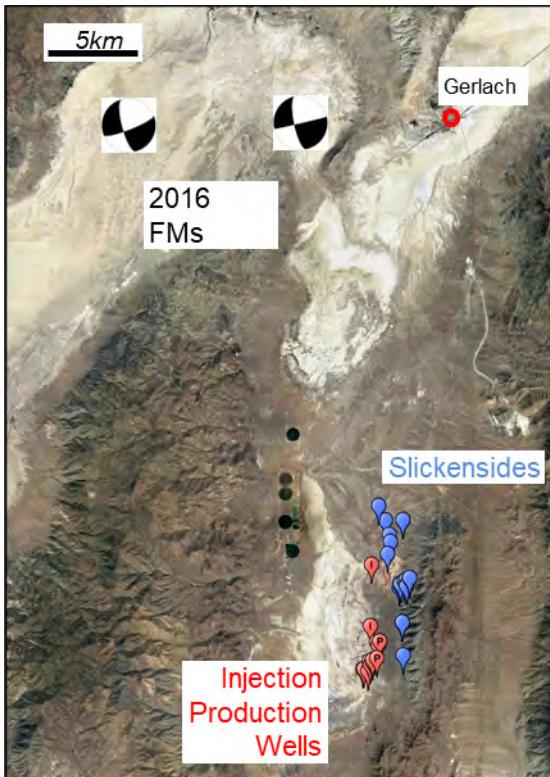
744 *Figure 24. Average dynamic and static Poisson's ratio used for each plug specimen.*  
745 *Plug specimens are categorized by lithologic unit: circles indicating TrJn specimens,*  
746 *squares indicating Tpb specimens, and triangles indicating Tss specimens. The*  
747 *dashed black line represents a static to dynamic ratio of 1. Samples that are over this*  
748 *1:1 line have a dynamic v that is greater than the static v, and vice versa.*

749


### Borehole Data (Subtasks 3.3 & 4.2)

750

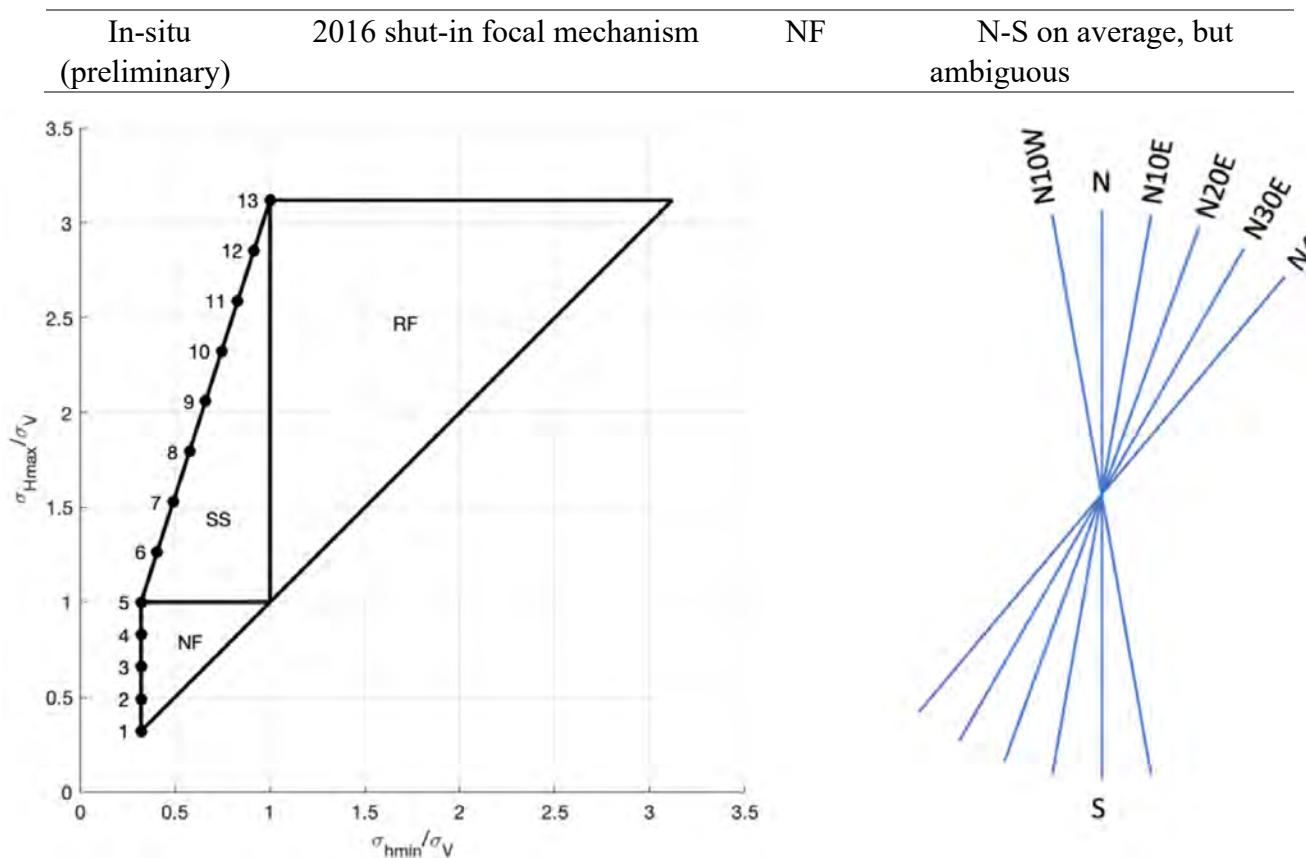
#### Interpreting Regional Stress



751 *The following section includes excerpts, some verbatim, from several sources (Jahnke, 2022; Jahnke et*  
752 *al., 2022; Jahnke et al., 2023).*

753 Stress indicators within a ~175 km radius surrounding San Emidio were considered to reflect  
754 the background regional tectonic stress (Figure 25. The regional azimuth of greatest principal  
755 stress  $S_{Hmax}$ , was obtained from the World Stress Map (Heidbach et al., 2016) and wellbore  
756 indicators in the form of breakouts and drilling induced tensile fractures observed in nearby  
757 geothermal fields. Stress indicators from the World Stress Map primarily come from earthquake  
758 focal mechanisms, which indicated a maximum compressive horizontal stress azimuth near  
759  $N10^\circ E$  in a normal or strike-slip stress regime. Wellbore indicators from nearby geothermal  
760 fields at Astor Pass (Siler et al., 2016), Dixie Valley (Hickman and Zoback, 1998), and Desert  
761 Peak (Davatzes and Hickman, 2009; Hickman and Davatzes, 2010) indicated  $S_{Hmax}$  azimuths of  
762  $N3^\circ E \pm 12^\circ$ ,  $N33^\circ E \pm 10^\circ$ , and  $N24^\circ E \pm 17^\circ$ , respectively. Additionally, the faulting regimes at  
763 Astor Pass, Dixie Valley, and Desert Peak are strike-slip, normal, and normal, respectively.  
764 Although not an indicator of stress, the direction of maximum contractional secular strain rate is  
765  $N3^\circ E$  at San Emidio (Kreemer et al., 2014), indicating that the background regional tectonic  
766 stress and strain rate directions appear to be subparallel.



767 *Figure 25. (Left) World Stress Map with locations of stress indicators within a ~175*  
768 *km radius around San Emidio. Figure modified from World Stress Map (Heidbach et*  
769 *al., 2016). (Right) Summary of regional observations of  $S_{Hmax}$  azimuths ( $N10^\circ E \pm 40^\circ$*   
770 *with normal/strike-slip faulting regime).*


771 In terms of more local observations, two microseismic with magnitude 3.52 and 3.80  
 772 occurred at a depth of 12 km in May 2016, to the west of the town of Gerlach, Nevada. Located  
 773 to the north of the study site at San Emidio, these events provide additional inference of the local  
 774 stress state. Each of the two events shows a strike-slip focal mechanism with a small normal-  
 775 faulting component (Figure 26). Field observations of slickensides collected by Rhodes (2011) in  
 776 the mountain range east of the study area were also used to infer the stress field. Although the  
 777 analyses recovers the past stress state at the time of slickenside formation, the stress inversions  
 778 indicates a normal faulting regime with  $S_{Hmax}$  in the  $N10^\circ E \pm 20^\circ$  direction.



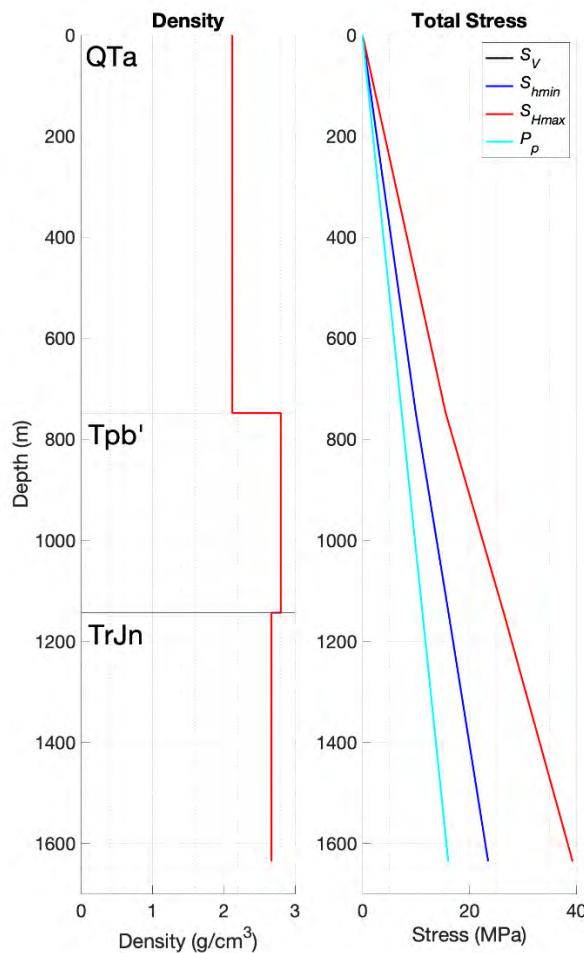
779 *Figure 26. Focal mechanisms and fault slip for two earthquakes that occurred north  
 780 of the study site, west of Gerlach, Nevada. Focal mechanisms from seismo.unr.edu  
 781 and fault slip data from (Rhodes, 2011).*

782 *Table 8. Summary of data sources for interpreting regional stress at San Emidio.*

| Scale    | Data Source                                        | Faulting Regime | $S_{Hmax}$ Direction                   |
|----------|----------------------------------------------------|-----------------|----------------------------------------|
| Regional | World Stress Map                                   | NF/SS           | $N10^\circ E \pm 40^\circ$             |
|          | Nearby Geothermal Fields                           | NF/SS           | $N25^\circ E \pm 20^\circ$             |
| Local    | 2016 Gerlach events                                | SS/NF           | P-axis trend $N^{\circ} 25-30^\circ E$ |
|          | Geological fault slip indicators<br>(Rhodes, 2016) | NF              | $N20^\circ E$                          |



783 *Figure 27. Assumption for regional stress interpretation.*


784 *Defining Prestress*

785 *The following section includes excerpts, some verbatim, from a peer-reviewed journal paper (Jahnke et  
786 al., 2023).*

787 Stress profiles were estimated for 22 of the wells at San Emidio. An example of the stress  
788 profiles from the deepest well in the reservoir, Kosmos 1-9, is shown in Figure 28. The Kosmos  
789 1-9 well reaches a maximum depth of 1636 m and penetrates three formations: QTa, Tpb', and  
790 TrJn. The stress profile in Figure 28 is generated for a transtensional stress regime, with a stress  
791 ratio  $R = 0$ . Vertical stress ( $S_v$ ) is calculated from rock density (Figure 27) and horizontal stresses  
792 ( $S_{hmax}$ ,  $S_{hmin}$ ) from frictional limits ( $\mu=0.6$ ). At the bottom of Kosmos 1-9, the magnitudes of total  
793 vertical stress, maximum horizontal stress, and minimum horizontal stresses were estimated to be  
794 39.3 MPa, 39.3 MPa, and 23.5 MPa, respectively (Figure 28). Once such vertical profiles of the  
795 principal stress magnitudes were estimated for every location in the GEOS model honoring the  
796 lithological profiles the 22 wells, the domains in the model were allowed to equilibrate with  
797 adjacent elements to generate a mechanically equilibrated stress model. This process was  
798 repeated for each choice of  $S_{hmax}$  azimuth and stress ratios (Figure 27) hypothesized based on the  
799 regional and local stress indicators summarized above. Based on the slip tendency values that  
800 project on the San Emidio and the Basin Bounding faults, Jahnke et al. (2023) suggested that the  
801 initial stress at San Emidio geothermal reservoir is characterized by a transtensional stress  
802 regime ( $S_v = S_{hmax} > S_{hmin}$ ) with an  $S_{hmax}$  azimuth of N to N10°E.

| Rock type                               | Abbr. | Model Density |
|-----------------------------------------|-------|---------------|
| Triassic metasediments (basement)       | TrJn  | 2.67          |
| Tertiary andesites and tuffaceous units | Tvu   | 2.6           |
| Tertiary basalt                         | Tpb   | 2.8           |
| Quaternary silicified sediments         | Qas   | 2.4           |
| Alluvial fill (0- 200m deep)            | Qal   | 2.02          |
| Alluvial fill (0- 200m deep)            | Qal   | 2.12          |

803  
804 *Figure 27. Rock density values in g/cm<sup>3</sup> from Folsom et al. (2020) used to calculate  
vertical stress.*



805  
806 *Figure 28. Profiles of density (left) and total stress (right) for the Kosmos 1-9 well.  
807 Since  $S_{H\max}$  and  $S_V$  are assumed equal in magnitude, corresponding to a transitional  
normal faulting to strike-slip stress regime,  $S_V$  is not shown.*

808

### Borehole Data (Subtasks 6.2, 6.3, & 8.3)

809

#### *Analysis of Wireline logging*

810

*The following section includes excerpts, some verbatim, from conference proceedings (Sone et al., 2023).*

811

In summer 2022, multiple production and exploratory wells were drilled. Wells 17A-21, 18A-21, 25B-21 were drilled from the hanging wall of San Emidio fault (SEF), reaching 2000~2500 ft depths, and are expected to have penetrate the SEF. Well 84-20 was drilled from the hanging wall of the Basin Bounding fault (BBF), reaching 3400 ft depths and penetrating the BFF. In each well, drill cuttings were collected and examined every 10 ft of drilling to observe lithology changes and to construct a lithological column. Standard drilling parameters were also recorded which allowed us to identify drilling breaks and lost-circulation zones. In wells 17A-21, 18A-21, 25B-21, resistivity borehole image logs were collected in the open hole intervals covering the main reservoir in the Tertiary formations. In well 84-20, an acoustic borehole image log was collected, also in the open hole interval covering the Tertiary formations down to the metasediments.

822

In well 17A-21 only, a 3D Far-Field Sonic log (3DFFS) was run to capture the direct arrival of the acoustic waves and reflections from fractures within the formation. The 3DFFS log provides the compressional and shear wave slowness as well as the depth and orientation information of reflective fractures close to the borehole (Kumar et al., 2019).

826

Following drilling and the collection of downhole logs, the wells were cased with screened liner in their lower sections. They were then tested for permeability using a step-rate test while downhole pressure sensing equipment was hung near zones of inferred permeability (e.g., drilling losses). The precise locations of fluid feed zones were determined using flowing and static pressure, temperature and spinner logs (PTS). In the case of Well 84-20 this testing was performed under injection. For Wells 17A-21, 18A-21, and 25B- 21, testing was performed while flowing the wells to a sump.

833

The lithologic sequences encountered in each well roughly followed those expected from the regional geological map compiled by Rhodes et al. (2011). The Quaternary alluvium continued to about 400-600 ft depth, followed by a sequence of Tertiary claystones before entering the volcanic sequence. Although not identified in the geological map, the presence of the tuffaceous sediments and the andesite appears to be interlayered characterized by multiple appearances of these members, although depth precision of mud logs may not always be precise. Only the deepest well 84-20 reached the metasedimentary Nightingale formation at 2600 ft depth.

840

Some cuttings were also collected for the purpose of measuring wet densities of the formations. This was done to provide a better constraint on the density of the formations which are used to calculate the vertical stress profile in geomechanical analyses. For the Tertiary formation cuttings from Well 17A-21, the drilling mud was washed off using fresh water, then the excess water was removed from the surface. The mass was then measured on a precision balance and water-saturated volume measured using a helium porosimeter which utilizes the principles of the Boyle's law to calculate sample volume. For the Quaternary sediments, collecting intact cutting specimens was much more challenging as the formation was likely not fully indurated. Nonetheless, some hand-picked intact fragments from Wells 18A-21 and 25B- 21 were collected to measure the formation density, with the caveat in mind that these

850 measurements may only serve as an upper limit value. Results are compared with the density  
851 values used to model gravity data in Folsom et al. (2020) in Figure 27. The depth trend in the  
852 tertiary formations in Well 17A-21 is also shown later in Figure 36 and Figure 39. The density  
853 profile reveals a gently increasing trend, with local perturbations caused by the anomalous  
854 presence of some light volcanic sediments (Figure 39).

855 *Lost Circulation and Feed Zones from Drilling Records*

856 Circulation losses were encountered at one or more depths in each well where the mud return  
857 flow was either partially or totally lost. Circulation losses can be caused by, for instance, the  
858 creation of open fractures in the formation when the mud pressure exceeds the minimum  
859 principal stress. But in a shallow, moderately-pressured reservoir like San Emidio, loss zones  
860 occur at depths close to high-permeability formations, such as unconsolidated sediments, porous  
861 lavas, highly fractured intervals, and fault damage zone (Winn et al., 2021). Circulation losses  
862 can also be accompanied by drilling breaks which are recognized as the sudden decrease of  
863 weight-on-bit (WOB) and increase of rate-of-penetration (ROP). These variables are indicative  
864 of the presence of incompetent formations, such as weak porous formations or fractured or  
865 brecciated rock masses. Following completion of drilling, image logs are run in open hole  
866 intervals before a screened liner is installed. Well testing is generally performed after the liner is  
867 installed.

868 Depths of loss circulation zones are listed in Table 9 and indicated together with the  
869 lithological column in In 18A-21, both partial and total loss circulation occur at 1900 feet and  
870 1969 feet depths, respectively. In 17A-21 total loss circulation occurs at a depth of 2130 feet,  
871 which happens at the contact between tuff and andesite. We note, though, that this depth was  
872 quite different from the total loss encountered at 1766 ft depth in an adjacent well (17-21) that  
873 was drilled previously about 20 ft southwest (along-strike of SE) from Well 17A-21. In Well 25B-  
874 21 only partial losses are observed at 1963 feet and 2372 feet, and a partial gain at 2191 ft. In  
875 Wells 18A-21, 17A-21, and 25B- 21 all losses occur within the tuff or andesite intervals.  
876 However, in Well 84-20 losses occur at deeper intervals within metasedimentary rocks  
877 accompanied by frequent occurrence of drilling breaks. There were two partial losses and three  
878 total losses in this well. Note that multiple total losses are identified when a total loss of  
879 circulation recovers, but is lost again after hitting another loss zone resulting in another total loss  
880 of circulation. Such recovery likely occurs when open fractures are clogged by cuttings as  
881 drilling mud is lost into the formation. This may indicate limited aperture, extent, or  
882 connectivity of the fractures that were responsible for the total loss zones within the  
883 metasediments.

884 Feed zones are also listed in Table 9 and indicated in Figure 29. In wells 18A-21 and 17A-21,  
885 the major feed zone responsible for almost all of the flow rate corresponds to where total loss of  
886 circulation was encountered. However, in well 25B-21, no clear the feed zone was identified  
887 although two partial loss zones were found. Note that this is in stark contrast with a nearby well  
888 (25A-21) that was drilled about 100 ft away to the northeast (along-strike of SEF), which  
889 encountered a high permeability fracture causing total loss at 1932 feet depth. In well 84-20,  
890 multiple feed zones exist and they are more diffuse spanning over a range of depths. In the  
891 moderate and minor feed zones at shallower depths, these feed zones do not correlate with any

892 loss zones although drilling breaks were observed. The major feed zone at the bottom of the well,  
893 however, overlaps with the two total loss circulation depths and drilling breaks. These  
894 observations could be interpreted that the BBF involves multiple fault strands rather than a single  
895 fault plane.

896 In summary, Wells 18A-21 and 17A-21 clearly intersected a fracture that is responsible for  
897 both total loss circulation and production flow rate. Well 25B-21 intersected only minor loss  
898 zones that may be contributing to some flow. Well 84-20, which is likely the only well that  
899 intersected the BBF, encountered numerous loss zones and drilling breaks, suggesting a rather  
900 distributed feed zone within the metasediments.

901 *Image and Sonic Logs*

902 Image logs highlight heterogeneous features on the borehole wall, allowing us to identify  
903 planer and linear structures. Resistivity image are scaled so that low-resistivity conductive rocks  
904 appear darker. The acoustic image is scaled so that spots with weaker reflection coefficients  
905 appear darker. In both types of borehole images, open, fluid-filled fractures appear as dark  
906 curved or linear features which correspond to natural fractures and drilling-induced tensile  
907 fractures (DITFs), respectively. Some examples of natural fractures and DITFs picked in the  
908 borehole images are shown in Figure 30 and Figure 31, respectively. The resistivity images also  
909 provide information about the relative resistivity of the formation which reflects the amount of  
910 fluid and/or clay minerals in the formation.

911 The dip angle, down-dip azimuth, and fracture density information from all picked fractures  
912 are summarized in Figure 32 and Figure 33. We recognize from the results that the down-dip  
913 azimuth can vary in all directions and the dip angle also varies widely between 20 and 90  
914 degrees. However, the most frequent dip azimuth occurs in the northwest direction, consistent  
915 with the SW-striking, westward dipping orientation of the SEF and BBF close to the wells.  
916 Fractures in the conjugate orientation, dipping southeast, are also found in the Tertiary units.

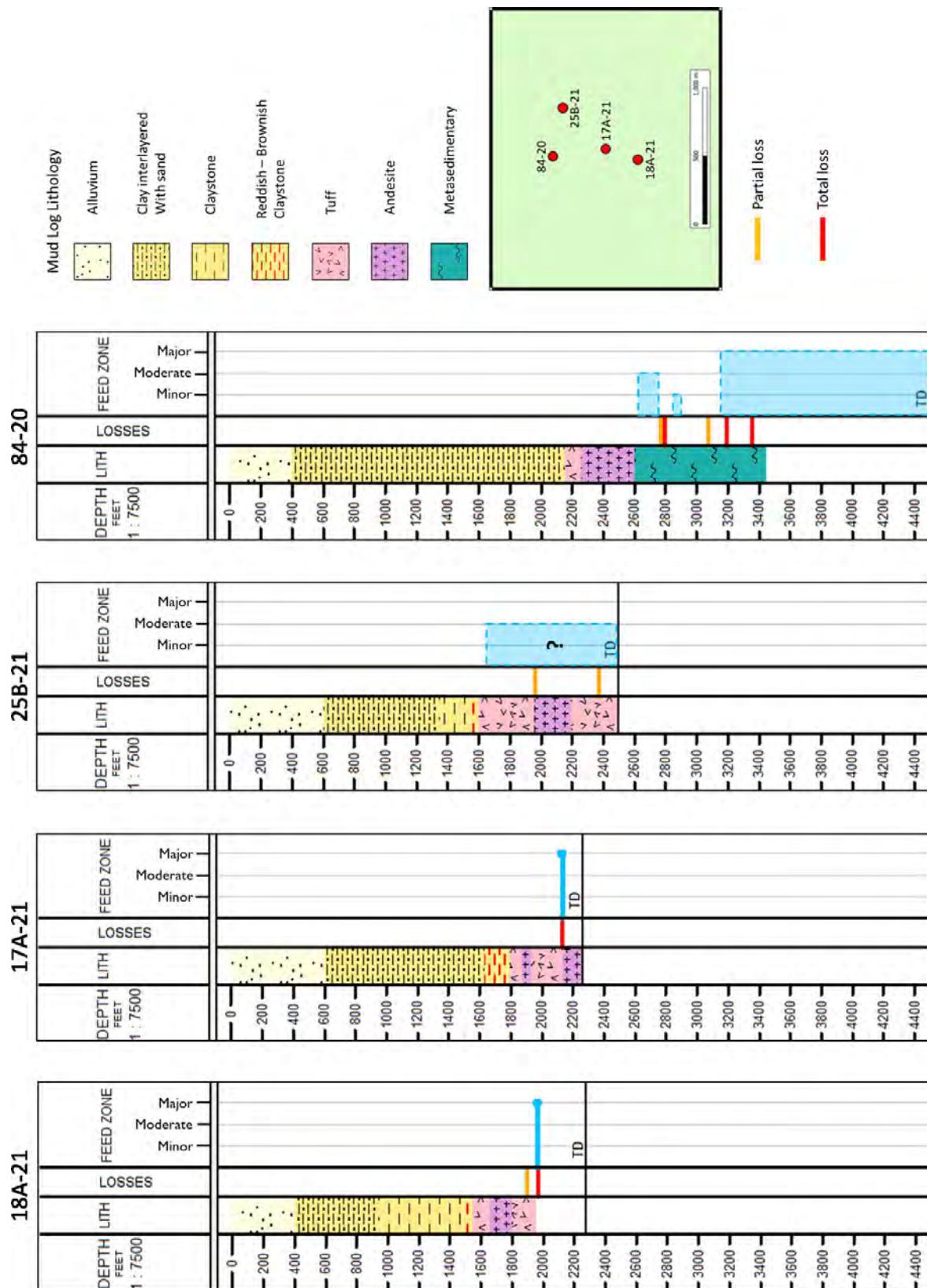
917 The fracture density also varies along each well and among the wells. This reflects the  
918 inherent variation of the fracture density in the formation, as well as the uncertainty in our ability  
919 to pick fractures from the images. For instance, fractures are difficult to identify when the  
920 background formation is also conductive. The borehole also may not retain its original shape due  
921 to breakouts and washouts, which leads to low-quality out-of-focus images (Figure 32 and  
922 Figure 33). Both tend to occur at fault zones because fault rocks can have higher porosity and  
923 higher clay - content compared to the surrounding rock mass, and fault rocks are weaker and  
924 more prone to compressive rock failures. Taking into account these factors, it is possible to  
925 suggest that a typical fault zone architecture (Faulkner et al., 2003) is seen in these image logs  
926 where a fault core consisting of fault gouge and fault breccia is surrounded by a damage zone  
927 characterized by higher fracture density than the background fracture density in the host rock.

928 In Well 18A-21, there may be a fault core present at around 2060 ft characterized by low  
929 resistivity surrounded by high fracture density especially in the footwall. In Well 17A-21, a fault  
930 core may be present at around 1780 ft with high fracture density above. In Well 25B-21, the fault  
931 core may be present at 2090 ft with high fracture density above and below. It is interesting to note  
932 that these suggested fault cores do not correspond to the loss zones nor the feed zones. It is  
933 difficult to make similar inferences based on the acoustic images from well 84-20 because the

934 reflection amplitude relates to the surface condition (i.e. roughness) of the borehole rather than  
935 petrophysical properties.

936 Numerous DITFs were also picked which can give information about the orientation of the  
937 horizontal principal stresses and constraints on the horizontal stress magnitudes (Figure 34). The  
938 azimuths at which the DITFs occur are consistently in the NNE-SSW direction in all wells which  
939 is consistent with the direction of the maximum horizontal stress inferred from the World Stress  
940 Map (Heidbach et al., 2016), fault slip indicators (Rhodes, 2011), and the inversion of focal  
941 mechanisms from microseismic events (Jahnke et al., 2023). When compared between  
942 formations, we find some variation in DITF azimuth with depth where the DITF azimuth in the  
943 shallow claystone and the deep metasediment appear in the NE-SW direction, whereas it is in the  
944 NNE-SSW direction in the tuff and andesite formations.

945 Sonic logs provide information about the stiffness of the formation. The acoustic slowness  
946 values shown in Figure 35 range from 60-120  $\mu\text{s}/\text{ft}$  and 120-230  $\mu\text{s}/\text{ft}$ , for compressional and  
947 waves, respectively, corresponding to seismic velocities of 2.5-5.1 km/s and 1.3-2.5 km/s,  
948 respectively. A notable anomaly is the low velocity seen at 1770-1800 ft depth, which is also  
949 where the low resistivity zone is observed. The natural gamma ray log also shows a broad peak  
950 at this depth. These observations are all consistent with the hypothesis that a relatively compliant,  
951 fluid-rich, and clay-rich fault rock exists at this depth interval, surrounded by damaged host  
952 rocks.


953 The 3DFFS log also detected numerous sonic waves reflected from fractures. The fracture  
954 orientation information and fracture density distribution recovered from the 3DFFS log is  
955 compared with the same information collected independently based on the resistivity image log  
956 in Figure 34. Note that fractures were picked manually from resistivity image logs, but were  
957 automatically picked using an algorithm from the 3DFFS log (Kumar et al., 2019). The  
958 comparison shows that less fractures are detected from the 3DFFS log, especially those fractures  
959 with low dip angles owing to the fact that subhorizontal fractures likely do not reflect back  
960 acoustic waves to the tool. However, the statistics of the dip direction shown in the Rose diagram  
961 and the fracture density distribution agrees quite well. Preferred dip directions generally match  
962 and peaks and troughs of fracture density also occur at the same depth range, confirming the  
963 validity of the interpretations made on the resistivity image logs.

#### 964 Preliminary Stress Analysis Based on Borehole Data

965 Given the density information and the occurrence of DITFs in the image logs, we conduct a  
966 preliminary stress analysis. The vertical stress profiles were constructed from the formation  
967 densities described in Figure 36 and pore pressure was assumed to be hydrostatic (Figure 36). We  
968 also made an assumption that a leak-off pressure observed in a leak-off test from a nearby well  
969 resembles the minimum horizontal stress gradient, which is set at 13.7 MPa/km. Then by setting  
970 the frictional coefficient of the formation to be 0.6 (Byerlee, 1978), we can construct a stress  
971 polygon describing limits on the horizontal stress magnitude as shown in Figure 37 for a depth of  
972 1973 ft. Because DITFs are observed in these wells, the in-situ stress state must lie along the red  
973 line and above the blue line in Figure 37, which suggests a trans-tensional faulting environment.  
974 This is consistent with the stress state inferred from slip tendency analyses (Jahnke et al., 2023).

975      *Table 9. Fault plane depths as inferred from drilling events and testing results.*  
976      *Drilling losses describe intervals where circulating drilling muds were lost to the*  
977      *formation. Tested feed zone intervals follow from the results of flowing PTS logs that*  
978      *identify the precise intervals of permeability. These independent observations often*  
979      *correlate, with some notable differences.*

| <b>Fault</b>               | <b>Well</b> | <b>Drilling Loss<br/>Depths [ft kb]</b> | <b>Drilling Loss Type</b>  | <b>Tested Feed Zone<br/>Depth [ft kb]</b> | <b>Tested Feed Zone Type</b> |
|----------------------------|-------------|-----------------------------------------|----------------------------|-------------------------------------------|------------------------------|
| San Emidio<br>Fault        | 17A-21      | 2130                                    | Total loss of circulation  | 2130                                      | Major feed zone              |
|                            | 18A-21      | 1900                                    | Partial loss               | 1965                                      | Major feed zone              |
|                            |             | 1969                                    | Total loss of circulation  |                                           |                              |
|                            | 25B-21      | 1963                                    | Partial losses             | Uncertain depth                           | Moderate feed zone           |
|                            |             | 2191                                    | Partial gain of pit volume |                                           |                              |
|                            |             | 2372                                    | Partial loss               |                                           |                              |
| Basin<br>Bounding<br>Fault | 84-20       | 2773                                    | Partial losses             | 2620 – 2750                               | Moderate feed zone           |
|                            |             | 2794                                    | Total loss of circulation  | 2845 – 2900                               | Minor feed zone              |
|                            |             | 3047                                    | Partial losses             | 3152 – 4500                               | Major feed zone              |
|                            |             | 3194                                    | Total loss of circulation  |                                           |                              |
|                            |             | 3353                                    | Total loss of circulation  |                                           |                              |



981  
982  
983  
984

*Figure 29. Lithological columns inferred from mud log cuttings observations and  
total/partial loss intervals in Wells 18A-21, 17A-21, 25B-21, and 84-20. In Well 84-  
20 losses interval occur at metasedimentary interval meanwhile the other three occur  
at tuff and andesite intervals.*

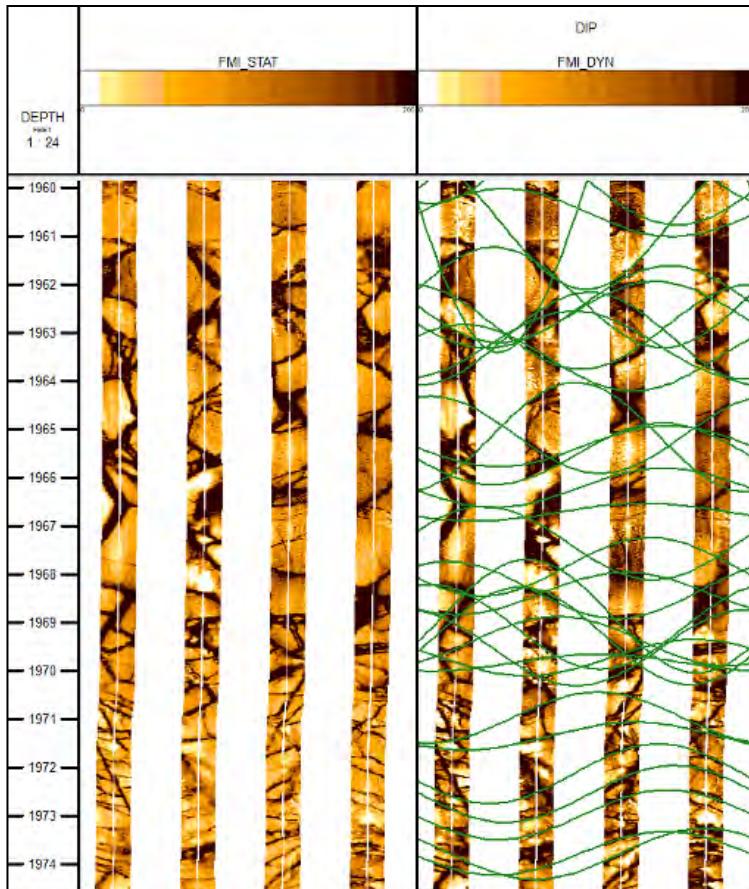
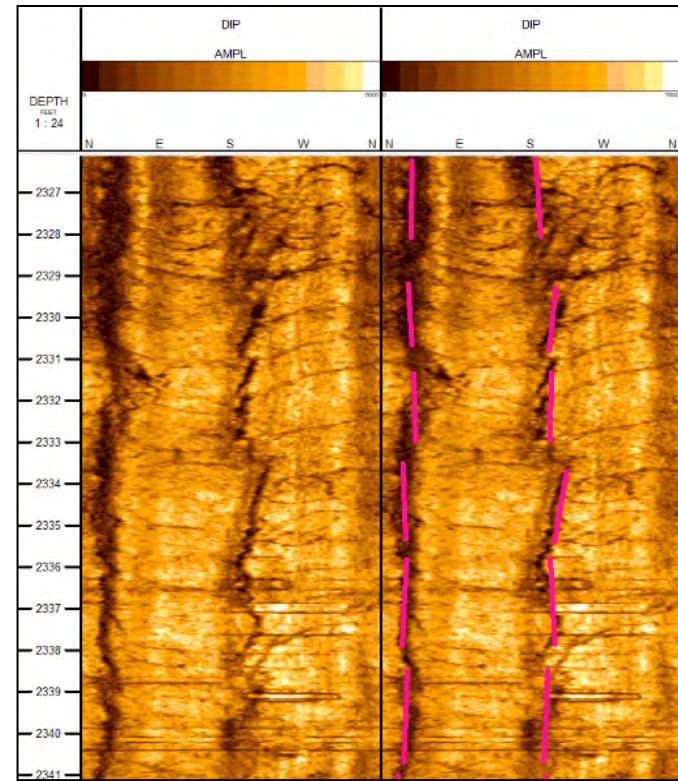
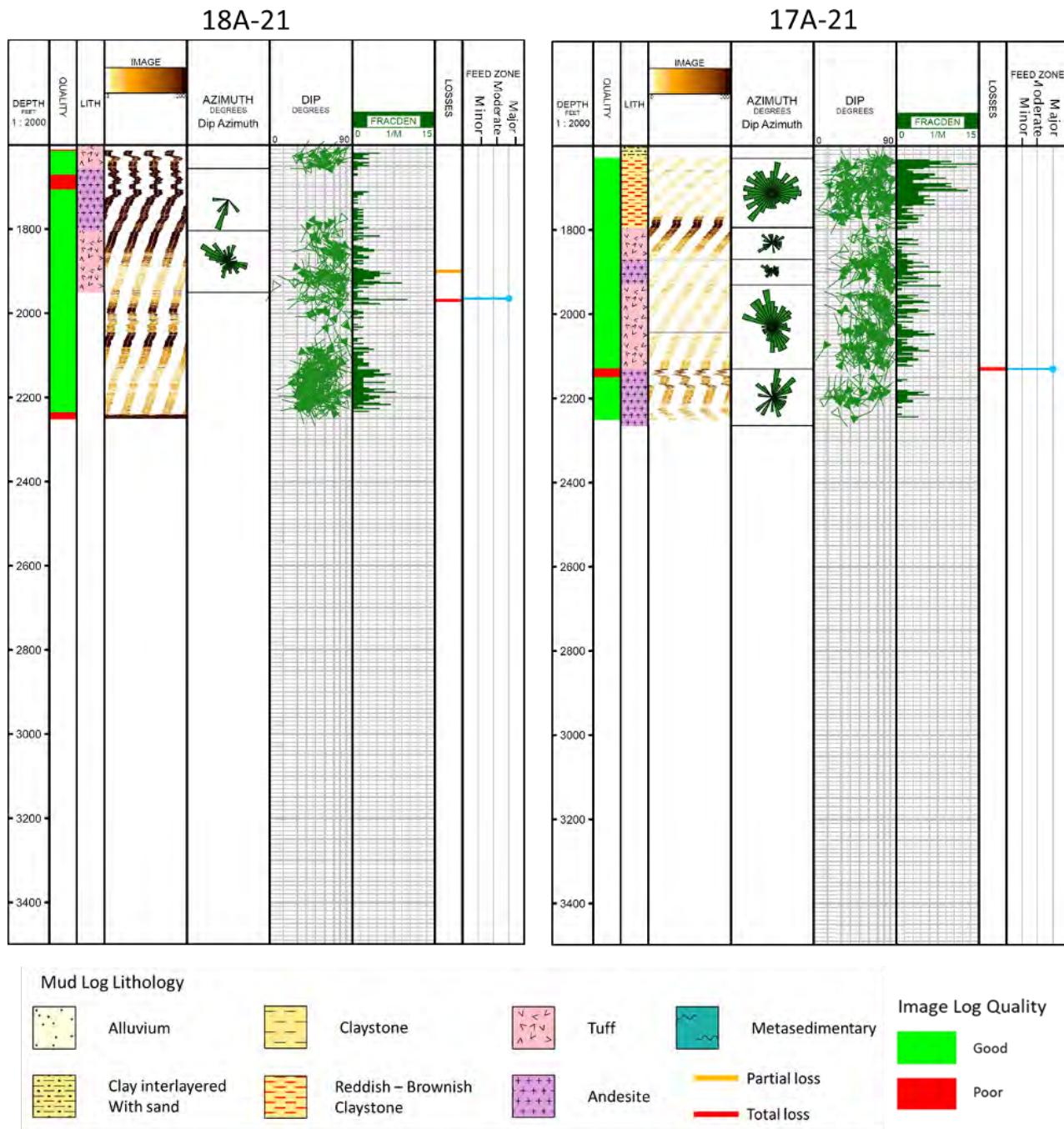
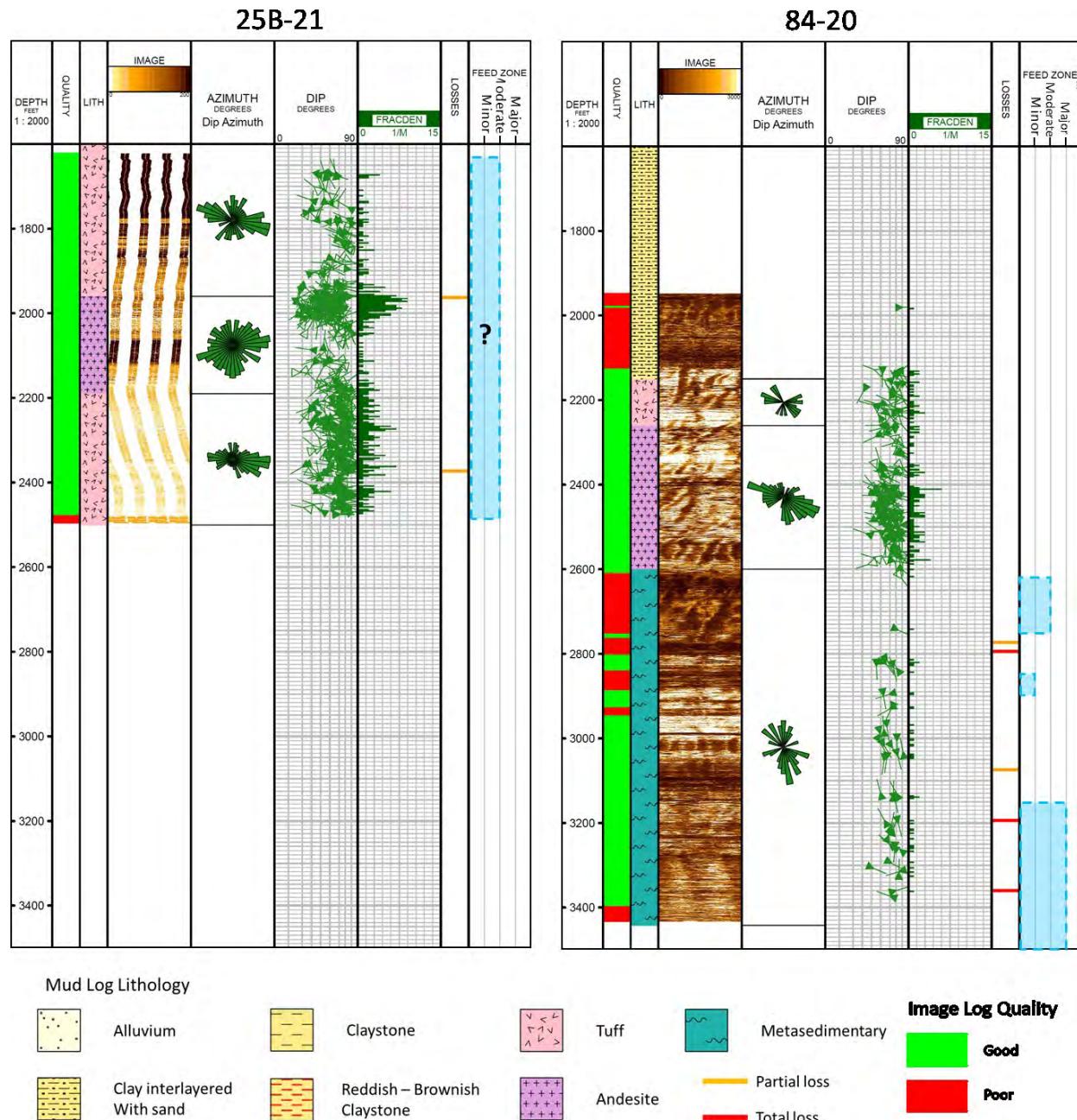
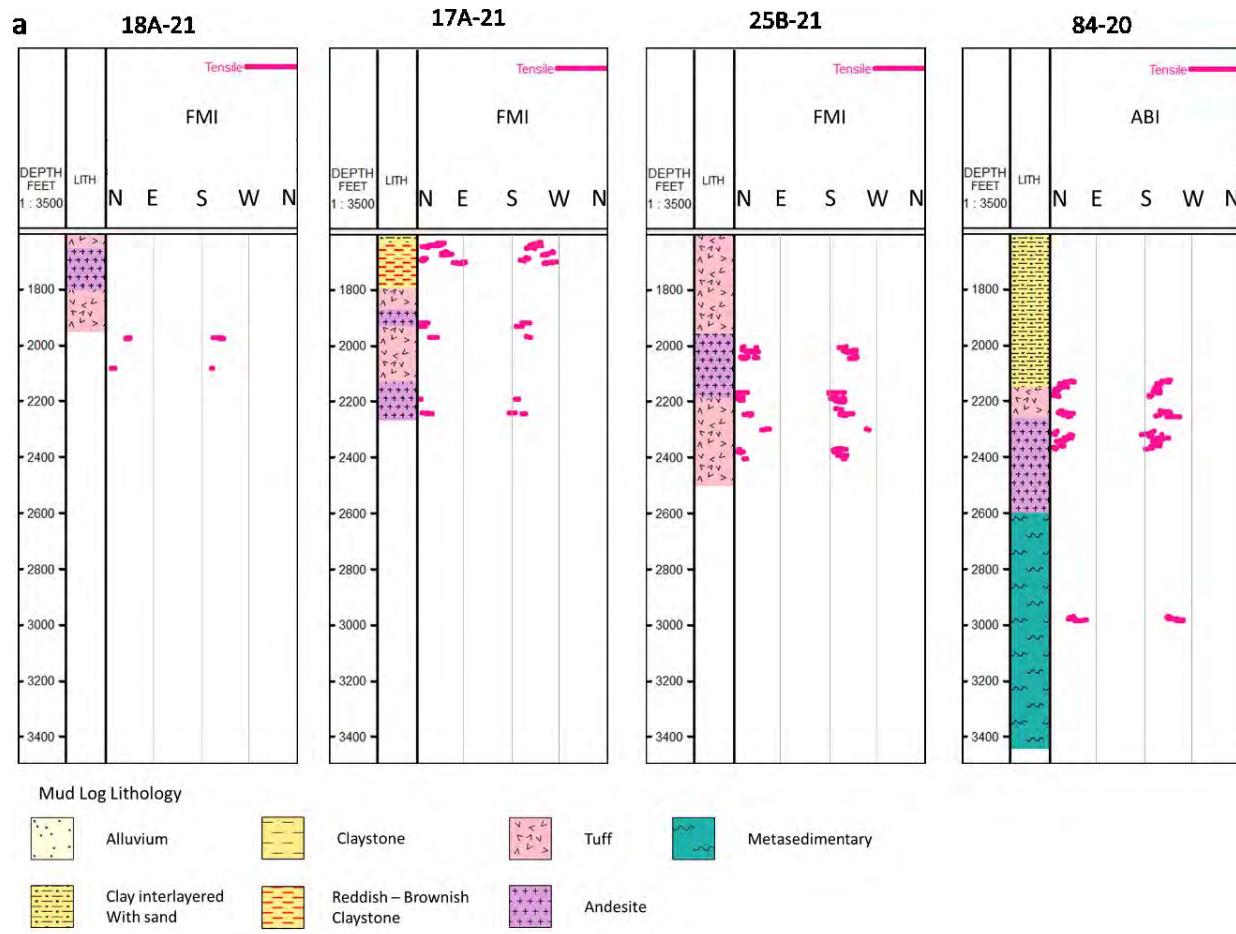
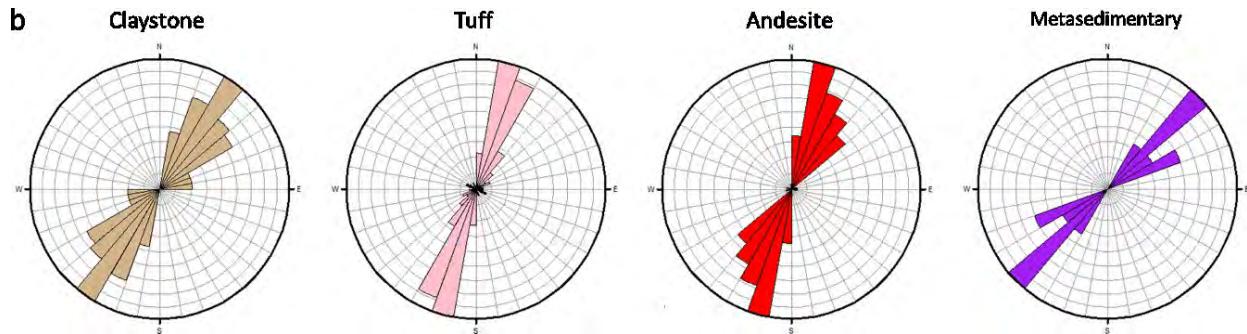



Figure 30. Resistivity borehole image from well 17A-21, showing example picks of conductive fractures (green curves).



Figure 31. Acoustic borehole image from well 84-20, showing example picks of drilling-induced tensile fractures (magenta line segments).




986  
987 *Figure 32. Borehole images of resistivity from wells 18A-21 and 17A-21 along with the orientation and distribution of fractures picked from image logs.*



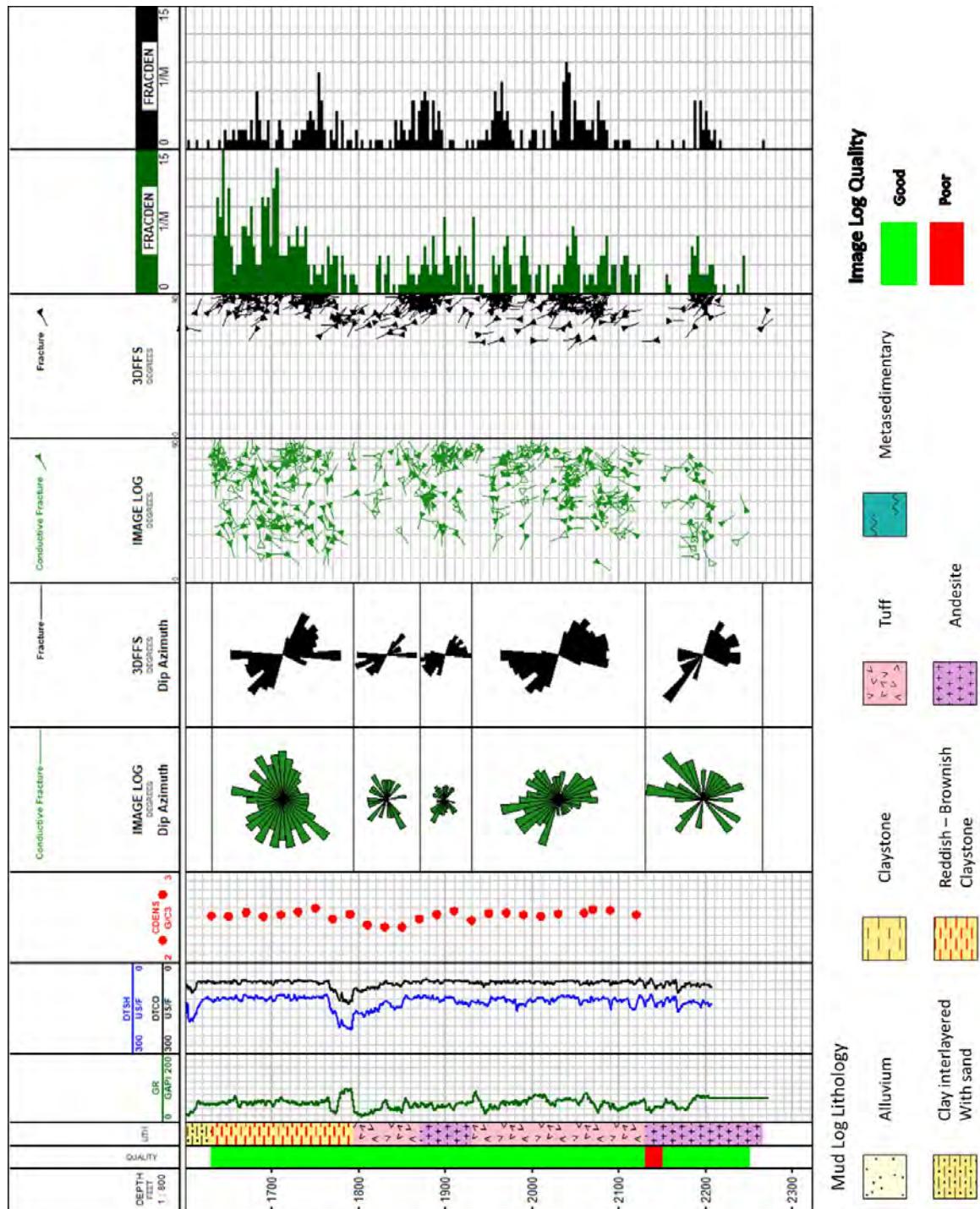
988 *Figure 33. Resistivity borehole image from well 25B-21 and acoustic borehole image*  
989 *from well 84-20 along with the orientation and distribution of fractures picked from*  
990 *the image logs.*



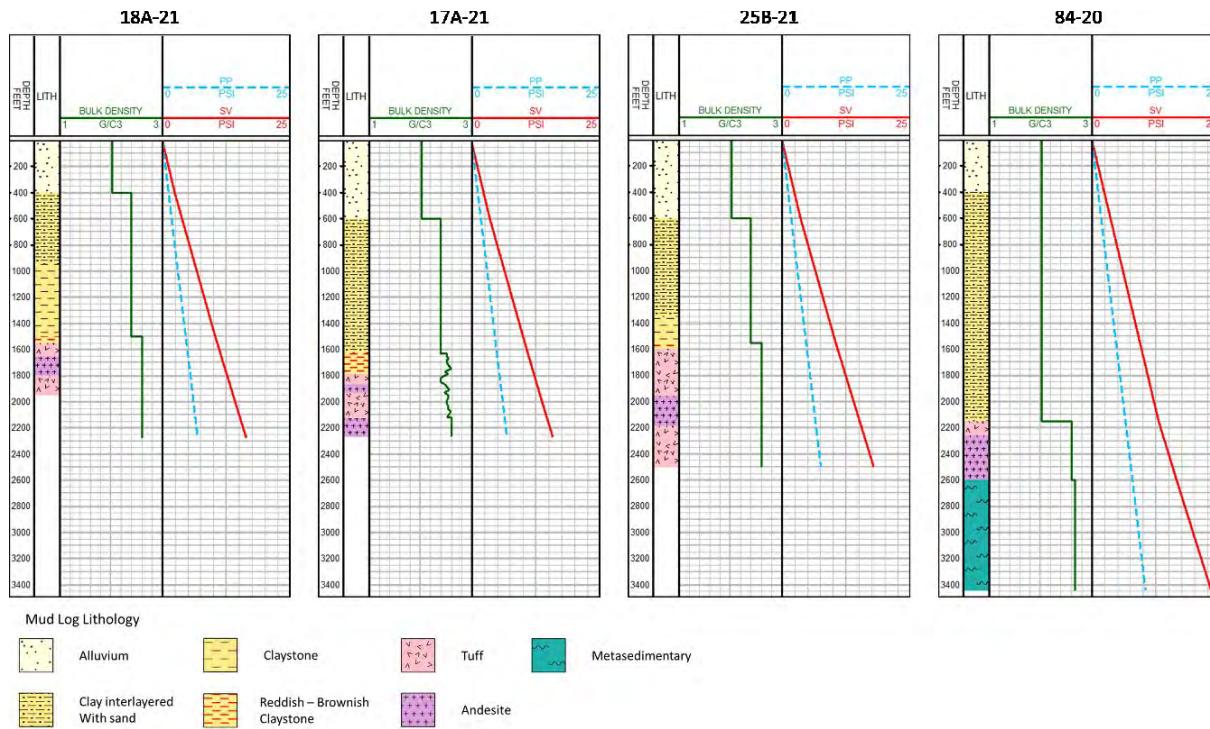
991



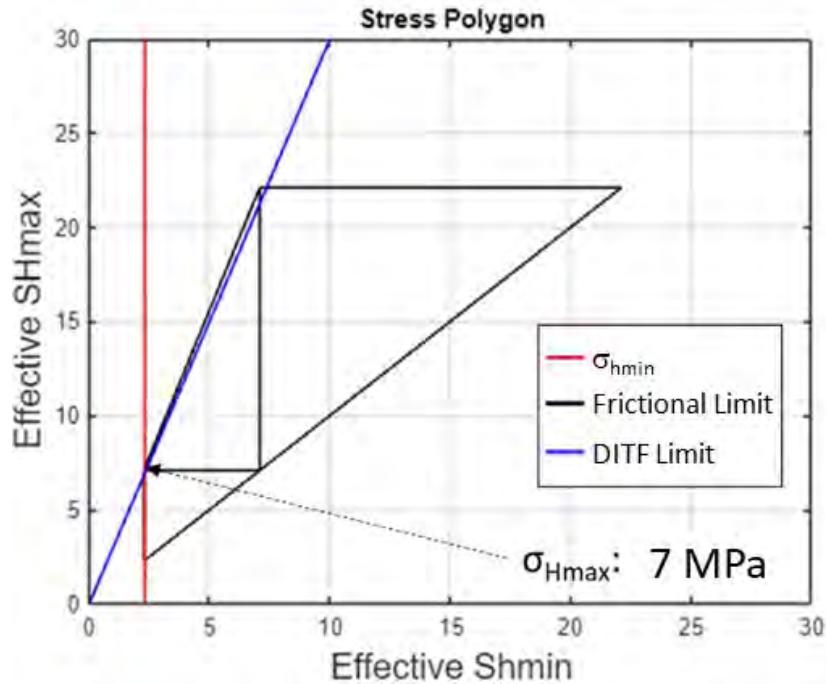
992


*Figure 34. Interpretation of drilling-induced fractures (DITFs) in all wells. (a) DITF appears in all wells with the azimuth of NE - SW direction. (b) In tuff and andesite intervals DITF is consistent. In claystone and metasedimentary interval, the direction is slightly rotated to the east. The actual azimuth in claystone, tuff-andesite, and metasedimentary are N30E, N10E, and N40E, respectively.*

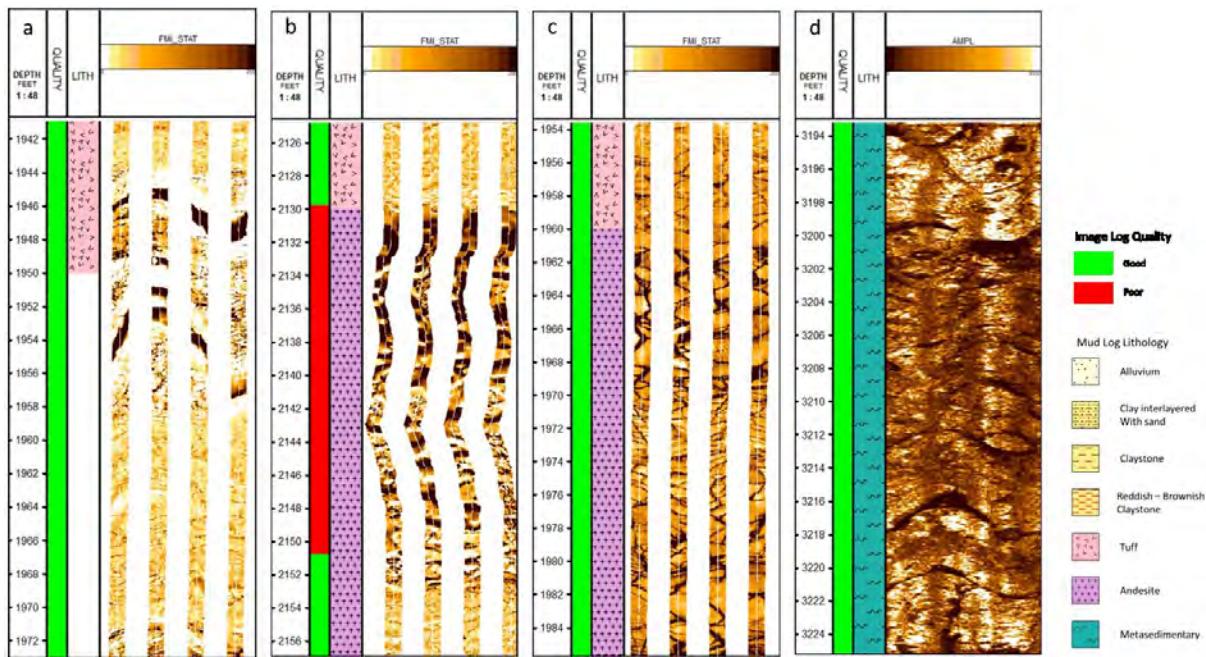
993


994

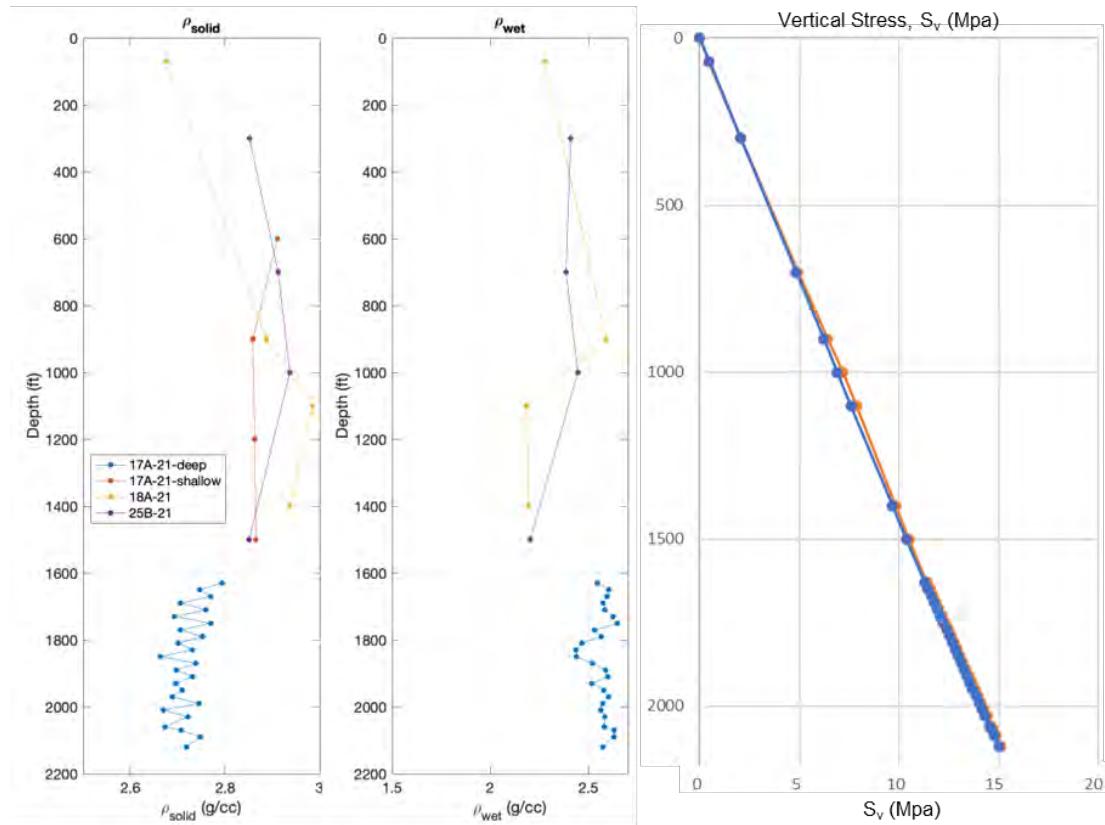
995


996




997  
998 *Figure 35. Gamma ray, sonic log data, and comparison of fracture picks from  
resistivity image log and 3DFFS sonic log data in well 17A-21.*




999  
1000 *Figure 36. Bulk density profile inferred from the lithological column and also cutting measurement for well 17A-21. Model density from Folsom et al. (2020).*



1001  
1002 *Figure 37. Limits on the magnitude of horizontal stresses at 1973 feet depth from well 18A-21 described in a stress polygon drawn with frictional coefficient 0.6.*



1003 *Figure 38. Enlargement of image logs showing the loss zones. (a) Total loss zone in*  
1004 *well 18A-21, suggesting thick conductive sinusoid feature. (b) The total loss zone in*  
1005 *well 17A-21 shows open pore structure. (c) Partial loss zone of 25B-21 coincides*  
1006 *with highly fractured andesites. (d) Partial loss zone in 84-20 coincides with a high*  
1007 *fracture density interval.*



1008  
1009

Figure 39. Profiles of density measurements from cuttings and estimated vertical stress profile.

1010

### Geodesy – InSAR

1011 *The following section includes excerpts, some verbatim, from several sources (Feigl et al., 2022b; Feigl  
1012 et al., 2023; Feigl et al., 2024).*

1013 Interferometric Synthetic Aperture Radar (InSAR) data also measures ground deformation.  
1014 The data set includes InSAR data collected by several satellite missions. The ERS-1/2 missions  
1015 operated by the European Space Agency acquired image data covering San Emidio over two  
1016 distinct time intervals 1992 to 2001 and 2003 to 2010, respectively (Eneva et al., 2011). These  
1017 authors found relative rates of line-of-sight (LOS) displacement of the order of 5 mm/year at  
1018 locations near the power plant at San Emidio. Assuming that the motion is purely vertically  
1019 downward (subsidence) and dividing by the cosine of the incidence angle (~23°), we infer that  
1020 the rate of vertical displacement is approximately 5.4 mm/year with respect to a location outside  
1021 the geothermal field. By modeling the same two data sets, Reinisch et al. (2019) conclude that  
1022 the rate of deformation was constant between 1992 and 2010.

1023 A second InSAR data set consists of radar images acquired monthly beginning in 2019 by the  
1024 TerraSAR-X (Pitz and Miller, 2010) and TanDEM-X (Krieger et al., 2007) satellite missions  
1025 operated by the German Space Agency (DLR). To analyze these data, we have developed a high-  
1026 throughput workflow using HT-Condor (Reinisch, 2018a; Reinisch, 2018b) to apply the GMT-  
1027 SAR processing software (Sandwell et al., 2011; Sandwell et al., 2016).

1028 We are also analyzing InSAR data from the SENTINEL-1 satellite mission (Salvi et al.,  
1029 2012) operated by the European Space Agency (ESA). These data sets cover the site from late  
1030 2014 through the present. For the data acquired by the SENTINEL missions, we use the  
1031 geocoded interferograms (standard InSAR displacement – GUNW – products) calculated by the  
1032 Advanced Rapid Imaging and Analysis (ARIA) project (Bekaert et al., 2019).

1033 To analyze the interferometric pairs as time series of displacement, we use the Miami INsar  
1034 Time-series software in PYthon (MintPy) workflow (Yunjun et al., 2019). Figure 40, Figure 41,  
1035 and Figure 42 show maps of the vertical displacement estimated from InSAR for three data sets  
1036 acquired by the Sentinel-1 mission at different dates between 2016 and 2023. Each of the three  
1037 data sets shows relative subsidence (blue colors) faster than 3 mm/year in absolute value in three  
1038 areas:

1039 Area A: Near the center of the geothermal field near GPS station SEMN (mapped as a yellow  
1040 square), the deformation field shows a 3-km-by-2-km lobe of subsidence with a maximum rate  
1041 of downward vertical displacement of ~5 mm/year in absolute value.

1042 Area B: In the northwest corner of the map, deformation field shows a circular area  
1043 approximately 1 km in radius where the maximum rate of downward vertical displacement is  
1044 ~10 mm/year in absolute value. This feature is located within a kilometer of a circular “pivot  
1045 sprinkler” irrigation system. We interpret the deformation as subsidence resulting from pumping  
1046 groundwater from a shallow aquifer. Area B is not covered by the GEOS modeling.

1047 Area C: Over the dry lake bed (“playa”) to the west of GPS station SEMN, we see a lobe of  
1048 subsidence centered at (X,Y) = (7, 16) [km]. Here, the displacement rate is significantly different  
1049 from zero with 99% confidence only in Figure 40 and Figure 41.

1050 Before attempting to simulate these observations quantitatively, we consider four possible  
1051 interpretations.

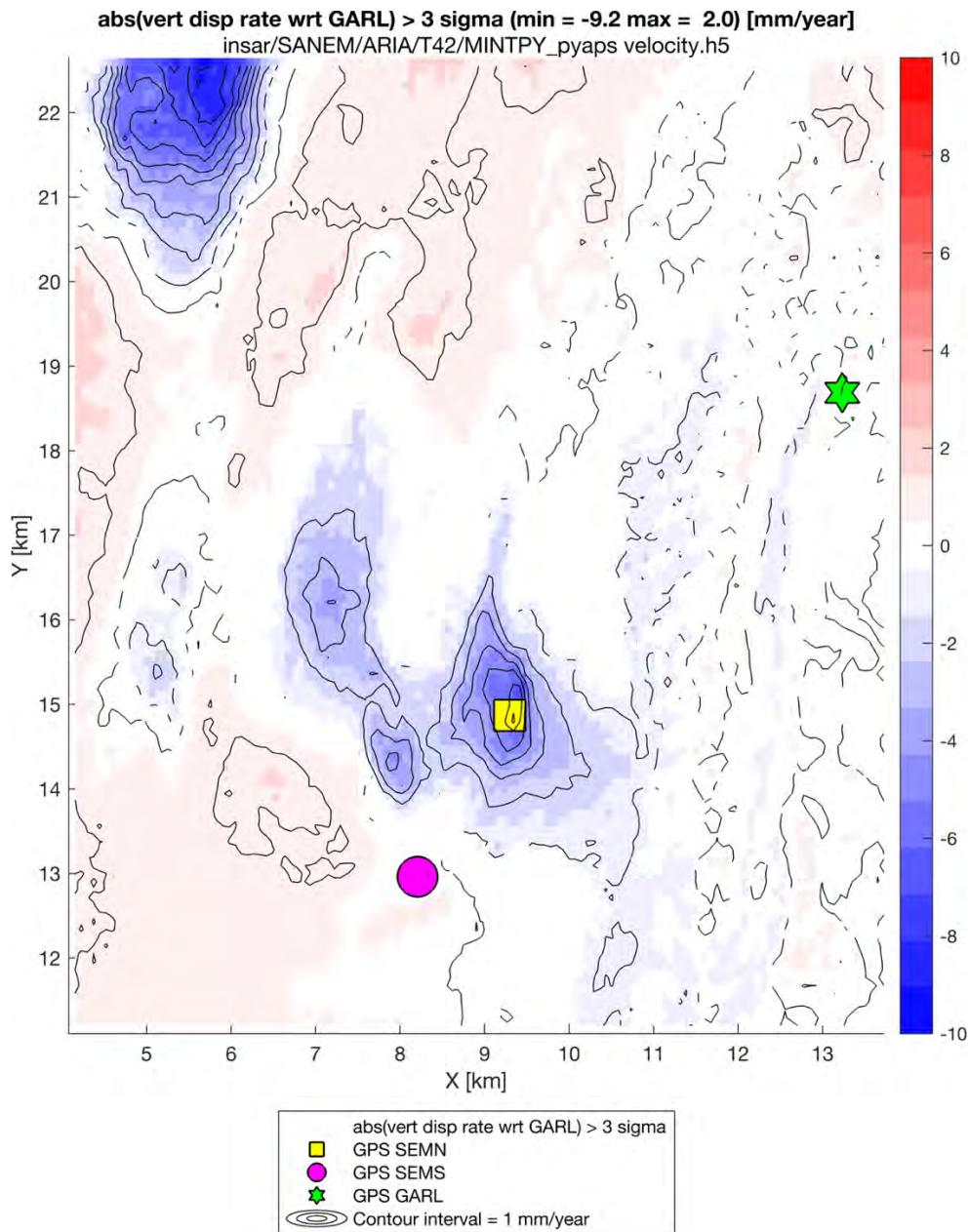
1052 In the first interpretation, the subsiding “bowls” observed near the irrigation system (Area A)  
1053 and geothermal wells (Area B) are related to pumping fluids into or out of the wells. To explain  
1054 the observed subsidence in Area B over an area roughly  $\sim 2$  km in diameter, however, would  
1055 require a “sink” that shrinks in volume at a depth of the order of a kilometer. Whether the  
1056 volumetric contraction is due to the hydro-mechanical (H-M) processes or thermo-mechanical  
1057 (T-M) processes is a question that we begin to address using numerical modeling below.

1058 In the second interpretation, the signatures observed in the InSAR data could be related to  
1059 changes in soil moisture (e.g., Zan et al., 2015; Ansari et al., 2017; Zheng et al., 2022). This  
1060 effect could be pronounced on the dry lake bed (Area B) to the west of the geothermal field,  
1061 where rainfall is rare. Considering a time series of Sentinel-1 data acquired near Bristol Dry Lake  
1062 in the Barstow-Bristol Trough region of California, Zheng et al. (2022) write that “the bias time  
1063 series of a pixel on the edge of the Bristol dry lake show clear correlation with precipitation and  
1064 ‘may’ indicate the InSAR phase response to the drying process of soil after precipitation” (Zheng  
1065 et al., 2022; emphasis theirs). Changes in soil moisture could affect the InSAR results near the  
1066 agricultural fields around the circular irrigation system, as also noted around irrigated  
1067 agricultural fields in the Imperial Valley of California (Gabriel et al., 1989).

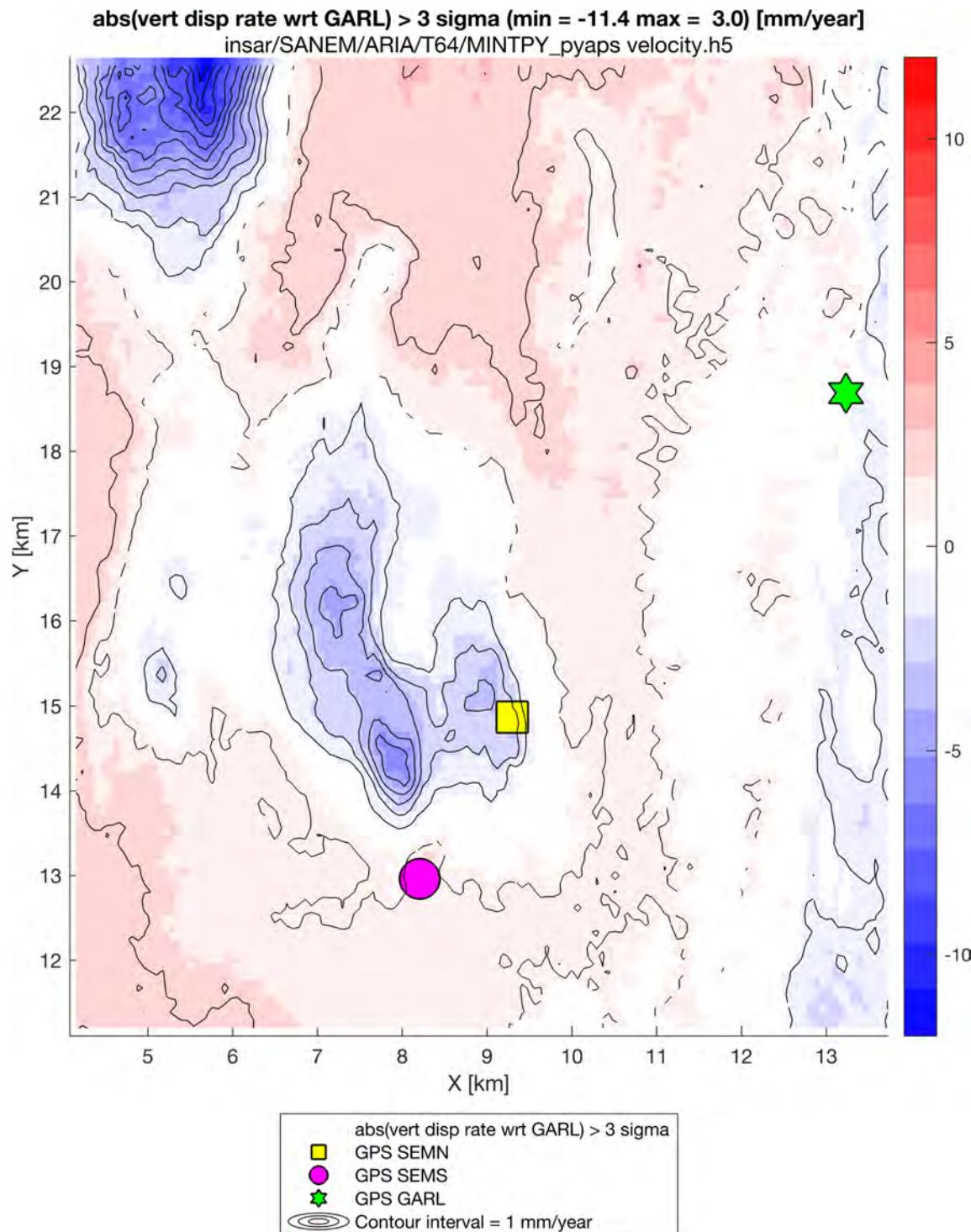
1068 In the third interpretation, the signatures observed in the InSAR results could be artefacts  
1069 related to the time series analysis. In some cases, applying spatial averaging (so-called “multi-  
1070 looking”) to Synthetic Aperture Radar (SAR) images may cause a systematic bias in deformation  
1071 modeling (e.g., Xu and Sandwell, 2020; Zheng et al., 2022).

1072 In the fourth interpretation, the signatures observed in the InSAR data could be related to  
1073 atmospheric effects. Heterogeneities in the atmosphere perturb the radar signals as they  
1074 propagate along the “line of sight” between the sensor aboard the spacecraft in orbit to the  
1075 ground and back again. As sketched by Massonnet and Feigl (1998) in their Figure 7, this effect  
1076 produces a larger delay for a pixel located at a low elevation than for a pixel located at a high  
1077 elevation. This effect has several nicknames, including “inverted barometer”, “tropo-topo”, and  
1078 “height-correlation”. To mitigate the effect of such atmospheric perturbations, we consider  
1079 several different approaches. The first approach neglects atmospheric effects. In the second  
1080 approach, we assume a horizontally stratified atmosphere, such that the delay is proportional to  
1081 the difference in topographic elevation between two pixels in distinct locations. The algorithm  
1082 (Berrada Baby et al., 1988) is implemented in MintPy with the “height\_correlation” key word.  
1083 The third approach uses weather data assimilated into meteorologic models from the European  
1084 Centre for Medium-Range Weather Forecasts (ECWMF) to simulate the atmospheric delay. To  
1085 trace rays through the atmospheric models, we use the Python based Atmospheric Phase Screen  
1086 — PyAPS (Jolivet et al., 2015).

1087 Which interpretation is correct? To address this question, we compare the InSAR results with  
1088 time series of vector displacement at GPS stations. To minimize the effects of different reference  
1089 frames, we consider differential displacement of GPS stations SEMN with respect to SEMS. To  
1090 calculate the vertical component of displacement field from the InSAR results, we assume that  
1091 the displacement is purely vertical. In other words, we divide the line-of-sight (LOS)  
1092 displacements (and their rates) by the cosine of the incidence angle.


1093 Figure 43 shows the time series of relative vertical displacement estimated from InSAR data  
1094 for a pixel located near GPS station SEMN with respect to a pixel located near GPS station  
1095 SEMS for InSAR data acquired in Sentinel-1 Tracks 64 and 42, respectively.

1096 The time series of vertical component of displacement estimated from GPS data at station  
1097 SEMN with respect to SEMS is also shown (identically) in each of these two panels. For the  
1098 GPS data, we perform a weighted least-squares fit to estimate the rate of vertical displacement.  
1099 For the InSAR data, we estimate the rate of vertical displacement using an unweighted least-  
1100 squares fit as well as showing the average velocity estimated using MintPy. In each case, the  
1101 quoted uncertainty in rate represents a formal estimate of one standard deviation scaled by the  
1102 square root of the (weighted) mean squared error (WMSE). For Track 42, the rate of relative  
1103 vertical displacement estimated from the InSAR data by MintPy is  $-7.5 \pm 0.2$  mm/year  
1104 (downward). This estimate differs by less than 1 mm/year from the rate of  $-7.6 \pm 0.4$  mm/year  
1105 estimated from the GPS data by a least-squares fit. For Track 144, the rate of relative vertical  
1106 displacement estimated from the InSAR data by MintPy is  $-3.5 \pm 0.1$  mm/year (downward). This  
1107 rate differs significantly from the rate estimated from the GPS data.


1108 The quoted standard errors are formal. The procedure used to estimate the rate of vertical  
1109 displacement from the GPS data does not account for temporal correlations between successive  
1110 days of GPS measurements. Similarly, the procedure used to estimate the rate of vertical  
1111 displacement from the InSAR data does not account for the correlation between two  
1112 interferometric pairs that share a common acquisition date. These effects tend to increase the  
1113 uncertainty of the estimated rates (e.g., Agram and Simons, 2015; Reinisch et al., 2016). The  
1114 displacement rate of SEMN with respect to SEMS is  $-7.0 \pm 2.3$  mm/year estimated from the GPS  
1115 data using the MIDAS robust trend estimator (Blewitt et al., 2016). Consequently, we consider  
1116 that a more realistic estimate of the standard error of the vertical displacement rate is at least 2  
1117 mm/year.

1118 We consider the InSAR results from Sentinel-1 Track 42 (Figure 40) to be the most reliable  
1119 data set for interpretation because the rates of vertical displacement estimated from GPS agree  
1120 more closely with the InSAR rates for Track 42 than for Track 64.

1121 Which approach to mitigating atmospheric effects is most reliable? To address this question,  
1122 we again compare the rates estimated from InSAR data to those estimated from GPS data. Figure  
1123 44 shows the comparison for each of the three approaches. The results using the height-  
1124 correlation approach ( $-7.2 \pm 0.2$  mm/year, upper panel) insignificantly different from those  
1125 estimated without accounting for atmospheric effects ( $-7.5 \pm 0.2$  mm/year, middle panel). The  
1126 latter estimate differs by less than 0.1 mm/year from the rate of  $-7.6 \pm 0.4$  mm/year estimated  
1127 from the GPS data by a least-squares fit. In contrast, however, using the PyAPS approach with  
1128 meteorological data yields an estimated rate of  $0.0 \pm 0.1$  mm/year (lower panel). Consequently,  
1129 we consider only the displacement rate estimated without accounting for atmospheric effects in  
1130 the subsequent interpretation.

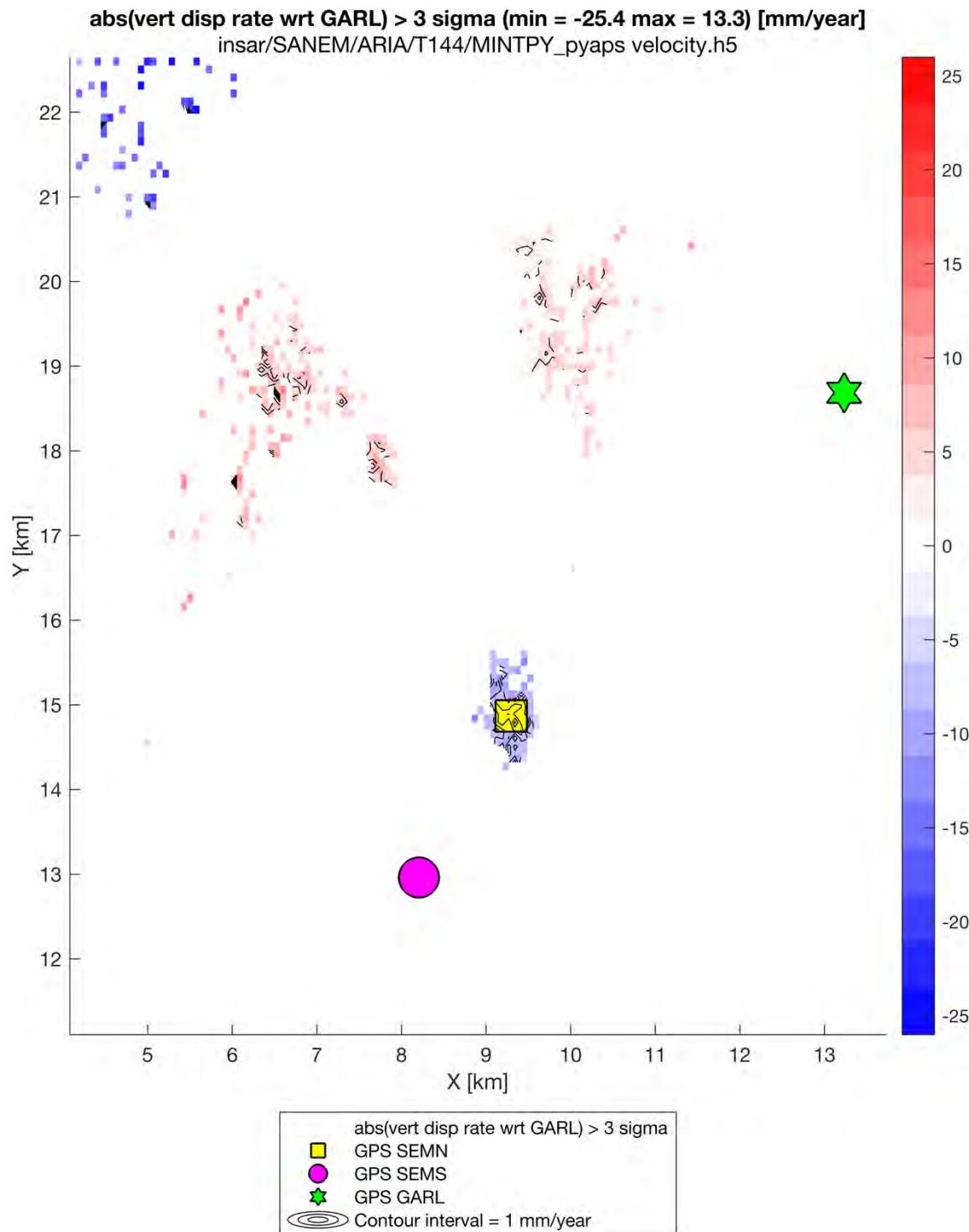


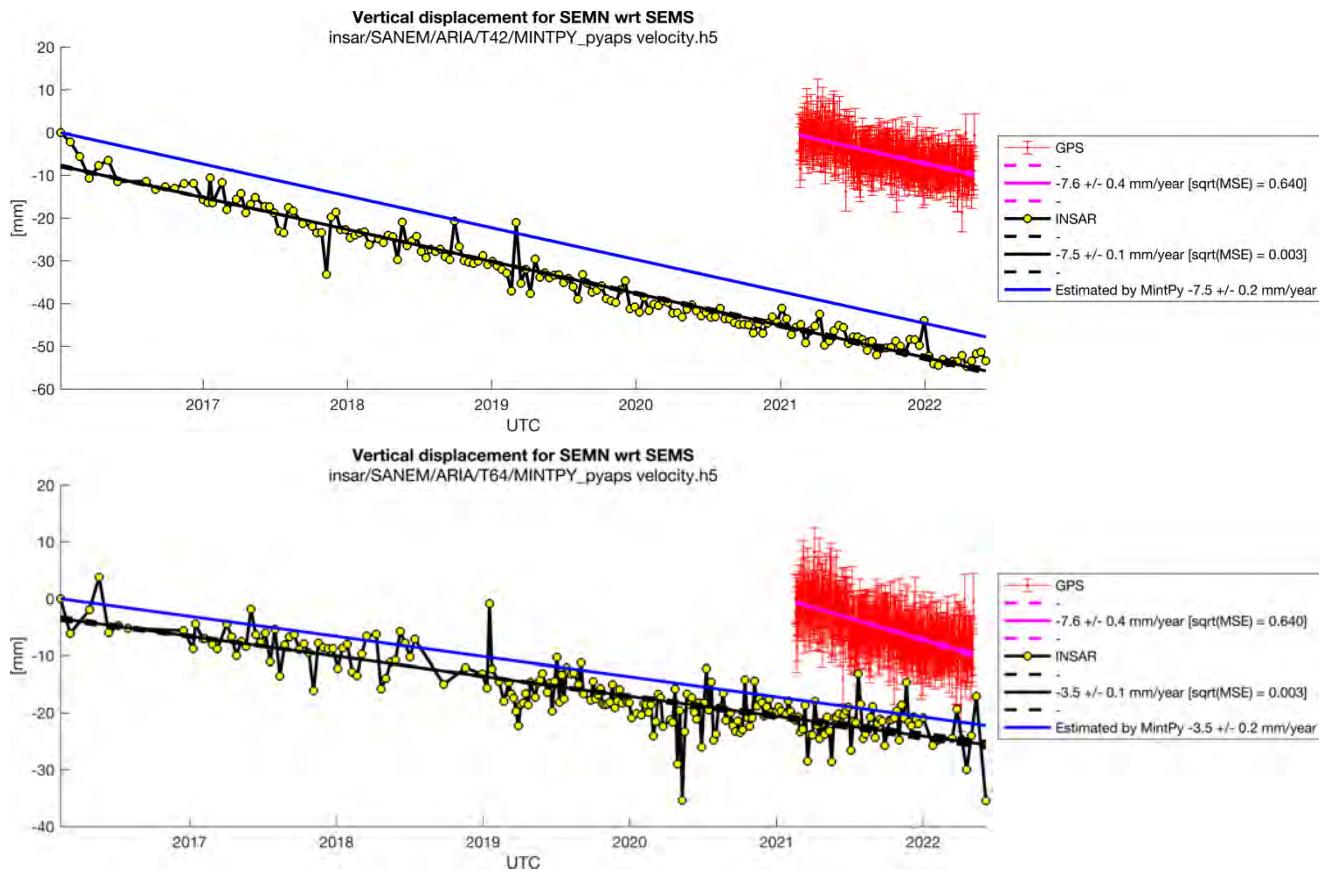
1131 *Figure 40. Map of the rate of vertical displacement estimated from InSAR data*  
 1132 *acquired between 2016 and 2022 by the Sentinel-1 satellite mission in Track 42. The*  
 1133 *rate of vertical displacement has been estimated using MintPy, neglecting*  
 1134 *atmospheric effects. The rates mapped in colors are referred to the median of the*  
 1135 *values for pixels located near GPS station GARL. Upward motion (relative uplift)*  
 1136 *appears as reddish colors, downward motion (relative subsidence) appears as*  
 1137 *blueish colors. Note the different color scales in each panel. Colors show only rates*  
 1138 *with an absolute value greater than 3 times their formal standard deviation. Symbols*  
 1139 *show GPS stations SEMS (yellow square), SEMN (magenta circle), and GARL*  
 1140 *(green star). Contour interval is 1 mm/year. Coordinates are in km with respect to an*  
 1141 *origin at UTM (Easting, Northing) = (286.924, 4457.967) [km].*



1142  
1143  
1144

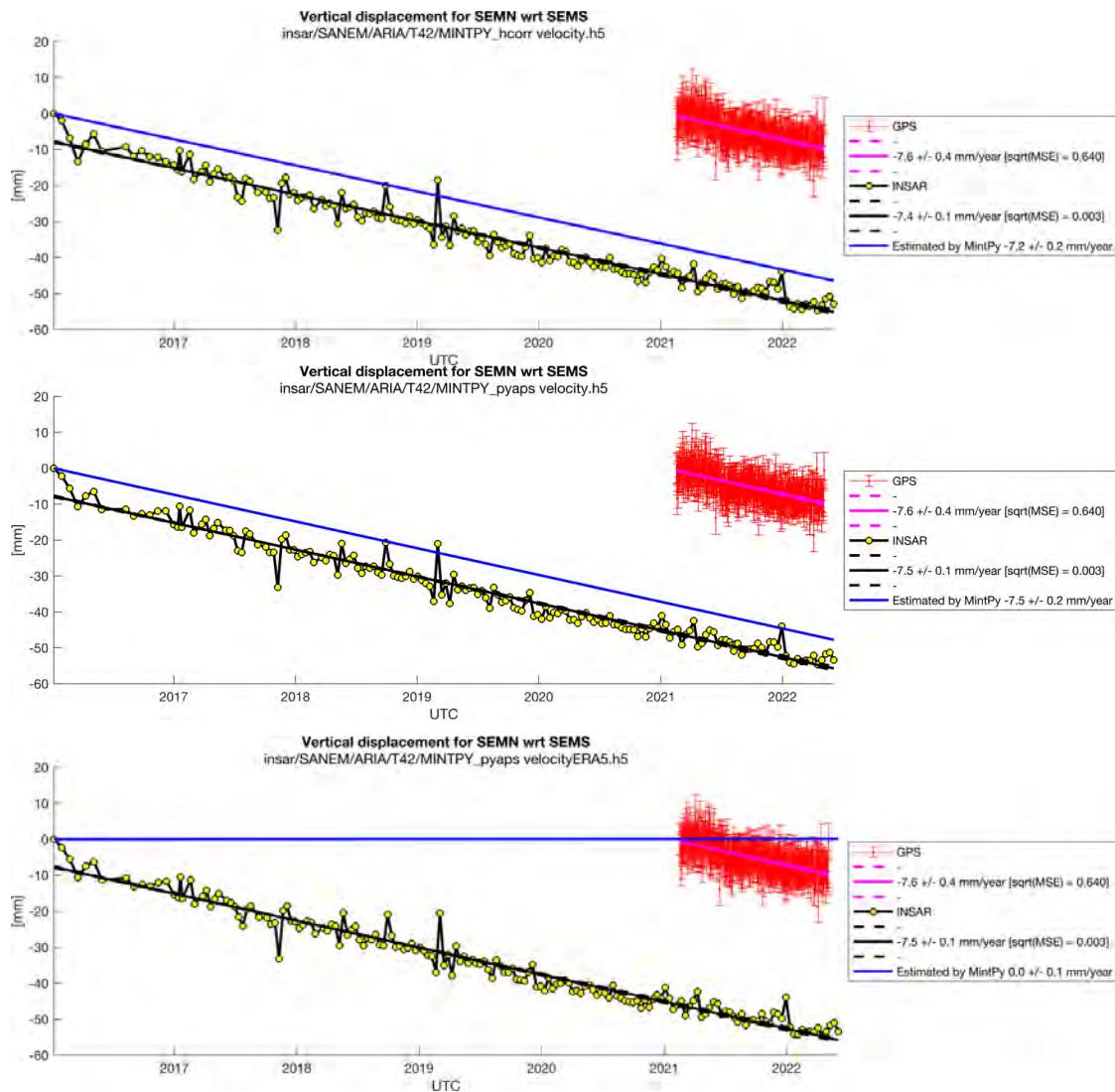
*Figure 41. Map of the rate of vertical displacement estimated from InSAR data acquired between 2016 and 2022 by the Sentinel-1 satellite mission in Track 64. Plotting conventions as in previous figure.*





Figure 42. Map of the rate of vertical displacement estimated from InSAR data acquired between 2016 and 2022 by the Sentinel-1 satellite mission in Track 144. Plotting conventions as in previous figures.

1145

1146


1147

1148



1149

1150 *Figure 43. Time series of relative vertical displacement estimated from InSAR and*  
 1151 *GPS data for a point located near GPS station SEMN with respect to a point located*  
 1152 *near GPS station SEMS. The InSAR data were acquired by the Sentinel-1 satellite*  
 1153 *mission in Track 42 (upper panel) and Track 64 (lower panel). In each panel, the*  
 1154 *yellow circles connected by black line segments represented the displacement at the*  
 1155 *date of each InSAR acquisition. In each panel, the blue line best fit to the InSAR data*  
 1156 *estimated using unweighted least squares. The black line shows the rate of vertical*  
 1157 *displacement estimated from the InSAR data by MintPy, neglecting atmospheric*  
 1158 *effects. The red points with 1- $\sigma$  error bars show the vertical component of*  
 1159 *displacement measured from GPS data analyzed by the Nevada Geodetic Laboratory*  
 1160 *at the University of Nevada-Reno (Blewitt et al., 2018; Kreemer et al., 2020). The*  
 1161 *magenta line shows the best fit to the GPS data estimated using weighted least*  
 1162 *squares. The GPS data and estimates are identical in both panels. The Y-intercepts*  
 1163 *of the GPS and InSAR data sets are arbitrary.*



1164 *Figure 44. Time series of relative vertical displacement estimated from InSAR data*  
1165 *acquired by the Sentinel-1 satellite mission in track 64 (yellow circles connected by*  
1166 *black line segments). The three panels show results estimated using three different*  
1167 *approaches for mitigating atmospheric effects: (upper panel) height-correlation;*  
1168 *(middle panel) neglecting atmospheric effects, and (lower panel) PyAPS with*  
1169 *meteorologic data. In each panel, the black line line best fit to the InSAR data*  
1170 *estimated using unweighted least squares. The shows line shows the rate of vertical*  
1171 *displacement estimated from the InSAR data by MintPy. The red points with 1- $\sigma$*   
1172 *error bars show the vertical component of displacement measured from GPS data*  
1173 *analyzed by the Nevada Geodetic Laboratory at the University of Nevada-Reno*  
1174 *(Blewitt et al., 2018; Kreemer et al., 2020). The magenta line shows the best fit to the*  
1175 *GPS data estimated using weighted least squares. The GPS data and estimates are*  
1176 *identical in both panels. The Y-intercepts of the GPS and InSAR data sets are*  
1177 *arbitrary.*

1178 *Geodesy – GPS*

1179 Two continuously operating GPS stations, SEMS and SEMN, have been installed on  
1180 monuments attached to idle wellheads within the geothermal field at San Emidio. GPS station  
1181 SEMS was installed on the head of idle Well 17-21 at the southern edge of the geothermal field  
1182 in January 2021 and then removed in April 2022. GPS station SEMN was installed on the head  
1183 of idle Well 65C-16 near the power plant locate at center of the geothermal field in January  
1184 2021. The stations started collecting data on January 14 and February 17, 2021, respectively.

1185 The last observations are from August 25 2024. Data completeness for SEMN is 99.31% and  
1186 for SEMS it is only 48.43% because the original monument had to be removed after about one  
1187 year due to nearby construction and was re-installed only two years later.

1188 A third GPS station, named GARL, is located outside the geothermal area in the mountain  
1189 range to the northeast of the power plant to provide a stable reference point.

1190 At each station, raw GPS data are taken every 15 seconds. At the Nevada Geodetic  
1191 Laboratory, we analyze the GPS data to calculate daily measurements of (relative) position  
1192 coordinates in three dimensions that can be modeled as time series of displacement (Blewitt et  
1193 al., 2018; Kreemer et al., 2020).

1194 Time-series for SEMN can be found at:

1195 <http://geodesy.unr.edu/NGLStationPages/stations/SEMN.sta>

1196 Time-series for SEMS can be found at:

1197 <http://geodesy.unr.edu/NGLStationPages/stations/SEMS.sta>

1198 The SEMN and SEMS daily RINEX files have been posted at:

1199 UNR: <http://geodesy.unr.edu/magnet/rinex/> (up-to-date) and

1200 UNAVCO data archive: <https://data.unavco.org/archive/gnss/rinex/obs/>

1201  
1202 For this project, the position time-series of both stations are expressed relative to station  
1203 GARL which is a very stable long-running GPS station in the mountain east of San Emidio. The  
1204 position time-series are shown in Figure 45 and Figure 46.

1205  
1206 Key metrics of SEMN and SEMS relative to GARL:

1207 **Average daily uncertainty (mm):**

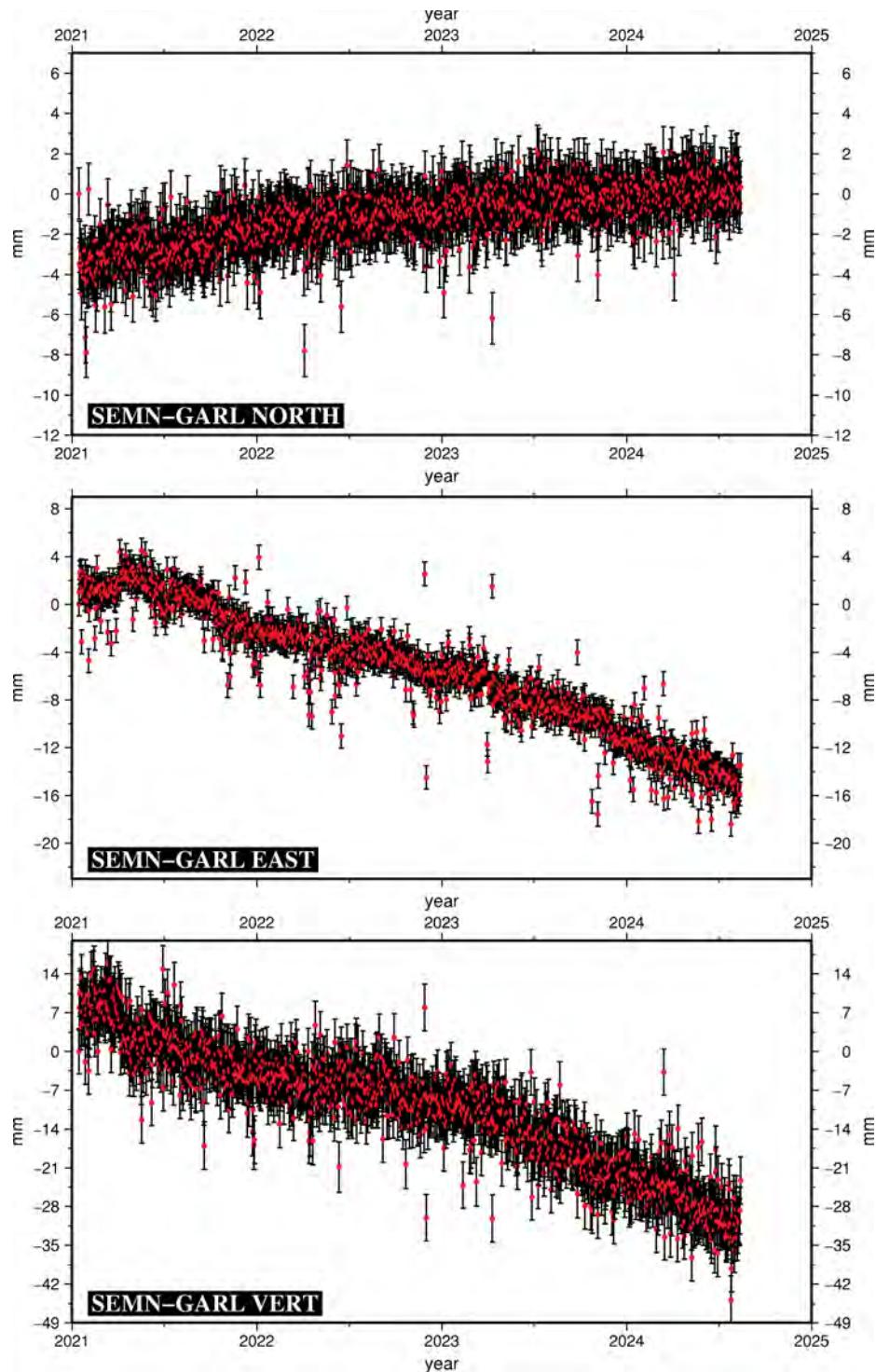
1208 SEMN: 1.3 North, 1.0 East, 4.2 Up

1209 SEMS: 1.3 North, 1.0 East, 4.1 Up

1210 **Velocity (mm/yr):**

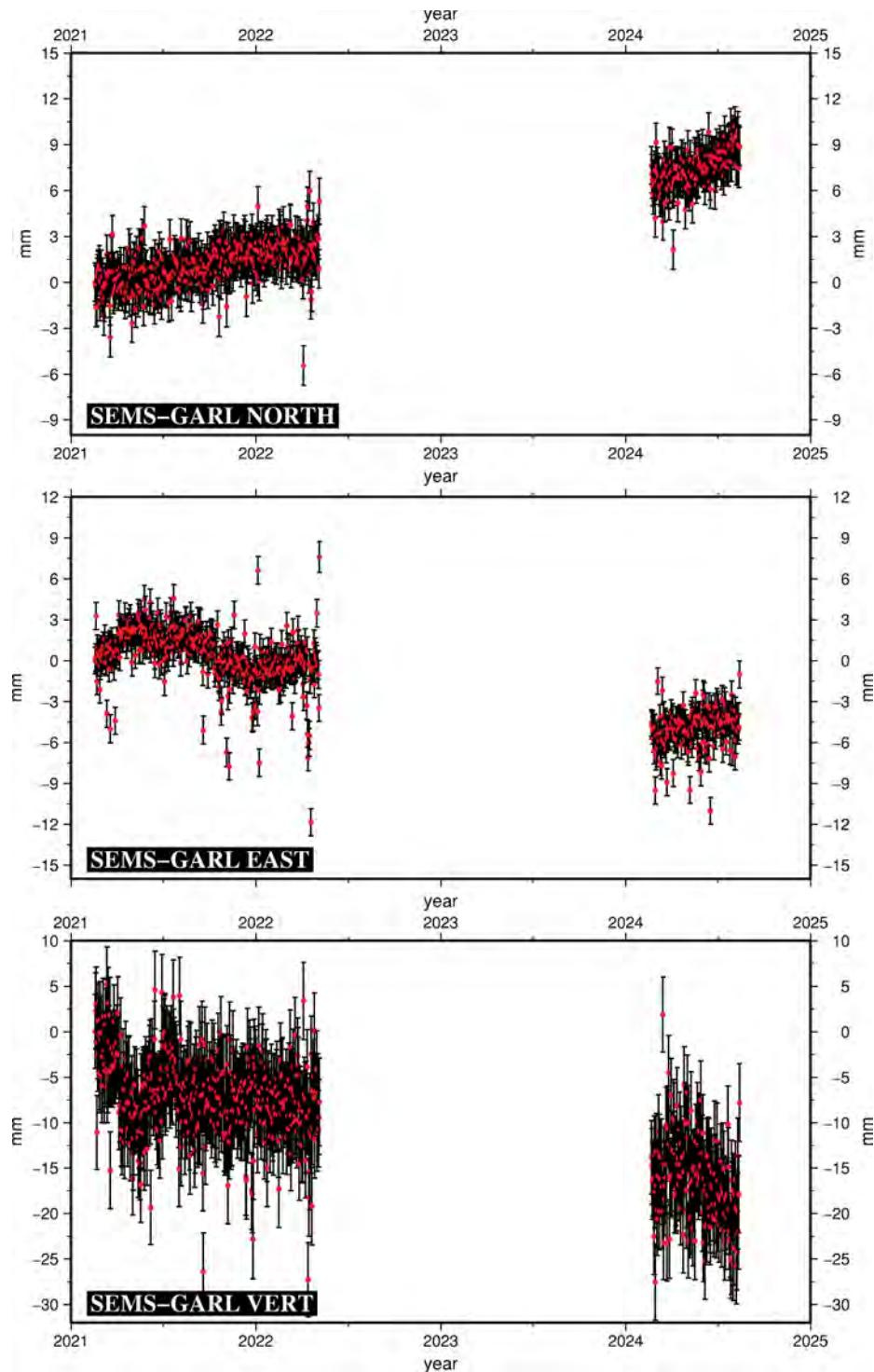
1211 SEMN:  $1.0 \pm 0.2$  North,  $-4.7 \pm 0.3$  East,  $-10.2 \pm 1.1$  Up

1212 SEMS\*:  $2.4 \pm 0.2$  North,  $-2.0 \pm 0.2$  East,  $-3.8 \pm 0.8$  Up


1213 **RMS Repeatability (mm):**

1214 SEMN: 1.0 North, 1.5 East, 4.3 Up

1215 SEMS\*: 1.1 North, 1.7 East, 4.2 Up


1216 \* We accounted for an offset due to the dismantling and re-installation of the monument.

1217 Offset was estimated as part of the least-squares fit estimating the rate.



1218  
1219

Figure 45. Time series of daily estimates of position of GPS station SEMN relative to GARNL.



1220 *Figure 46. Time series of daily estimates of position of GPS station SEMS relative to*  
1221 *GARN. Note that the monument at SEMS removed in 2002 and then re-installed in*  
1222 *2024, causing an offset. The offset is removed from the plot and was estimated as*  
1223 *part of a least-squares fit estimating the rate.*

1224 **Hydrology**

1225 *The following section includes excerpts, some verbatim, from several sources (Cardiff et al., 2023).*

1226 Ormat has shared information with the project team, including well assemblies, current  
1227 site operations and pumping rates, and a conceptual model that represents the 3-D geometry  
1228 of the San Emidio system (Figure 8). We analyze the existing pumping test data from San  
1229 Emidio, as provided by Ormat, to estimate spatially variable subsurface permeability. The  
1230 geologic structural model contains the key stratigraphic units and fault structures identified  
1231 via geologic and geophysical analysis of the region. We pursue multiple conceptual models  
1232 for the dominant drivers of permeability variability through alternative parameterizations of  
1233 subsurface structures represented in this model. Using the pumping test data sources, we  
1234 perform forward modeling using the COMSOL Multiphysics finite element modeling  
1235 platform, and estimate – through inverse modeling – the permeability of key geologic  
1236 structures. The results of forward and inverse modeling are used to simulate pressure changes  
1237 expected during plant shutdowns in 2016, 2021, and 2022. These pressure changes alter the  
1238 effective stress on faults.

1239 The geologic conceptual model of the subsurface provided by ORMAT was developed  
1240 using the Leapfrog Geothermal software, and includes geometric elements that define key  
1241 volumes (lithology), surfaces (faults and lithologic boundaries) and curves (wellbore profiles).  
1242 Five key stratigraphic units are defined (Figure 47, left), as documented by Folsom et  
1243 al.(2020) – from deepest to shallowest, they are: (1) Triassic and Jurassic Nightingale  
1244 metasedimentary rocks (TrJn) consisting of phyllite, quartz, and marble; (2) Tertiary andesites  
1245 and tuffaceous units (Tvu); (3) Tertiary basalt (Tpb); (4) Quaternary alluvial fill (Qal); and (5)  
1246 Altered and silicified Quaternary alluvial sediments (Qas) that represent the shallow north-  
1247 trending geothermal outflow zone (Rhodes, 2011; Rhodes et al., 2011; Folsom et al., 2020).  
1248 Key faults that are thought to be important contributors to fluid flow in the region (Figure 47,  
1249 right) are the San Emidio Fault (SEF) and Basin Bounding Fault (BBF), which were  
1250 parameterized as permeable through all units except the Nightingale basement material  
1251 (TrJn). This geologic conceptual model was imported into the COMSOL Multiphysics models  
1252 and translated to the WHOLESCALE coordinate system described above.

1253 Information provided by Ormat for each well at the site included the UTM coordinates at  
1254 land surface, the total depth of drilling, and the range of depths over which the well is open to  
1255 the surrounding formation (either via a perforated interval or open hole). For pumping tests  
1256 performed in 2016 and 2017, flow rates at all pumping wells and pressure responses at a  
1257 subset of site wells representing observation wells were provided. For site shutdowns, flow  
1258 rate data from all operational (i.e., producing and injecting) wells was provided. A summary  
1259 of the pressure data utilized is found in Table 10, and an example of the 2017 testing data is  
1260 shown in Figure 48. Before importing into the COMSOL model, all pumping data was  
1261 converted to mass estimates by assuming a fluid density for water at 100°C. Pressure change  
1262 observations were baselined to assume zero pressure change before pumping changes began,  
1263 and then resampled to hourly time steps.

1264 Once all geometry, hydraulic forcing, and observational data were imported to COMSOL,  
1265 the model domain was discretized using tetrahedral finite elements using COMSOL's

1266 automatic meshing routines. Several meshes were created, and the mesh used depended on the  
1267 time period being simulated. For the experimental pumping tests, the mesh was refined near  
1268 wells 17-21, 18-21, and 78-20 as these represented the location of pumping and thus the  
1269 steepest expected head gradients. For later modeling of site shutdowns (described later), the  
1270 mesh was refined in the vicinity of all operational wells. The mesh is conformal with the  
1271 geologic boundaries shown in Figure 47, and is also refined in the vicinity of all operational  
1272 wells to have a maximum dimension of 50 m.

1273 After validating the numerical model through mass balances and other solution checks, the  
1274 COMSOL model was used to perform inverse modeling for the internal permeability  
1275 structure. Other model parameters – including stratigraphic unit porosity, effective matrix  
1276 compressibility, fluid viscosity, fluid density, and fluid compressibility – were assumed  
1277 constant, based on either prior site data or (where unavailable) literature estimates.  
1278 Permeability was parameterized according to a series of alternative conceptual models,  
1279 following the approach of multiple working hypotheses (Chamberlin, 1890). In conceptual  
1280 model 1 (CM1), which is used as a baseline, the reservoir assumes a homogeneous,  
1281 anisotropic permeability value throughout the region. For conceptual models 2 through 4  
1282 (CM2 – CM4), stratigraphic and structural permeability variations are successively included.  
1283 In CM2, we estimated permeability values for each stratigraphic unit (TrJn, Tvu, Tpb, Qal,  
1284 and Qas), along with a vertical anisotropy coefficient for all units (representing the ratio of  
1285 horizontal to vertical permeability). In conceptual model 3 (CM3), an additional permeability  
1286 value was added to represent the San Emidio Fault (SEF) as a fault plane with its own  
1287 permeability and assumed fault zone of 1 m width. In conceptual model 4, we include both  
1288 the mapped San Emidio Fault (SEF) and basin bounding fault (BBF) as units with their own  
1289 defined permeability values, each also with 1-meter widths. All individual forward-run  
1290 simulations required less than 10 minutes on a 2.5 GHz, 28-core Intel Xeon W computer with  
1291 96GB of RAM. At present, the model simulates fluid flow only, though COMSOL is capable  
1292 of coupled thermal-hydraulic modeling.

1293 All observations of pressure change during the 2016 and 2017 pumping tests were fit via  
1294 inversion using nonlinear least squares. We minimized the least squares objective function  
1295 using an iteratively linearized Gauss-Newton method, which approximates the objective  
1296 function as quadratic in the vicinity of current parameter estimates (e.g., Aster et al., 2005).  
1297 To ensure non-negativity of input permeability, all inverse modeling was performed on log-  
1298 transformed parameter values, which were converted back into native units following  
1299 convergence. During each inversion iteration, the elements of the model Jacobian matrix –  
1300 representing the sensitivity of all simulated observations to all model parameters – were  
1301 estimated via a finite difference method that successively altered each parameter by 30%.  
1302 Iteration in the inversion included a line-search between current parameter estimates and the  
1303 update step calculated via Gauss-Newton. Convergence was declared when the maximum  
1304 relative parameter change was less than 0.1% or when the relative objective function change  
1305 was less than 0.1% at the end of a linearization iteration. Full inversion runtimes for each  
1306 conceptual model were several days each.

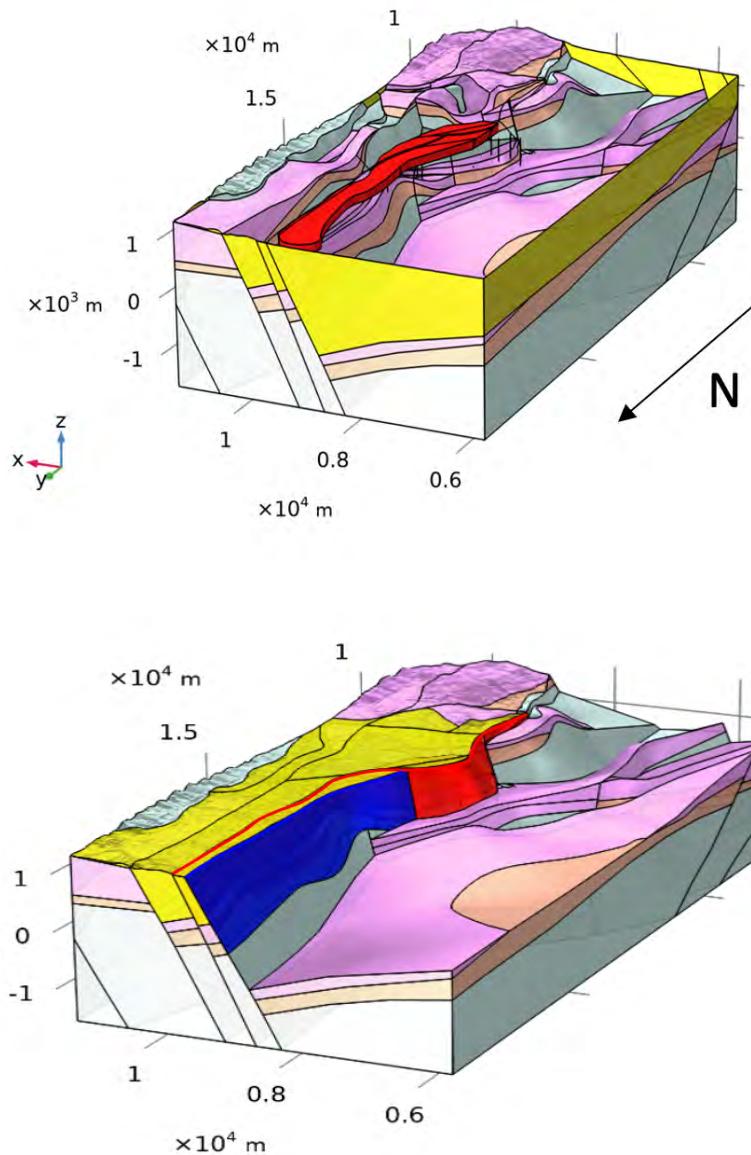
1307 Different production and injection wells were operating during the 2016 site shutdown,  
1308 and at larger flow rates than those recorded during the 2016 and 2017 pumping tests.

1309 Results for all inversions are summarized in Table 10: *Testing data utilized within*  
1310 *COMSOL finite element numerical model.*

|                       | 2016 Testing               | 2017 Testing                              | 2016 Site Shutdown                                                         |
|-----------------------|----------------------------|-------------------------------------------|----------------------------------------------------------------------------|
| Time Period Imported  | 2016-10-05 –<br>2016-10-13 | 2017-09-19 –<br>2017-09-27                | 2016-12-07 –<br>2016-12-15                                                 |
| Pumping Flow rates    | 17-21, 25-21               | 17-21, 18-21, 78-20                       | 61-21, 75B-16, 76-16<br>(Production)<br>42-21, 43-21, 53-21<br>(Injection) |
| Pressure Observations | OW-6, OW-8, OW-9           | OW-6, OW-8, OW-9,<br>25-21, 28-21, 45A-21 | None                                                                       |

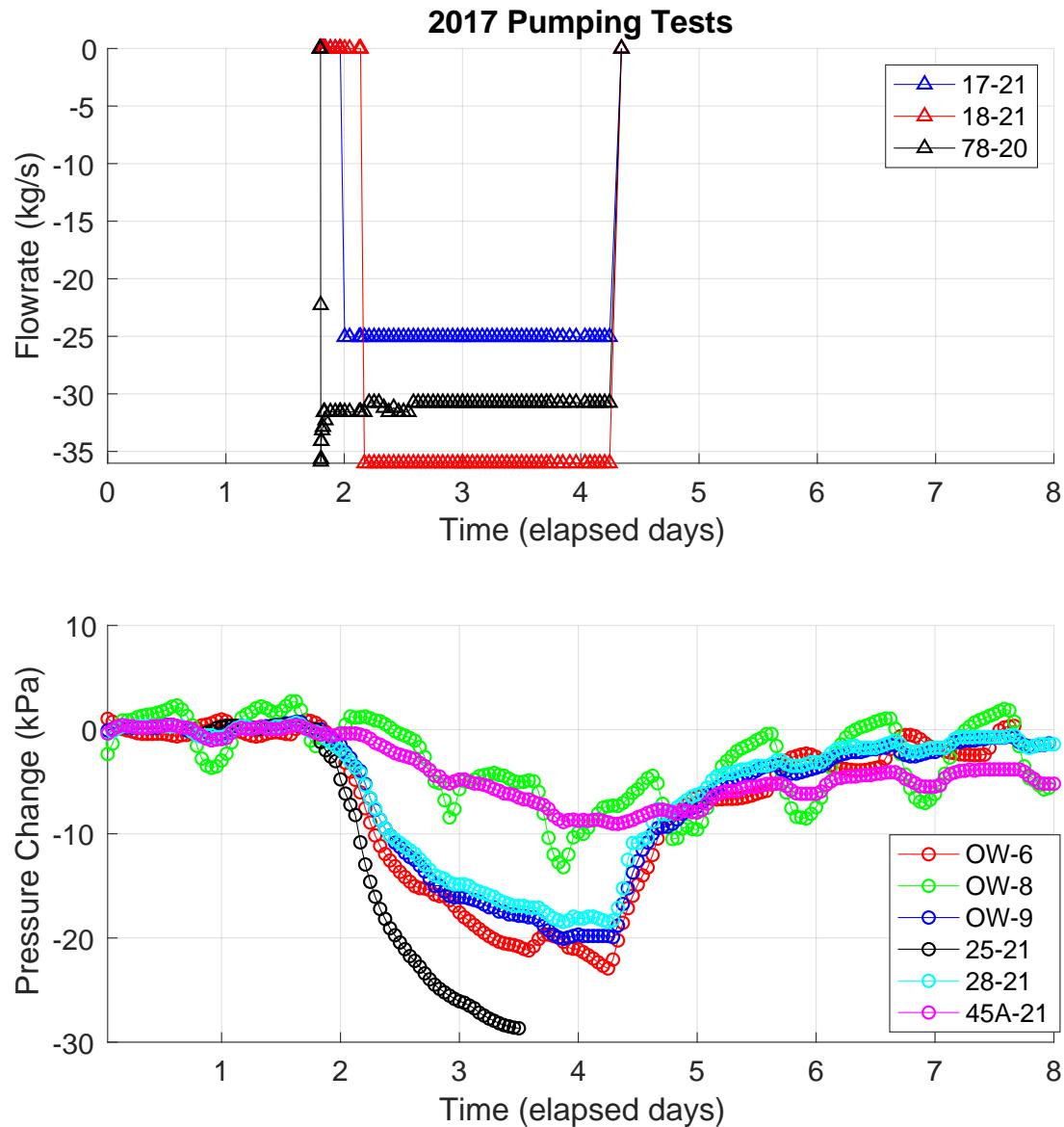
1311  
1312 *Table 11*, including the root mean squared error (RMSE) misfit between hourly-resampled  
1313 observations of pressure changes and model-simulated pressure changes. Analyses of data  
1314 from periods when site operations do not change had an average standard deviation of 1.4  
1315 kPa; this value is thus assumed as a reasonable proxy for inherent “measurement error”  
1316 associated with unmodeled processes including sensor noise, systematic drift, and secular  
1317 signals including atmospheric temperature fluctuations that affect instrument response.

1318 While overall RMSE for each model is of the same order of magnitude as sensor error,  
1319 plots of drawdown curves for individual observation wells indicate potential structural errors  
1320 in all conceptual models. For both the 2016 and 2017 pumping tests, pumping took place  
1321 toward the southern end of the wellfield. Field data indicates that pressure response at  
1322 northern well OW-6 was similar in magnitude and timing to pressure response at well 28-21  
1323 in the south (Figure 49). Another northern well, OW-8, experienced very small pressure  
1324 variation despite its proximity to OW-6. All inverse modeling results, however, simulated  
1325 small pressure changes at northern well OW-6. These observations taken together suggest that  
1326 flow conduits connecting the southern field to OW-6 at its open interval may be present that  
1327 are currently not represented in the geologic conceptual structure.


1328 All heterogeneous conceptual models show improvement in reducing data misfit relative  
1329 to the homogeneous base case (CM1). Though it does not include any fault-based  
1330 permeability, CM2 is consistent with other observations from prior studies at San Emidio,  
1331 including: (1) Qas (silicified alluvium) has been previously identified as unit that likely has  
1332 substantial permeability relative to other basin-fill materials; and (2) the permeability  
1333 anisotropy ratio of approximately 3 for all geologic units is within a reasonable range for  
1334 natural sediment and rock formations.

1335 In contrast, CM3 includes the San Emidio Fault (SEF) and estimates high permeability for  
1336 this feature, but: (1) Qas is optimized as having lower permeability than surrounding  
1337 materials, which is not consistent with other observations; and (2) The anisotropy ratio, which  
1338 implies a >1000-fold decrease in vertical hydraulic conductivity, is significantly more  
1339 extreme than even those observed in shales over a range of pressure conditions (Bhandari et  
1340 al., 2015; Pan et al., 2015).

1341 Finally, CM4 includes both the San Emidio Fault (SEF) and Basin Bounding Fault (BBF)  
1342 as separate permeable units. This conceptual model is able to obtain a similar level of misfit to  
1343 CM2 and CM3, and we deem this model to be more plausible than CM3 due to: 1) a high  
1344 permeability estimated for Qas, as in CM2; and 2) A more reasonable estimated anisotropy  
1345 ratio.


1346

1347



1348  
1349  
1350  
1351  
1352

Figure 47. Two views of geological conceptual model (camera is from the northwest) provided by Ormat. Upper panel: Stratigraphic geologic units are from top to bottom: Qal (yellow, with land surface removed), Qas (red), Tbp (pink), Tvu (orange) and TrJn (teal). Lower panel: Fault planes considered as permeable segment SEF (red) and BBF (blue).



1353  
1354  
1355

Figure 48. 2017 flow rate (positive flowrate is injection, negative is production) and pressure data provided by ORMAT, after units conversion and baselining. Elapsed days are days after 2017-09-19.

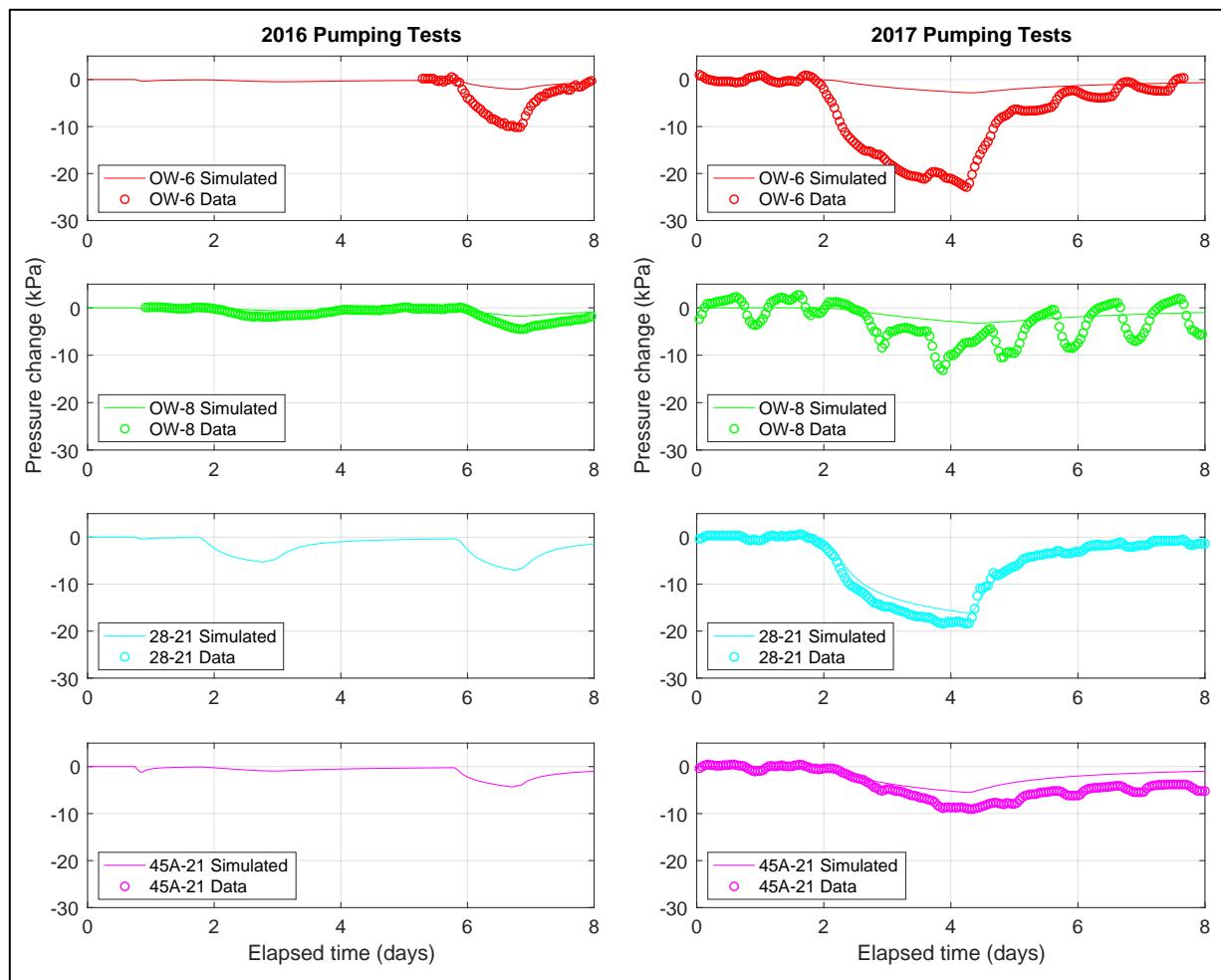
1356

*Table 10: Testing data utilized within COMSOL finite element numerical model.*

|                       | <b>2016 Testing</b>        | <b>2017 Testing</b>                       | <b>2016 Site Shutdown</b>                                                  |
|-----------------------|----------------------------|-------------------------------------------|----------------------------------------------------------------------------|
| Time Period Imported  | 2016-10-05 –<br>2016-10-13 | 2017-09-19 –<br>2017-09-27                | 2016-12-07 –<br>2016-12-15                                                 |
| Pumping Flow rates    | 17-21, 25-21               | 17-21, 18-21, 78-20                       | 61-21, 75B-16, 76-16<br>(Production)<br>42-21, 43-21, 53-21<br>(Injection) |
| Pressure Observations | OW-6, OW-8, OW-9           | OW-6, OW-8, OW-9,<br>25-21, 28-21, 45A-21 | None                                                                       |

1357

1358


*Table 11: Results of inverse modeling from all 4 conceptual models.*

|                            | <i>CM1*</i>           | <i>CM2</i>            | <i>CM3</i>            | <i>CM4</i>            |
|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| RMSE Misfit [ <i>kPa</i> ] | 5.8                   | 5.2                   | 5.3                   | 5.3                   |
| Qal $k_x$ [ $m^2$ ]        | $2.9 \times 10^{-12}$ | $1.5 \times 10^{-13}$ | $1.9 \times 10^{-13}$ | $1.5 \times 10^{-13}$ |
| Qas $k_x$ [ $m^2$ ]        | $2.9 \times 10^{-12}$ | $6.2 \times 10^{-11}$ | $5.0 \times 10^{-15}$ | $4.3 \times 10^{-11}$ |
| Tpb $k_x$ [ $m^2$ ]        | $2.9 \times 10^{-12}$ | $1.3 \times 10^{-13}$ | $2.0 \times 10^{-13}$ | $1.7 \times 10^{-12}$ |
| Tvu $k_x$ [ $m^2$ ]        | $2.9 \times 10^{-12}$ | $5.2 \times 10^{-11}$ | $1.4 \times 10^{-10}$ | $2.4 \times 10^{-11}$ |
| TrJn $k_x$ [ $m^2$ ]       | $2.9 \times 10^{-12}$ | $4.4 \times 10^{-14}$ | $4.4 \times 10^{-14}$ | $3.1 \times 10^{-14}$ |
| Anisotropy $k_x/k_z$       | 2.0                   | 3.5                   | 1,300                 | 140                   |
| SEF $k$ [ $m^2$ ]          | –                     | –                     | $1.7 \times 10^{-10}$ | $4.4 \times 10^{-11}$ |
| BBF $k$ [ $m^2$ ]          | –                     | –                     | –                     | $3.7 \times 10^{-9}$  |

1359

\*Permeability for all stratigraphic units (Qal, Qas, Tpb, Tvu, TrJn) was estimated as a single parameter in CM1

1360



1361  
1362  
1363  
1364  
1365 *Figure 49. Simulated pressure changes from CM2 (lines) and resampled pressure*  
*observations (symbols) for subset of pressure data from 2016 and 2017 pumping*  
*experiments. Impacts from atmospheric temperature fluctuations on observations is*  
*prominent in 2017 OW-8 observations. Elapsed days represent days after start of*  
*time period described in Table 1.*

1366 ***Seismology***

1367 ***2016 Shutdown (~100 Events)***

1368 *The following section includes excerpts, some verbatim, from several sources (Feigl et al., 2023; Guo et  
1369 al., 2023; Thurber et al., 2024)*

1370 Increases in microseismicity (magnitude less than 3) have been associated with the  
1371 temporary cessation of pumping at production wells in geothermal fields. This phenomenon  
1372 was recently reported at the Brady Hot Springs geothermal field, Nevada, USA (Cardiff et al.,  
1373 2018). The basic hypothesis is that fluid extraction during normal power plant operation  
1374 inhibits fault slip by reducing pore pressure ( $P_p$ ) and thereby increasing the effective normal  
1375 stress on faults, whereas short-term cessations of production promote fault slip by increasing  
1376  $P_p$  and decreasing the effective stress. Similar correlations between microseismicity and  
1377 production pumping cessation during planned shutdowns have also been observed at the  
1378 Kakkonda geothermal field, Japan (Tosha et al., 1998), the Blue Mountain geothermal field,  
1379 Nevada, USA (Templeton et al., 2017; Gonzalez et al., 2022), and the San Emidio geothermal  
1380 field, Nevada, USA (Warren et al., 2018; Feigl et al., 2022, 2023).

1381 In December 2016, a dense passive seismic array was deployed at the San Emidio  
1382 geothermal field for about one week and 123 microseismic events (MSEs) were detected by  
1383 Warren et al. (2018) (Figure 50). Temporal evolution of the MSEs shows a substantial  
1384 increase in microseismicity during a ~20-hour-long shutdown of pumping at all production  
1385 and injection wells (Figure 50 & Figure 51). A majority of the MSEs occurred adjacent to two  
1386 production wells in the northeastern part of the seismic array (Figure 50), suggesting a direct  
1387 connection between the MSEs and the cessation of pumping at the production wells.

1388 To understand the spatial distribution and temporal evolution of the stress field at San  
1389 Emidio, the WHOLESCALE project began in 2020 (Feigl et al., 2022). As a part of the  
1390 WHOLESCALE project, we have performed a detailed analysis of the 2016 December  
1391 microseismic event data set developed by Microseismic, Inc., including: (1) determining high-  
1392 precision hypocentral locations, magnitudes, and focal mechanisms for observed MSEs; (2)  
1393 developing a P-wave tomographic velocity model; (3) inferring a local stress tensor for the  
1394 site with focal mechanisms. In this study, we present our seismic and stress analysis results  
1395 that advance the characterization of material properties, distribution of seismically active  
1396 faults/fractures, and stress state in the reservoir. In the following sections, we first briefly  
1397 introduce the geologic setting and operation history at San Emidio, the 2016 seismic data set,  
1398 and the methodology of our analysis, and then present and discuss our results.

1399 Several geophysical surveys have been performed in the field to investigate the subsurface  
1400 structure (e.g., Warren et al., 2018; Folsom et al., 2020). Warren et al. (2018) mapped  
1401 geothermal permeability using a passive seismic emission tomography method. Folsom et al.  
1402 (2020) performed a 3-D inversion of magnetotelluric (MT) data. They also forward-modeled  
1403 gravity data informed by geology, drilling, MT, and other results. Their results helped them to  
1404 construct a conceptual block model of the subsurface including the 3-D distribution of fault  
1405 surfaces and inferred stratigraphic contacts.

1406 From 2016-12-08 19:33 to 2016-12-09 15:00 UTC, the San Emidio power plant was shut  
1407 down for 19.45 hours for maintenance (dark gray shading in Figure 51a). There are three

1408 vertical production wells and three vertical injection wells (red and blue triangles in Figure  
1409 50), which all stopped operating during the shutdown, except for a short resumption (Figure  
1410 51b). A dense passive seismic array with 1,302 vertical-component seismographs, spaced  
1411 approximately 80 m apart, was deployed at San Emidio during December 5-11, 2016 (Figure  
1412 50) (Lord et al., 2016a; Lord et al., 2016b; Warren et al., 2018). The primary aim was to  
1413 advance the characterization of permeability using passive seismic emission tomography  
1414 (PSET), a back-projection type technique (Sicking et al., 2012; Warren et al., 2018). In  
1415 addition, 123 MSEs were detected, most of which were located within the northeastern part of  
1416 the seismic array (Figure 50) (Warren et al., 2018). In addition to the MSEs, one string shot  
1417 on December 8, 2016 was also recorded by the seismic array (Figure 50).

1418 We cut event waveforms for the MSEs in the catalog of Warren et al. (2018) and the string  
1419 shot, which were then processed by removing the mean and trend. We then performed  
1420 bandpass filtering between 5 and 50 Hz based on the visual inspection of signal-to-noise ratio  
1421 (SNR) from the spectra of several events. We picked P-wave arrivals for the catalog events  
1422 using an automatic arrival picking code (Guo et al., 2018), which is based on Akaike  
1423 Information Criteria (Maeda, 1985). The arrivals were picked within preset time windows,  
1424 which are 0.6 s before and 0.6 s after the theoretical arrivals calculated with the catalog  
1425 locations and an existing velocity model from Warren et al. (2018). For each arrival pick, we  
1426 scored its quality based on the SNR (the ratio of the root-mean-square amplitudes of the phase  
1427 and noise windows). After picking arrivals, we removed the MSEs that had few or bad picks  
1428 or had picks with large azimuth gaps, leaving 110 MSEs and one string shot to be used for the  
1429 following analysis.

1430 To estimate the magnitudes of the seismic events, we calculated the coda duration  
1431 magnitude ( $M_c$ ), a common approach for small seismic events (e.g., Lee et al., 1972;  
1432 Herrmann, 1975). We followed the approach used by the University of Utah Seismograph  
1433 Stations (Pechmann et al., 2006; Koper et al., 2020). We first took the envelope for each  
1434 successfully picked waveform. The logarithm of the waveform envelope was used for coda  
1435 windowing, starting near the maximum amplitude after the theoretical S-wave arrival and  
1436 ending at twice the pre-P noise level. We then linearly fit the windowed coda and defined the  
1437 duration as the time of the end of coda (when the best-fit line fell below a fixed cutoff value)  
1438 minus the P-wave arrival time. Defining coda duration relative to a fixed cutoff value, instead  
1439 of relative to the pre-P noise level, can mitigate the influence of temporal variations in  
1440 ambient seismic noise (Koper et al., 2020), e.g. day versus night and during shutdown versus  
1441 before and after shutdown. The fixed cutoff value we used is the median value of the pre-  
1442 event noise levels during shutdown, which were calculated as the mean of the  $\log_{10}$  envelope  
1443 of the noise window within 1 s before P-wave arrival on each station for each event. The  
1444 station magnitude  $M_c$  was then calculated based on the empirical magnitude-duration formula:

$$M_c = 2.65 \log_{10} (\tau) - 1.7 \quad (3)$$

1446 where  $\tau$  is duration in seconds. This formula is used by the Nevada Seismological Laboratory for  
1447 the Nevada region. The final event magnitude was defined by taking the median of the  $M_c$  values  
1448 from at least three stations. We successfully calculated magnitudes for 91 of our relocated

1449 events, which are all very small ranging from -2.2 to 0, as shown in Figure 51a and Figure 52a–  
1450 b.

1451 We relocated catalog events and determined a 3-D model of P-wave velocity ( $V_p$ ) using  
1452 the triple-difference seismic location and tomography algorithm tomoTD (Guo & Zhang,  
1453 2017; Guo et al., 2021). tomoTD is an arrival-time based tomography technique that was  
1454 modified from the double-difference tomography algorithm tomoDD (Zhang & Thurber,  
1455 2003, 2006). The tomoTD algorithm is able to combine absolute arrival times with station-  
1456 pair, event-pair, and double-pair differential arrival times to invert for event locations and a 3-  
1457 D velocity model simultaneously. The three types of differential time data have their  
1458 respective advantages in determining event locations and velocity model (Guo & Zhang,  
1459 2017; Guo et al., 2021). The station-pair differential time data from an event to pairs of  
1460 stations are more sensitive to absolute event locations and the velocity model beneath the  
1461 stations. The event-pair differential time data from pairs of events at a station are more  
1462 sensitive to relative event locations and the velocity model of the source region. The double-  
1463 pair differential time data from pairs of events at pairs of stations have similar benefits as the  
1464 event-pair data but can further remove the effect of origin time errors. tomoTD solves a  
1465 linearized inversion system, which is stabilized by damping and smoothing constraints.

1466 We constructed event-pair, station-pair, and double-pair catalog differential time data  
1467 from our picked absolute arrival times (note that our picked arrival time data are called  
1468 catalog data). Constructing event-pair and double-pair catalog differential time data relies on  
1469 relative locations between events. Since the relative event locations are not well constrained  
1470 in the original catalog, we first conducted a preliminary inversion to improve the event  
1471 locations and then used the event relocations to reconstruct the differential time data. We also  
1472 measured P-wave waveform cross-correlation (WCC) differential times from pairs of events  
1473 separated by 1 km or less, following the time-domain WCC method of Schaff et al. (2004).  
1474 The measurements with WCC coefficients below 0.7 were discarded. The event-pair WCC  
1475 differential time data were used to construct the double-pair WCC differential time data. In  
1476 total, our final input P-wave data set includes 34,008 absolute arrivals, 1,092,974 station-pair  
1477 catalog differential times, 247,856 event-pair catalog differential times, 554,912 double-pair  
1478 catalog differential times, 103,847 event-pair WCC differential times, and 382,107 double-  
1479 pair WCC differential times.

1480 Our tomographic inversion uses the Universal Transverse Mercator (UTM) coordinate  
1481 system and has a velocity model grid spacing of ~0.2-0.3 km in the Easting, Northing, and  
1482 vertical directions in the regions where there are event and station coverage. We started from  
1483 the catalog event locations and the  $V_p$  model from Warren et al. (2018). As mentioned  
1484 previously, the catalog events were detected and located using PSET, a beamforming type  
1485 technique (Warren et al., 2018). The  $V_p$  model of Warren et al. (2018) was guided by one  
1486 seismic imaging profile along an active-source line at a Northing of ~4471.7 km and modified  
1487 to fit the arrivals of downhole string shot data.

1488 We selected the optimal smoothing by testing a range of smoothing values and chose the  
1489 one that balanced the model smoothness and data residual reduction. We selected the damping  
1490 value to constrain the condition number of the inversion within a reasonable range around  
1491 100-200. After the inversion, the root-mean-square (RMS) data residual decreased from 0.128

1492 s to 0.079 s for the catalog data and from 0.096 s to 0.031 s for the WCC dt data. We  
1493 performed bootstrap analysis, a statistical method (Efron and Gong, 1983; Efron and  
1494 Tibshirani, 1986), to estimate event location uncertainties following *Guo and Zhang* (2017).  
1495 We conducted noise-free and noise-added checkerboard tests with varying checkerboard sizes  
1496 to assess model resolution. At shallow depths (above 0.8 km elevation), the model is well  
1497 resolved in the northern and central parts of the study area, whereas at greater depths (below  
1498 0.8 km elevation) only the seismically active region in the northeastern part is well resolved.

1499 After the inversion, 106 of 110 events are relocated successfully. Figure 53b shows the  
1500 horizontal and cross-section views of our relocations, which are much more concentrated  
1501 compared to the catalog locations shown in Figure 53a. Most events are within 600 m to the  
1502 northwest of the two northern production wells. On the E-W cross-section, event relocations  
1503 generally dip to the west and the majority are between 0.4 and 0.85 km elevation. The main  
1504 seismicity cluster at ~296 km Easting, ~4473 km Northing, and ~0.4-0.6 km elevation forms a  
1505 westward dipping lineation with ~60° dip angle, which we consider to be reliable given the  
1506 small location uncertainty estimates represented by the crosses in Figure 53b. There are only 2  
1507 events located near the injection wells.

1508 Figure 54 and Figure 55 show the depth slices and cross-section of our new  $V_p$  model.  
1509 Note that in Figure 54 and Figure 55c, we show the  $V_p$  model perturbation in percentage  
1510 relative to the 1D model calculated by averaging velocities at each depth. The well-resolved  
1511 parts of the model as estimated by the resolution tests are outlined. It is noteworthy that the  
1512 initial model embodies some large-scale structure features, including the velocity contrast on  
1513 the two sides of the Range Front fault at an Easting of ~297.5 km and the stair-step (half-  
1514 graben) structure going from east to west. Compared to the initial model, our new model  
1515 refines the shallow structure beneath the seismic array and the structure of the seismically  
1516 active parts of the reservoir (Figure 54, Figure 55b), as suggested by the resolution tests. The  
1517 velocity contrast characterizing the range front at an Easting of ~297 km becomes sharper and  
1518 more continuous from north to south (Figure 54).

1519 The SEF, Piedmont Fault (PF), and Basin Bounding Fault (BBF), along which the  
1520 geothermal reservoir is developed, are associated with low-velocity anomalies at 0.3-0.8 km  
1521 elevation (Figure 55-c). The SEF and PF are delineated by a strong velocity contrast from high  
1522 velocity on their eastern side to low velocity on their western side (Figure 55b). To the west of  
1523 the PF and SEF, there is a zone from ~1.8 to ~3.3 km distance along the AA' profile at 0.3-0.8  
1524 km elevation, as outlined in Figure 55c, with negative velocity perturbations as low as -25%,  
1525 much lower than the zone just above. The BBF cuts through this extremely low-velocity zone. It  
1526 is also located to the west of the production wells 75B-16 and 76-16 (note the perforated sections  
1527 of the wells are in contact with PF and SEF) (Figure 55b-c). All the events to the northwest of  
1528 wells 75B-16 and 76-16 occurred on the BBF and in the area between the PF and BBF, which  
1529 are contained within this low velocity zone (Figure 55a-c). The other MSEs are distributed in the  
1530 low-velocity zone bounded and/or crossed by the BBF, SEF, PF, and NWF and tapped by the  
1531 nearby production wells, except for a few deeper events to the west of the BBF (Figure 55b-c).  
1532 Figure 56 zooms in our MSE relocations and  $V_p$  model in the region where the main seismicity  
1533 cluster and all the MSEs before plant shutdown and after plant restart occurred. Most MSEs

1534 before shutdown and after restart occurred in a very localized zone at the top of the seismicity  
1535 cluster, which is associated with lowest  $V_p$  values (2.8-3.0 km/s).

1536 We computed first-motion focal mechanisms for catalog MSEs using the HASH algorithm  
1537 (Hardebeck and Shearer, 2002). P-wave first-motion polarities were automatically identified for  
1538 our arrival picks using a method similar to that of Chen and Holland (2016). This was done by  
1539 first searching for a local maximum or minimum after the arrival pick and then calculating the  
1540 signal-to-noise ratio (SNR). The SNR values were then used to decide which polarity picks to be  
1541 used. In general, higher SNR thresholds eliminate more wrong polarity picks at the cost of losing  
1542 more correct polarity picks, whereas smaller SNR thresholds provide more polarities but include  
1543 more incorrect polarities. After testing a set of SNR thresholds, we set the threshold value to  
1544 SNR=5. This value yields the most high-quality focal mechanisms while providing relatively  
1545 small fault plane uncertainties.

1546 HASH searches for a set of acceptable focal mechanisms for each event, accounting for  
1547 possible errors in earthquake locations, velocity model, and polarity observations. We input  
1548 azimuth and takeoff angle computed with our final relocations and 3-D  $V_p$  model. The average of  
1549 the acceptable mechanisms is the preferred mechanism and the uncertainty is calculated based on  
1550 the distribution of acceptable mechanisms. Kilb and Hardebeck (2006) found that the average of  
1551 the fault and auxiliary plane uncertainty was the best indicator of mechanism quality, with values  
1552 less than 35° indicating the best mechanisms. We defined quality A and B mechanisms such that  
1553 the average fault plane uncertainty is less than 25° and 35°, respectively.

1554 One concern regarding focal mechanism inversion is whether the station polarities sample the  
1555 focal sphere well, depending on the event depth and station distribution. In general, the polarities  
1556 are well distributed on the focal sphere for the high-quality mechanisms. Owing to the wide  
1557 distribution of stations compared to the very shallow depths of events, P waves recorded on the  
1558 stations near event epicenters leave sources in the upward direction whereas for the ones  
1559 recorded on the stations far from the event epicenters they leave sources downward. Thus, the  
1560 upgoing and down-going ray paths sample the focal spheres well. Most of the polarities locate in  
1561 the expected quadrants although there are some misfits. The misfits are likely due to a  
1562 combination of error sources: (1) incorrect polarity picks; (2) the assumption of pure double  
1563 couple mechanism, which may not be appropriate for all the events; (3) errors in the inverted  
1564 focal mechanisms. We tried higher SNR thresholds to exclude more wrong polarity data at the  
1565 cost of losing more correct data but the inverted focal mechanisms are not significantly changed.

1566 Figure 57a and Figure 57b show our high-quality focal mechanism results for 36 events (3  
1567 quality A and 33 quality B), from which we identified two clusters (C1 and C2) with at least 10  
1568 mechanisms. Most events are dominated by normal slip but also show strike-slip components  
1569 except for the events in C2, many of which are dominated by strike slip (Figure 57b). The  
1570 orientations seen from the focal mechanisms have a large variability, but appear more similar  
1571 among each individual cluster, especially C1 and C2. Figure 57c-e enlarge C1 and C2. The  
1572 events in C1 are dominated by normal slip with strike and dip angles generally consistent with  
1573 the seismicity lineation (Figure 57c-d). The events in C2 form an elongated zone striking NNE  
1574 and one of the nodal planes for each strike-slip event is generally aligned in a similar direction  
1575 (Figure 57e).

1576 We estimated the stress-field orientation from the focal mechanisms using the MSATSI  
1577 algorithm (Martínez - Garzón et al., 2014a) which is based on the SATSI algorithm (Hardebeck  
1578 and Michael, 2006). MSATSI is a robust, linearized method that uses damped least-squares  
1579 optimization to invert for the principal stress axis orientations and the ratio  $R$  of their relative  
1580 magnitudes:

$$1581 R = (\sigma_1 - \sigma_2) / (\sigma_1 - \sigma_3) \quad (4)$$

1582 where  $\sigma_1$ ,  $\sigma_2$ , and  $\sigma_3$  represent the maximum, intermediate, and minimum principal stresses,  
1583 respectively. The bootstrap resampling method is applied to the input focal mechanism data for  
1584 estimating uncertainties. Figure 58 shows the stress inversion results, including the final stress  
1585 tensors (Figure 58b, d, f) and 1,000 bootstrap solutions Figure 58a, c, e), using all high-quality  
1586 (quality A and B) focal mechanisms (Figure 58a-b) and the mechanisms in C1 (Figure 58c-d)  
1587 and C2 (Figure 58e-f) only. The other clusters are not analyzed separately due to the limited  
1588 mechanisms available.

1589 The entire northeastern part of the seismic array where the focal mechanisms are located  
1590 (Figure 57a) shows a normal faulting dominated stress regime (Figure 58b). The fairly  
1591 concentrated solutions from the bootstrap inversions for each principal stress direction indicate  
1592 the robustness of the final solution (Figure 58a). The stress tensor is generally aligned with the  
1593 geometry of the normal faults SEF, BBF, and PF in the northeastern part of the seismic array  
1594 (Figure 57a and Figure 58a-b):  $\sigma_1$  is essentially vertical,  $\sigma_2$  is close to horizontal and trends  
1595 north-south, parallel to the strike of those faults, and  $\sigma_3$  is close to horizontal and trends east-  
1596 west, normal to the strike of those faults. The  $R$  value is 0.44. As noted by *Jahnke et al.* (2023),  
1597 this overall reservoir stress state is consistent with other stress indicators, including the World  
1598 Stress Map (Heidbach et al., 2018), slickenlines, wellbore stress indicators from nearby  
1599 geothermal fields, and secular strain rate measurements.

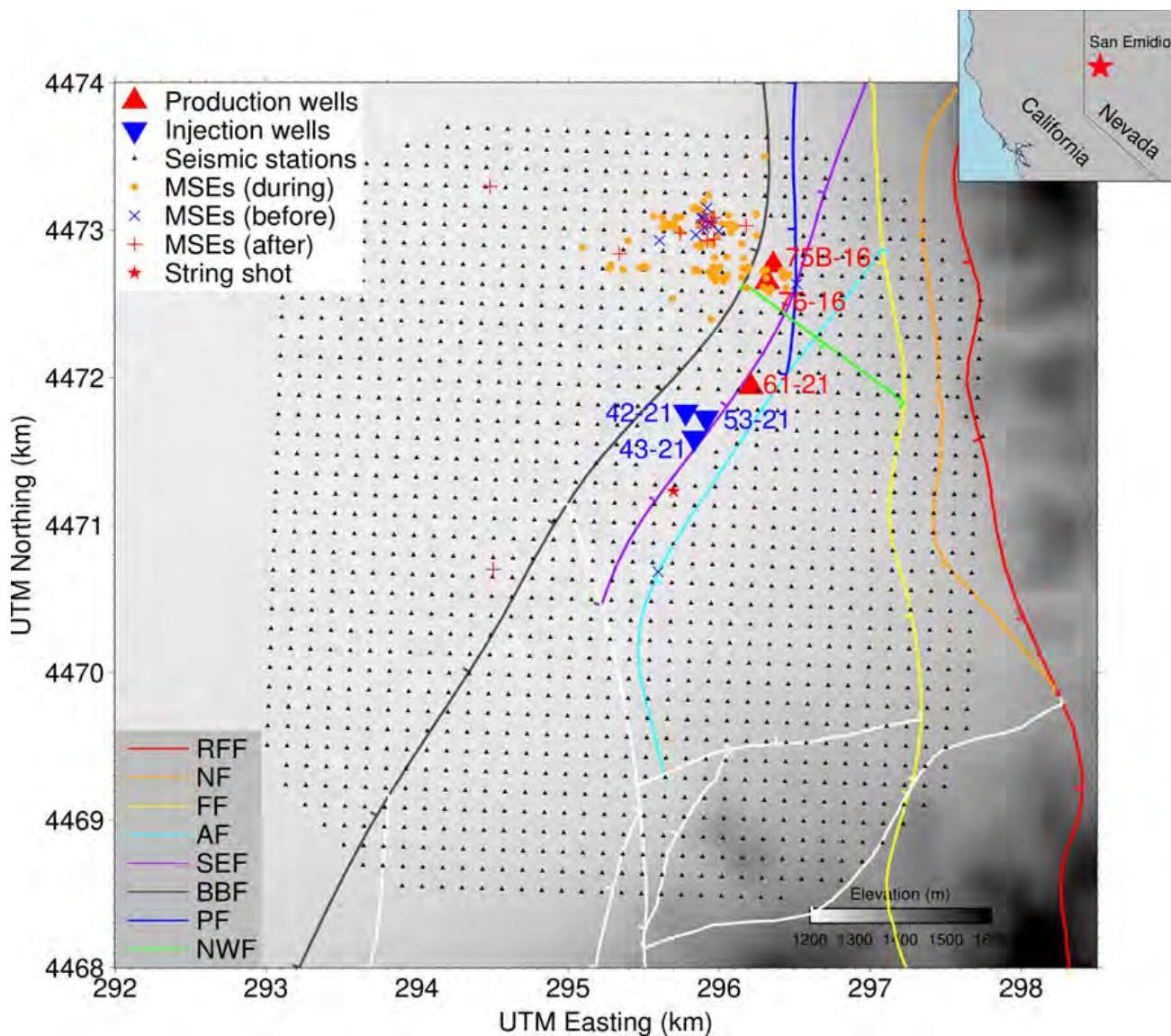
1600 However, the local stress states in C1 and C2 are markedly different (Figure 58c-f),  
1601 indicating stress heterogeneity in the reservoir. C1 has a normal faulting environment with  $\sigma_1$   
1602 close to vertical,  $\sigma_2$  close to horizontal and trending SSW, and  $\sigma_3$  close to horizontal and trending  
1603 WNW (Figure 58d). Given this stress state, the ideal orientation of the failure plane is the one  
1604 striking to NNE and dipping  $\sim 60^\circ$ , consistent with the geometry of the BBF and the seismicity  
1605 observations (Figure 57a, c-d). C2 has a trans-tensional stress regime dominated by strike slip  
1606 with some normal slip component (Figure 58f), consistent with the resolved focal mechanisms  
1607 (Figure 57b, e). The  $R$  values for C1 and C2 are 0.62 and 0.45, respectively.

1608 Using a preliminary set of our focal mechanisms determined with preliminary event locations  
1609 and a 1-D velocity model, *Jahnke et al.* (2023) conducted stress inversions using the method of  
1610 *Vavryčuk* (2014) and calculated slip tendency for each inferred fault plane given a set of  
1611 potential initial stress models. In general, we have better constraints on the stress tensor  
1612 orientation and relative stress magnitude due to more and higher-quality focal mechanisms  
1613 available owing to more accurate predictions of azimuth and take-off angle for each event-station  
1614 pair with the finalized event locations and 3-D velocity model.

1615 The catalog of *Warren et al.* (2018) shows enhanced seismicity during plant shutdown  
1616 (Figure 51a). However, changes in the rate of the detected seismicity may be caused by the  
1617 varying ambient noise during different periods. Using the same methodology as described above,

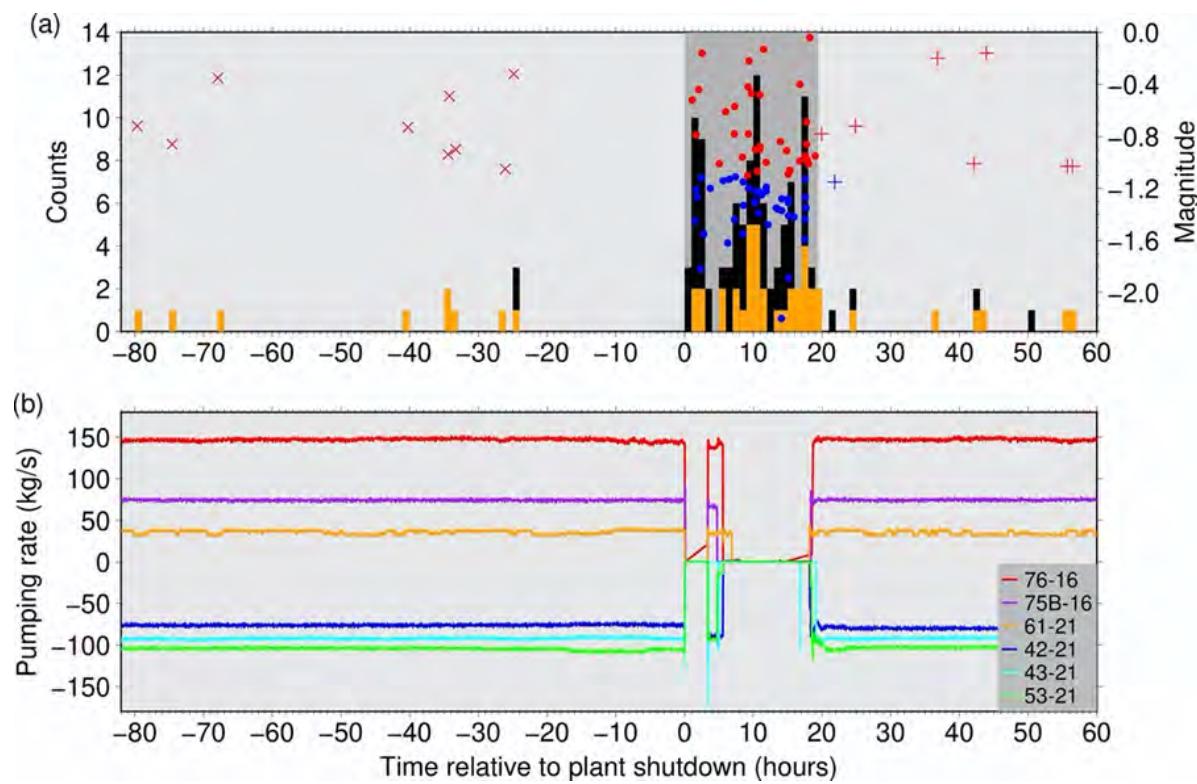
1618 we calculated the level of noise preceding each event. We then compared the pre-event noise  
1619 levels before, during, and after shutdown. The result shows that the noise level is lower during  
1620 shutdown. As shown in Figure 51a, almost all of the smaller events below magnitude -1.1 were  
1621 detected during shutdown (blue dots), which is likely due to the lower noise level. Above  
1622 magnitude -1.1, the detection capability is likely comparable during all periods. There are 9  
1623 events of magnitude -1.1 and above during the 80 hours before shutdown (0.11 events per hour),  
1624 34 during the 19.45 hours of shutdown (1.75 events per hour), and 7 events in the 40 hours after  
1625 restart (0.18 events per hour) (Figure 51a). This indicates the enhanced microseismicity during  
1626 shutdown is a reliable observation.

1627 The broad distribution of seismicity clusters in map view and the very small event  
1628 magnitudes suggest that the MSEs in different clusters happened on small, isolated fault patches  
1629 and fractures (Figure 52-Figure 56). MSE relocations and focal mechanisms suggest that the  
1630 main cluster C1 to the northwest of the production wells 75B-16 and 76-16 occurred on a small  
1631 patch of the BBF at an elevation of 0.4 to 0.7 km (Figure 55a-b, Figure 56, and Figure 57c-d).  
1632 This cluster forms a linear structure on the fault surface, striking to the northwest, as seen from  
1633 the horizontal and cross-section views (Figure 55a-b and Figure 56). Such microseismic  
1634 lineations, i.e., streaks, aligned in the slip direction have been observed in tectonic fault zones  
1635 and are interpreted to be structural or compositional in origin (e.g. Rubin et al., 1999;  
1636 (Waldhauser et al., 2004). The seismicity lineation and the nodal planes of the strike-slip  
1637 mechanisms in cluster C2 suggest a previously unmapped strike-slip fault, striking  
1638 approximately NNE (Figure 57e). The other MSEs between the BBF, PF, SEF, and NWF  
1639 probably occurred on small-scale fractures within the damage zones associated with the  
1640 individual faults (Figure 55a-b, Figure 57a-b).


1641 Our  $V_p$  model and event relocations show that the BBF and the area between the BBF, PF,  
1642 SEF, and NWF, where most MSEs occurred, are within a low-velocity body with a length of  $\sim$ 1  
1643 km at 0.3-0.8 km elevation (Figure 55c). This zone has negative velocity perturbation values as  
1644 low as  $-25\%$ , much lower than that in the zone just above, which indicates that the extremely  
1645 low velocity values in this zone are not due only to varying lithology from west to east (Figure  
1646 55e). In comparison, the overlying zone at 0.8-1.2 km elevation that has lower velocities  
1647 compared to the eastern region (Figure 55b-c) may simply reflect a change in lithology from  
1648 west to east.

1649 According to theoretical and experimental studies,  $V_p$  is related to the bulk modulus, shear  
1650 modulus, and bulk density of the rock, as well as its pore properties (e.g., Hutchings et al., 2019;  
1651 Winkler & Nur, 1979). For a liquid-dominated geothermal reservoir, the main mechanism for  
1652 decreasing its  $V_p$  is likely due to decreased bulk and shear modulus caused by increased rock  
1653 damage (i.e., more cracks and fractures) and high fluid-filled porosity (e.g., Hutchings et al.,  
1654 2019). The extremely low-velocity body is also characterized by high temperature and low  
1655 resistivity (Folsom et al., 2020) and is in contact with the perforated sections of the nearby active  
1656 production wells (Figure 55). Note that the production wells were perforated at these depths due  
1657 to the geology (permeable fractures). The spatial coincidence of the high-temperature, low-  
1658 velocity, low-resistivity zones with the fault patches and fractures delineated by the MSEs  
1659 indicates this part of the geothermal reservoir around the production wells is fractured and  
1660 presumably permeable such that fluids can flow through the BBF, PF, SEF, and NWF, and the

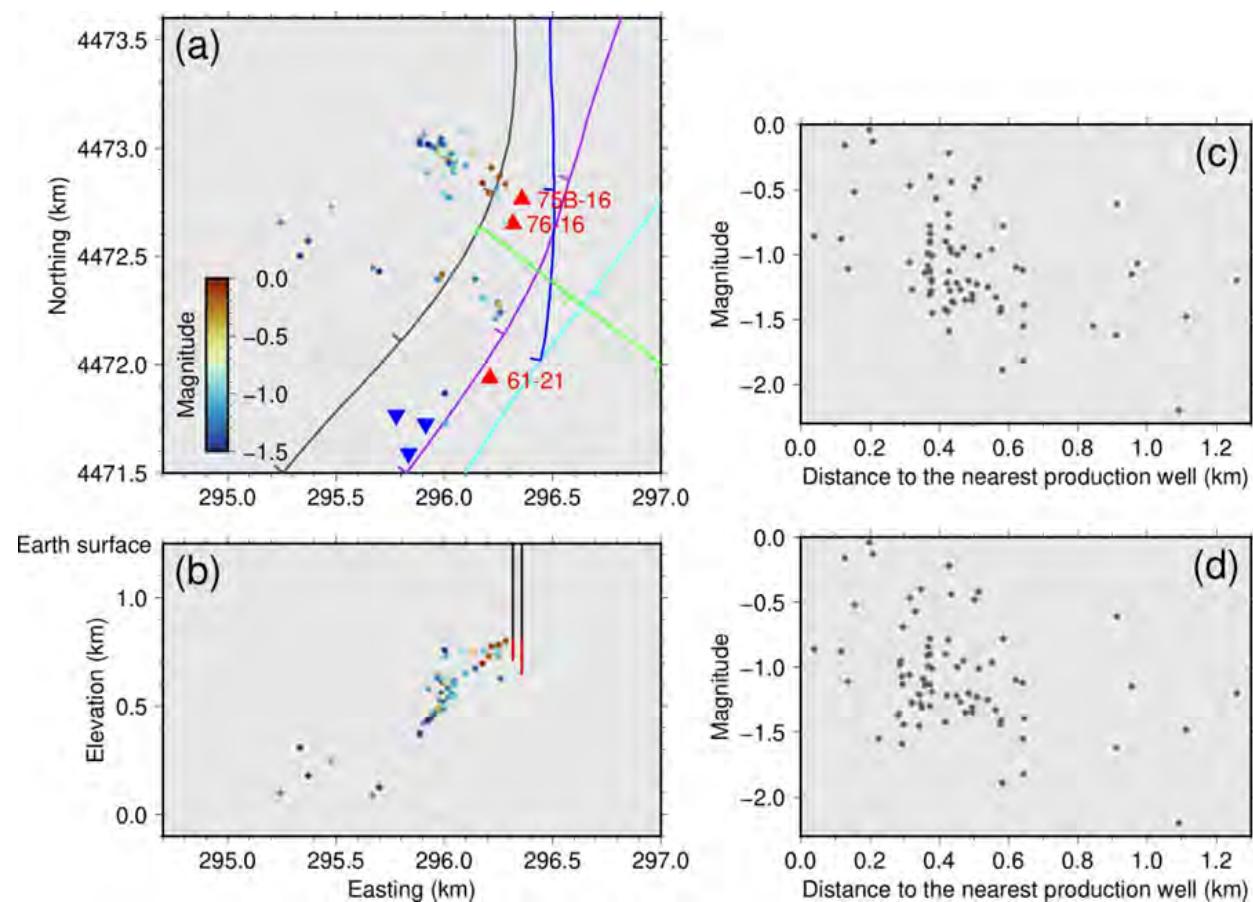
1661 fractures in between them. The stress regime at San Emidio is dominated by normal faulting  
1662 (Figure 58a-b). However, local variations in fracture orientations and stress distribution can be  
1663 expected for such a fractured, fluid-filled reservoir, as is evident by the diverse focal mechanisms  
1664 with a wide range of orientations (Figure 57b) and the spatial variation in local stress state  
1665 between different clusters (Figure 58c-f).


1666 During plant shutdown, most of the MSEs occurred on the BBF and the fractures between  
1667 BBF, PF, and SEF near the perforated sections of the production wells. Although pumping at the  
1668 injection wells also stopped during plant shutdown (Figure 51), the microseismicity is not likely  
1669 to be caused by the cessation of injection pumping. The MSEs observed during shutdown are  
1670 much closer to the production wells than to the injection wells (Figure 53b). As shown in Figure  
1671 52c-d, the larger magnitude events during shutdown tend to be located closer to the production  
1672 wells.

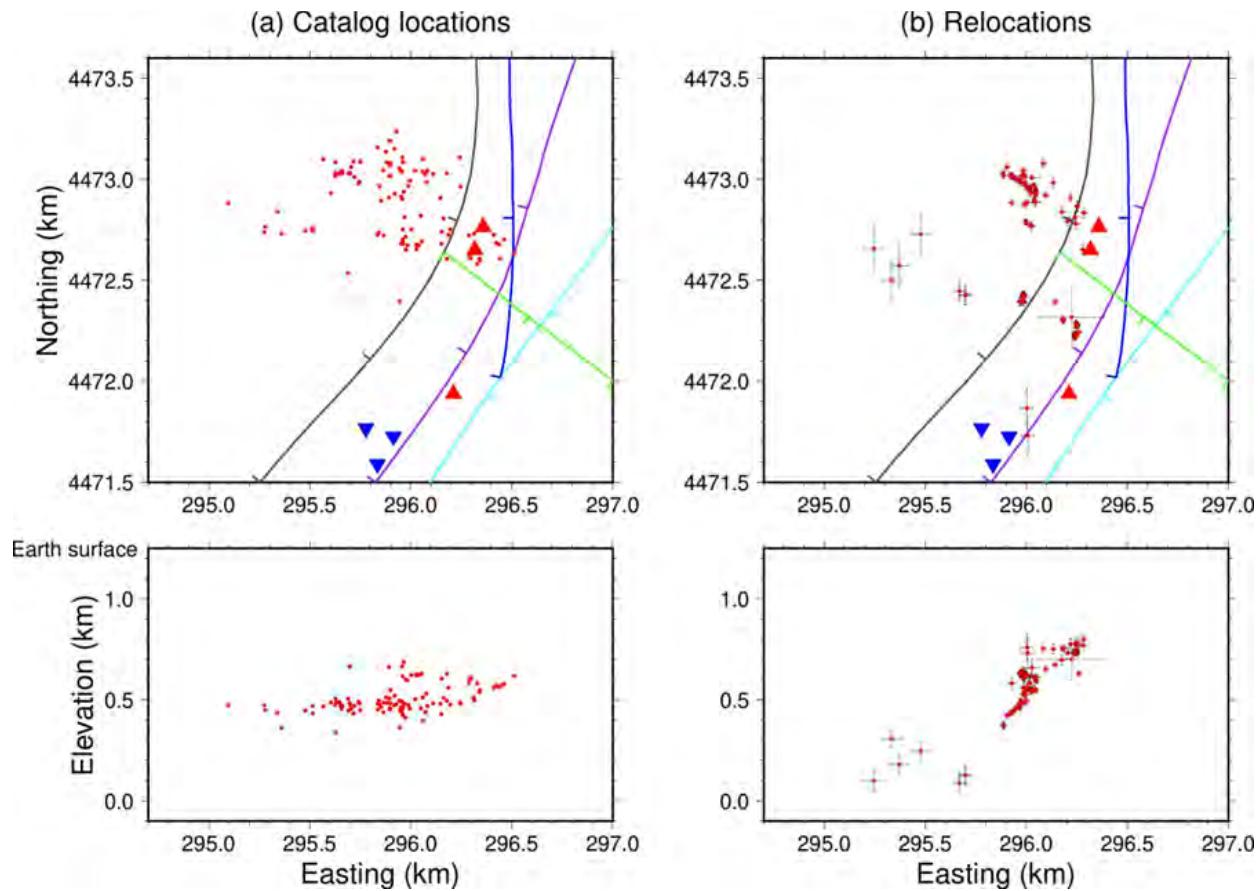
1673 In summary, we have performed detailed seismic and stress analysis with data from a dense  
1674 seismic array to characterize the geothermal reservoir at San Emidio, Nevada, where a  
1675 substantial increase in microseismicity during a plant shutdown in December 2016 was observed.  
1676 The seismic events are very small with coda duration magnitudes ranging from -2.2 to 0. Our  
1677 MSE relocations show that the main seismicity cluster is linearly distributed on the westward  
1678 dipping BBF and most of the other MSEs likely occurred on small-scale fractures near and  
1679 between existing normal faults. Our tomographic  $V_p$  model shows that the fault patches and  
1680 fractures delineated by MSEs are within a low-velocity body, which is in contact with the  
1681 perforated sections of nearby active production wells. Focal mechanisms are dominated by  
1682 normal faulting with some strike-slip components and have a wide range of orientations,  
1683 consistent with the normal faulting stress regime. Given the local stress state, the BBF hosting  
1684 the main seismicity cluster is optimally oriented for failure.



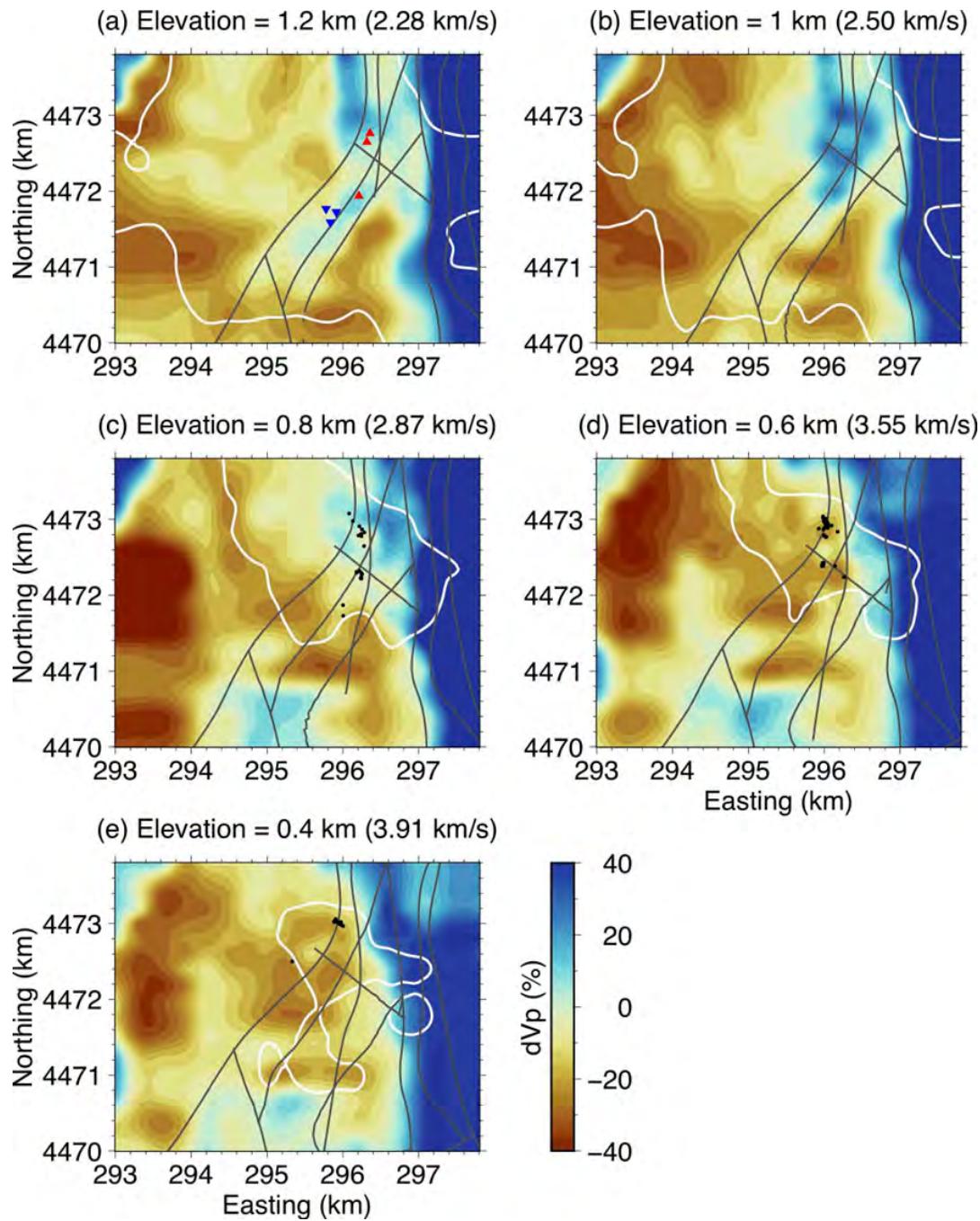
1685 *Figure 50. Map view of microseismicity and seismic station deployment in December*  
 1686 *2016 at San Emidio. Blue crosses, orange dots, and red pluses represent catalog*  
 1687 *microseismic events (MSEs) before shutdown, during shutdown, and after restart,*  
 1688 *respectively. The Easting and Westing coordinates are in the Universal Transverse*  
 1689 *Mercator (UTM) coordinate system (zone 11 T). Black dots, seismic stations;*  
 1690 *red star, string shot event; lines, fault traces at surface. Red and blue triangles represent*  
 1691 *active production and injection wells in 2016, respectively. The background gray*  
 1692 *image shows the topography. RFF, Range front fault; NF, Nightingale fault; FF, Fan*  
 1693 *fault; AF, Antithetic fault; SEF, San Emidio fault; BBF, Basin Bounding fault; PF,*  
 1694 *Piedmont fault; NWF, NW fault. All the other faults in the southern part are shown*  
 1695 *as white lines. Tick marks on fault traces represent dip directions. The fault model*  
 1696 *has been updated from Folsom et al. (2020). The inset map on the top right shows*  
 1697 *the geographic location of San Emidio (red star).*


1698



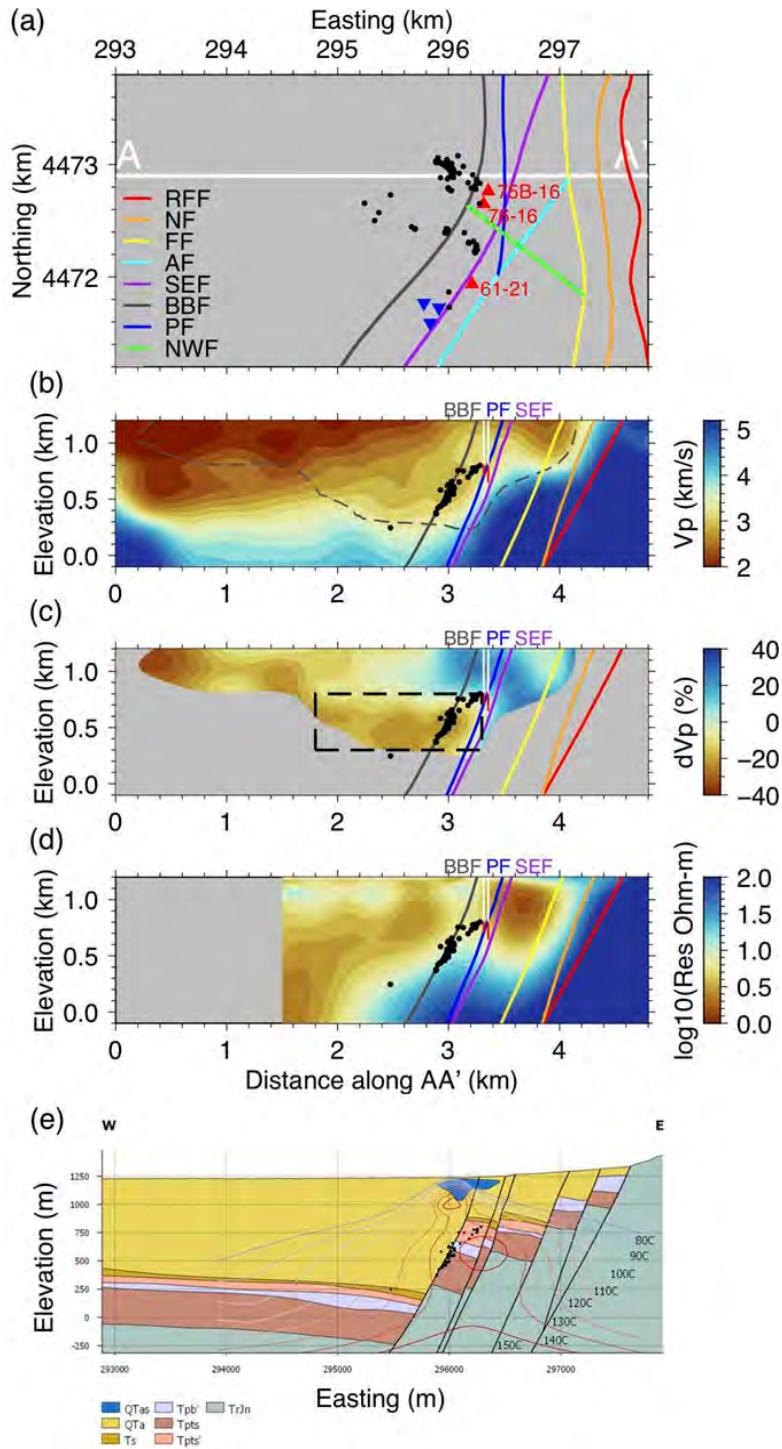

1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712

*Figure 51. Temporal evolution of seismicity and pumping rates of production and injection. (a) Seismicity. The plant shutdown period ( $t = 0$  to 19.45 hours) is shaded. The plant shutdown began at 2016-12-08 19:33 UTC. The number of MSEs per hour is shown as black and orange bars with the vertical axis shown on the left. The black bars are for all the events in the catalog. The orange bars are for the events above magnitude -1.1. Note that some black bars are completely covered by orange bars. Crosses, dots, and pluses show magnitudes (vertical axis on the right) of the events before shutdown, during shutdown, and after restart, respectively. These symbols are colored in red and blue for the events above and below magnitude -1.1, respectively. (b) Pumping rate (positive, production; negative, injection). The red, purple, and orange lines show the pumping rate evolution for the three production wells. The blue, cyan, and green lines are for the three injection wells. There is no pumping at all the wells during shutdown except for a short resumption within the 3 to 6 hour time window.*

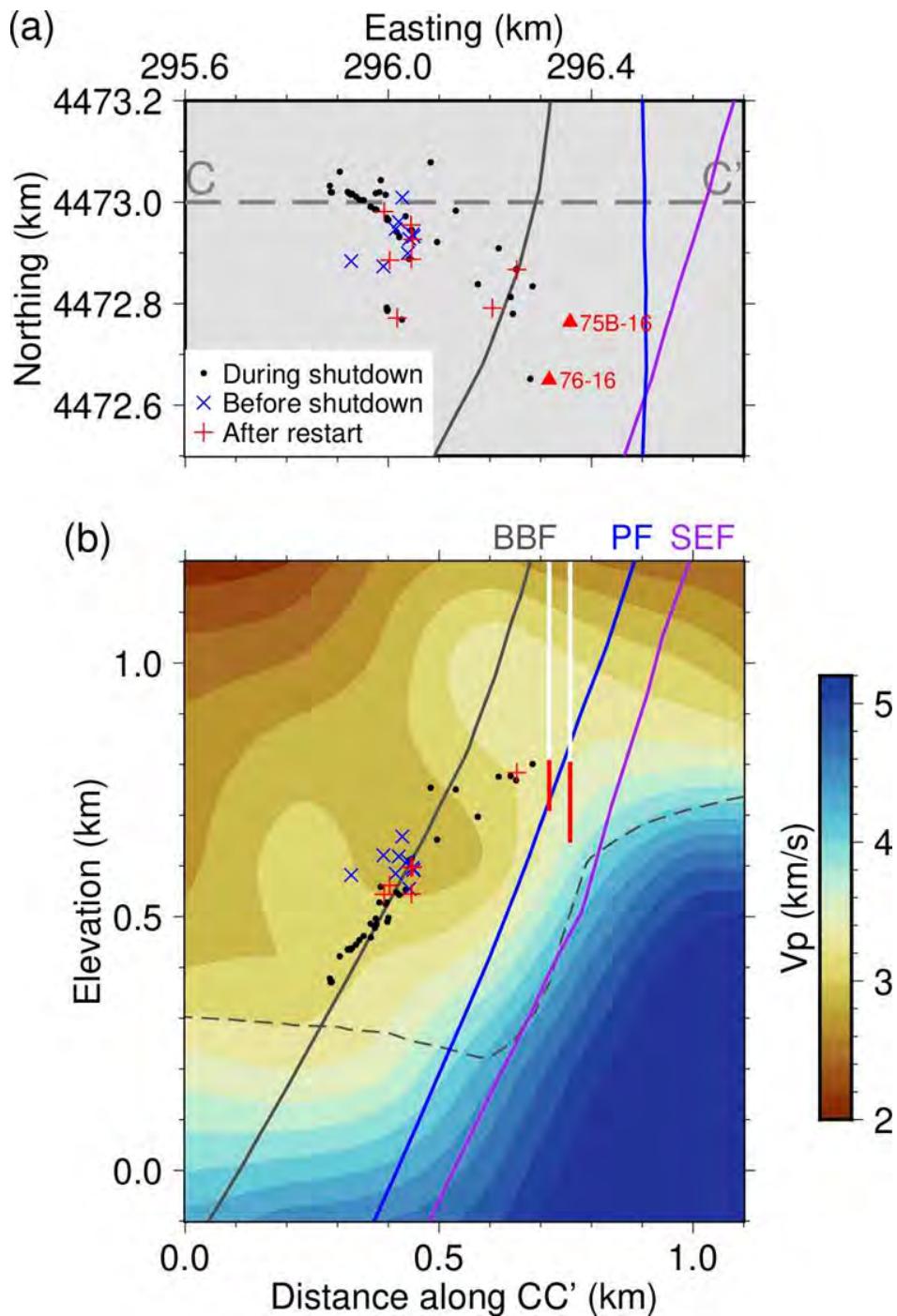

1713



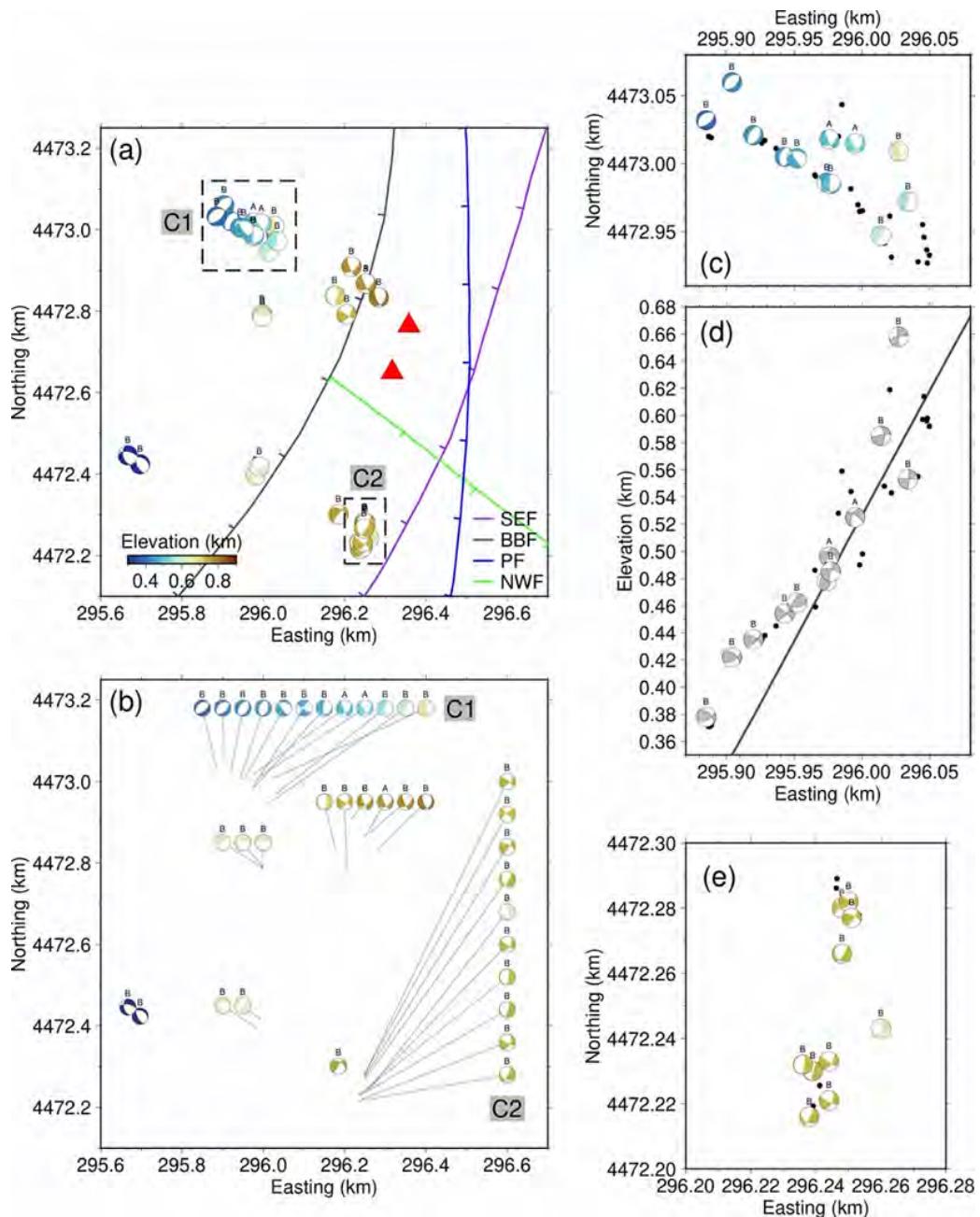
1714 *Figure 52. (a) Map view and (b) cross-section of event locations showing*  
1715 *magnitudes. 91 of our relocated events with magnitude estimates are shown as dots*  
1716 *colored by magnitudes. Red and blue triangles, active production and injection wells,*  
1717 *respectively; Lines, fault traces at the surface (gray: BBF; purple: SEF; blue: PF;*  
1718 *green: NWF; cyan: AF). Note all the wells are vertical. On the cross-section, the two*  
1719 *vertical lines are the depth trajectories of production wells 75B-16 and 76-16, and*  
1720 *the red segments of the lines are the perforated sections. (c) Magnitude versus the*  
1721 *distance from hypocenter to the nearest production well (75B-16 or 76-16) for the*  
1722 *events during shutdown. (d) Same as (c) except that the southern production well 61-*  
1723 *21 is also used for calculating distances.*



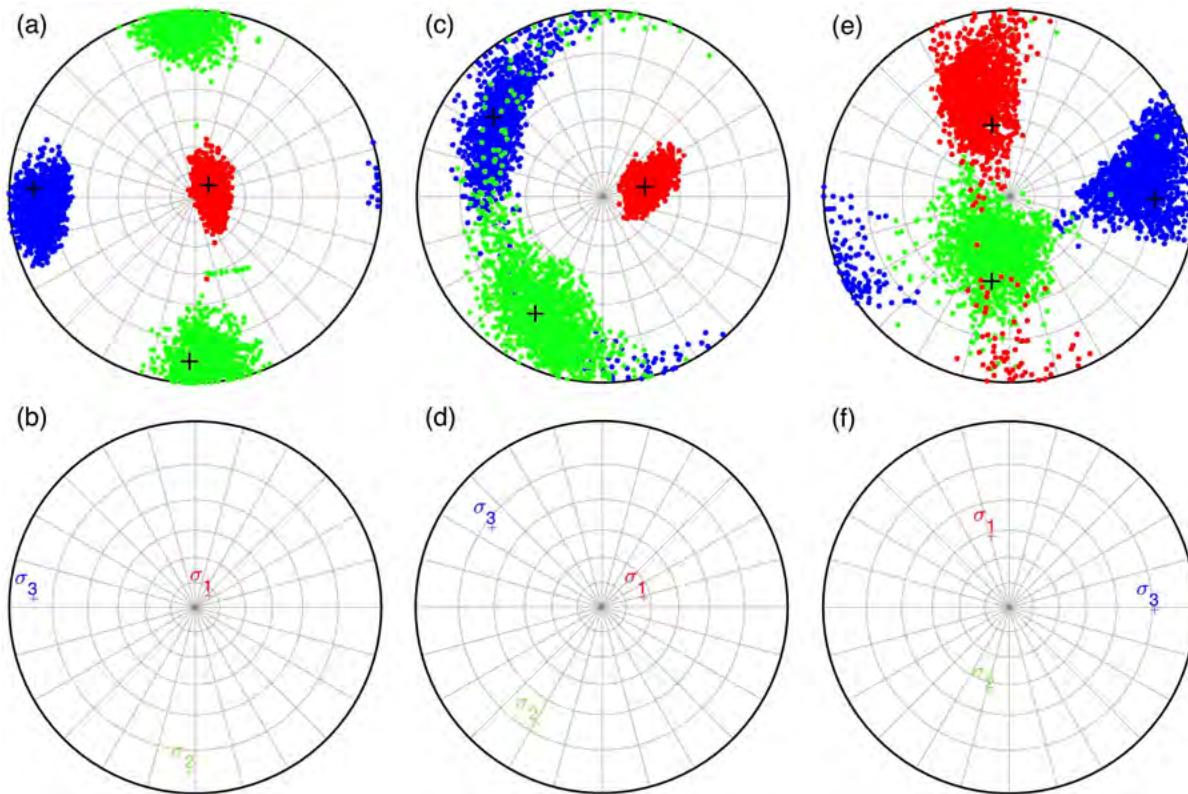

1724 *Figure 53. Comparison of (a) catalog event locations and (b) our relocations in map*  
1725 *view and cross-section. Lines, fault traces at surface (gray: BBF; purple: SEF; blue:*  
1726 *PF; green: NWF; cyan: AF); red and blue triangles, active production and injection*  
1727 *wells, respectively. In (b), the error bars represent the event location uncertainty*  
1728 *estimates using bootstrap analysis.*




1729  
1730  
1731  
1732  
1733  
1734  
1735


Figure 54. Depth slices of the inverted  $V_p$  model perturbations in percent relative to the 1-D average model at each depth (given in the panel titles). Black dots represent the MSEs within 0.1 km of each slice. Gray lines represent the fault traces at each depth. The red and blue triangles in (a) represent active production and injection wells, respectively. The white lines represent the model resolvability contour of 0.7, estimated from the 3-by-3-by-3 checkerboard resolution test, outlining the well resolved regions.



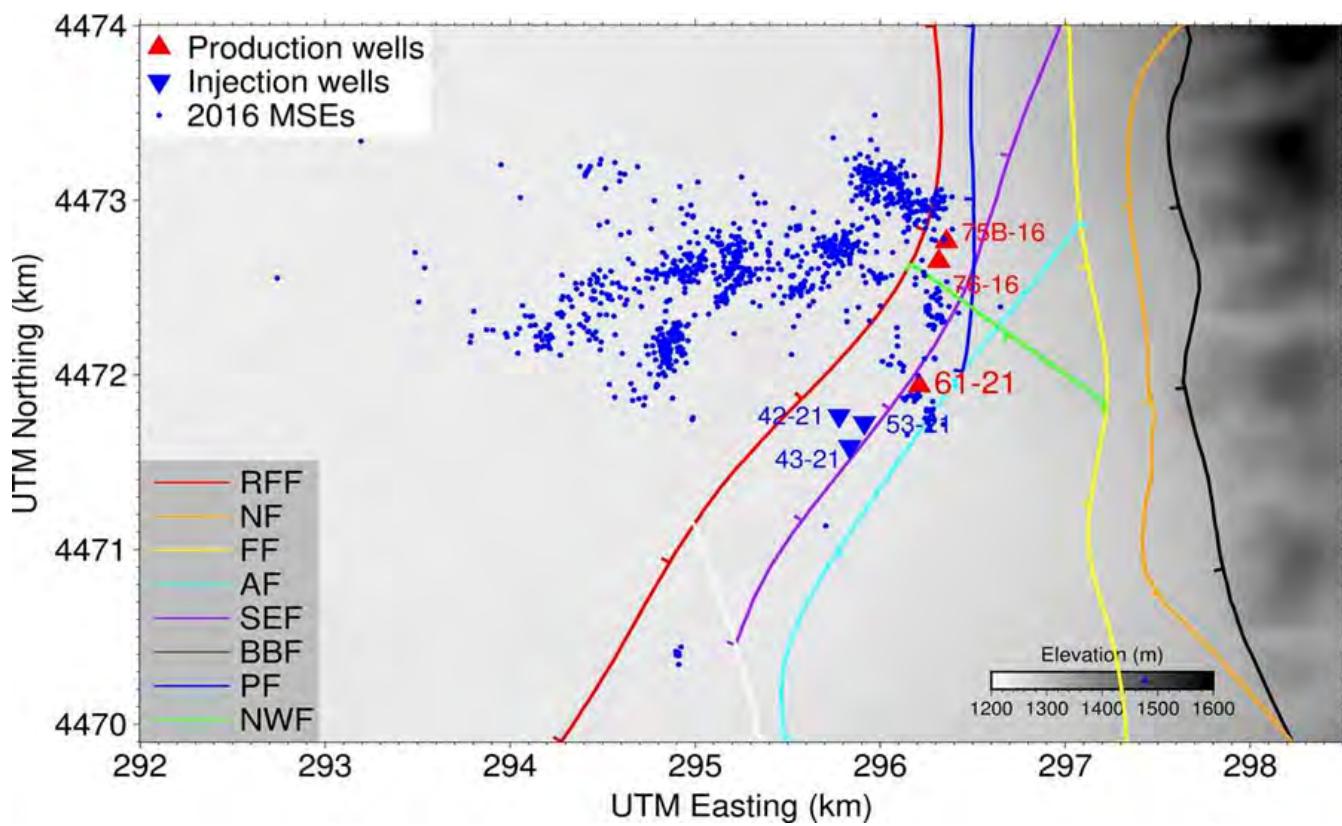

*Figure 55. Cross-sections of the MSE relocations and  $V_p$ , resistivity, temperature, and geologic models, and well trajectory along profile AA' shown in (a). (a) Map view of MSE locations (dots) and fault trace at surface (colored lines), and active production (red triangles) and injection (blue triangles) wells. Note all the wells are vertical. The white line shows the profile AA'. (b)  $V_p$  model. The depth trajectories of wells 75B-16 and 76-16 (white-to-red lines with the red segments representing the perforated sections) and fault traces at depth (colored dipping lines) are projected. The dashed gray lines represent the model resolvability contour of 0.7, estimated from the 3-by-3-by-3 checkerboard resolution test, outlining the well resolved region (but note the small gray circle is likely an artifact of the resolvability estimation). (c)  $V_p$  model perturbation in percentage relative to the 1-D depth-averaged model. The low-resolution regions are masked. (d) Resistivity model from Folsom et al. (2020). The region where there is no MT station at surface is cut. (e) Geologic and temperature models. Iso-temperature curves (80°C-150°C) are shown. QTas, silicified sediments; QTa, Alluvium is further subdivided by grain size and clay content; Ts, Late Miocene siltstones, tilted and indurated; Tpb', Upper basaltic andesite; Tpts, Lower tuffs; Tpts', Upper tuffs and tuffaceous sediments; TrJn, Nightingale. The temperature model is from Folsom et al. (2020). The geologic model has been updated from Rhodes (2011) and Folsom et al. (2020). In (b-e), the MSEs within 0.2 km of the cross-section are shown as black dots.*



1737 *Figure 56. (a) Map view of MSE locations (crosses, before shutdown; dots, during*  
 1738 *shutdown; pluses, after restart) and fault traces at the surface (gray line, BBF; blue*  
 1739 *line, PF; purple line, SEF), and production wells (red triangles). (b) The  $V_p$  model*  
 1740 *cross-section along the profile CC' shown in (a). The depth trajectories of the two*  
 1741 *production wells (white-to-red lines with the red segments representing the*  
 1742 *perforated sections) and fault traces at depth (colored dipping lines) are projected.*  
 1743 *The dashed gray line outlines the well resolved region.*



1744 *Figure 57. MSE focal mechanisms. (a) Map view of all the inverted focal mechanisms (lower*  
 1745 *hemisphere beach balls). Dashed rectangles outline the two clusters C1 and C2 that are*  
 1746 *zoomed in (c) and (e). (b) Same focal mechanisms as in (a). All the mechanisms are plotted*  
 1747 *separately from each other and connected with event epicenters. (c-d) Zoom-in map view and*  
 1748 *cross-section of C1. Note that in (d) the mechanisms are rotated to the E-W cross-section*  
 1749 *view. (e) Zoomed-in map view of C2. Black dots in (c-e) show the events that do not have*  
 1750 *focal mechanism results. The focal mechanism quality (A or B) is labeled above each beach*  
 1751 *ball.*




1752 *Figure 58. Stress inversion results. (a, c, e) 1000 bootstrap solutions (dots) and (b, d,*  
1753 *f) the best solution (pluses) using high-quality focal mechanisms (a, b) in the whole*  
1754 *study area and in the clusters (c, d) C1 and (e, f) C2 only. In the top panels, red,*  
1755 *green, and blue dots represent the maximum ( $\sigma_1$ ), intermediate ( $\sigma_2$ ), and minimum*  
1756 *( $\sigma_3$ ) principal stresses, respectively; black pluses represent the best solution, the*  
1757 *same as that shown in the bottom panels. The relative stress magnitude R values for*  
1758 *(b), (d), and (f) are 0.44, 0.62, and 0.45, respectively.*

1759 2016 Shutdown (>1000 Events)

1760 *The following section has been excerpted from a manuscript in preparation by Cliff Thurber et al.*

1761 The discovery of hundreds of microseismic events on just one day in 2021 and over a  
1762 thousand during the 2022 shutdown compared to not many more than 100 in the  
1763 Microseismic, Inc. catalog for the 2016 shutdown led us to think that there might be many  
1764 more events in the 2016 data. Visual inspection of the shutdown day records confirmed that  
1765 many obvious microseismic events were present in the data that were not included in the  
1766 Microseismic, Inc. catalog. Therefore, we proceeded to assemble the seismic data for the  
1767 entire 2016 deployment and began to process the data in the same manner as for the 2022 data  
1768 (described in next section), but with one change. The processing flow is: (1) seismic event  
1769 detection, picking, and preliminary locations with REST; (2) event magnitude estimation; (3)  
1770 arrival time repicking and waveform cross-correlation (WCC) measurement of differential  
1771 times; and (4) location of the events in the 3-D velocity model from the analysis of the 2022  
1772 data. The resulting locations are shown in Figure 59, and in Figure 65, we plot both the 2016  
1773 and 2022 events in map view. The main differences are the greater westward extent of  
1774 microseismicity in 2016 and the greater southward extent of microseismicity in 2022.



1775 *Figure 59. Precise locations of microseismicity determined by a re-analysis of the*  
1776 *data set collected by Microseismic, Inc. in 2016. The events were detected and*  
1777 *located using a workflow similar to that used for the 2022 data set.*

1778 *2022 Shutdown*

1779 *The following section has been excerpted from a manuscript review {Guo, submitted 2024/08/22 to*  
1780 *Geophys. Res. Lett. #50537}.*

1781 In this section, we focus on a planned, 82-hour-long power plant shutdown at the San  
1782 Emidio geothermal field, Nevada, USA from ~13:00 UTC on April 18 to ~22:42 UTC on  
1783 April 21, 2022 (Figure 60). All the pumping wells, including three vertical production wells  
1784 and three vertical injection wells (Figure 60), stopped operating during the shutdown (Figure  
1785 61). To monitor the stress perturbations in the reservoir associated with this shutdown, the  
1786 WHOLESCALE team deployed a comprehensive observation system integrating seismology,  
1787 hydrology, geodesy, and well logging and collected rich data sets (Feigl et al., 2023),  
1788 including data from a dense seismic array (Figure 60).

1789 Unlike the 2016 December shutdown studied by Guo et al. (2023), it is noteworthy that  
1790 the 2022 April shutdown involved a new production well (25A-21), installed in the southern  
1791 part of the field, in addition to two long-running production wells in the northern part (75B-16  
1792 and 76-16) (Figure 60). These wells were surrounded by the seismic array (Figure 60). The  
1793 involvement of this new well and the integrated observation system provide an excellent  
1794 opportunity to better understand how the power plant operations perturb the reservoir and  
1795 modulate seismicity.

1796 We conducted a series of seismic analyses to develop a comprehensive seismic event  
1797 catalog and a high-resolution three-dimensional (3-D) velocity model, using the dense seismic  
1798 array data and state-of-the-art techniques. Through these analyses, we determined the  
1799 spatiotemporal evolution of seismicity, the distribution of activated faults, and the material  
1800 properties in the reservoir. These results, combined with hydrologic and field operational data,  
1801 provide key physical constraints for understanding how the reservoir responds to changes in  
1802 power plant operations and the factors controlling the underlying physical processes that  
1803 induce seismicity during the shutdown. These analyses are described here in detail.

1804 The WHOLESCALE team deployed a dense seismic array in the field for one month from  
1805 April 6 to May 7, 2022 to coincide with the 2022 April shutdown (Feigl et al., 2023) (Figure  
1806 60). This array consisted of 450 three-component nodal stations, spaced approximately 100-  
1807 200 m apart (Figure 60), which well covered all the active production and injection wells  
1808 (Figure 60). With this dense array data set, we have developed a seismic event catalog and a  
1809 3-D P-wave velocity ( $V_p$ ) model using an advanced seismic analysis workflow. As described  
1810 next, our workflow involves: (1) seismic event detection, (2) event magnitude estimation, (3)  
1811 arrival time repicking and waveform cross-correlation (WCC) measurement of differential  
1812 times, and (4) joint tomographic inversion of event locations and 3-D velocity model. We did  
1813 not analyze S-wave data due to the small S-wave amplitudes of most events, severely limiting  
1814 our ability to pick S-wave arrivals.

1815 We built the initial event catalog using a processing workflow consisting of a seismic  
1816 wave arrival detection algorithm, arrival association, and iterative repicking and relocation.  
1817 The combined algorithm is known as REST (e.g., Comte et al., 2019; Yarce et al., 2023). It  
1818 first utilizes an autoregressive estimation approach on continuous seismic data for signal  
1819 detection and onset estimation (Pisarenko et al., 1987; Kushnir et al., 1990). A detection is  
1820 declared when the autoregressive model of the waveform series differs from a background

1821 estimate by a given threshold. Onsets are defined as the sample point at which the difference  
1822 between the autoregressive models before and after the prospective arrival is maximized.  
1823 Onsets (picks) are then associated into potential events based on a specified time window  
1824 length, and the continuous seismic data are windowed about these picks. The next stage  
1825 involves repicking in successively smaller windows and location of potential events using a  
1826 grid search approach (Roecker et al., 2006) in the velocity model provided, followed by  
1827 further steps of repicking and relocation. A valid event is declared if the picks are consistent  
1828 with a plausible event location.

1829 We then refined P-wave arrival picks using an automatic picking code developed by Guo  
1830 et al. (2018) based on Akaike Information Criteria (Maeda, 1985). We also measured P-wave  
1831 differential times for pairs of events observed at common stations using a waveform cross-  
1832 correlation (WCC) code developed by Guo & Thurber (2021) based on the time-domain WCC  
1833 algorithm (e.g., Schaff et al., 2004). The absolute arrival times and WCC differential times are  
1834 used for our subsequent tomographic inversion.

1835 We determined event locations and a 3-D  $V_p$  model using the triple-difference seismic  
1836 tomography algorithm tomoTD (Guo and Zhang, 2017; Guo, 2019; Guo et al., 2021).  
1837 tomoTD uses absolute arrival time data and three types of differential time (dt) data, including  
1838 station-pair, event-pair, and double-pair dt data. By combining these data types, tomoTD can  
1839 simultaneously determine high-precision absolute and relative event locations and image  
1840 high-resolution velocity structure in both earthquake generation zones and the zones beneath  
1841 seismic stations.

1842 We estimated event magnitudes with the coda duration magnitude method, an effective  
1843 way for estimating magnitudes for small events, using a code developed by Guo et al. (2023)  
1844 based on the method described in Koper et al. (2020). The general idea of this method is first  
1845 to estimate coda duration on each station for each event and then use an empirical formula to  
1846 relate the estimated coda duration with magnitude. The formula we employed here is the one  
1847 used by the Nevada Seismological Laboratory for the Nevada region.

1848 We detected and successfully located 1,761 seismic events, 134 of which occurred before  
1849 shutdown, 1,575 during shutdown, and 52 after restart (Figure 60 and Figure 62). All these  
1850 events have small magnitudes, ranging from -3 to 1 (Figure 62). The two largest events with  
1851 magnitudes of 1.08 and 1.11 occurred 52 hours after shutdown.

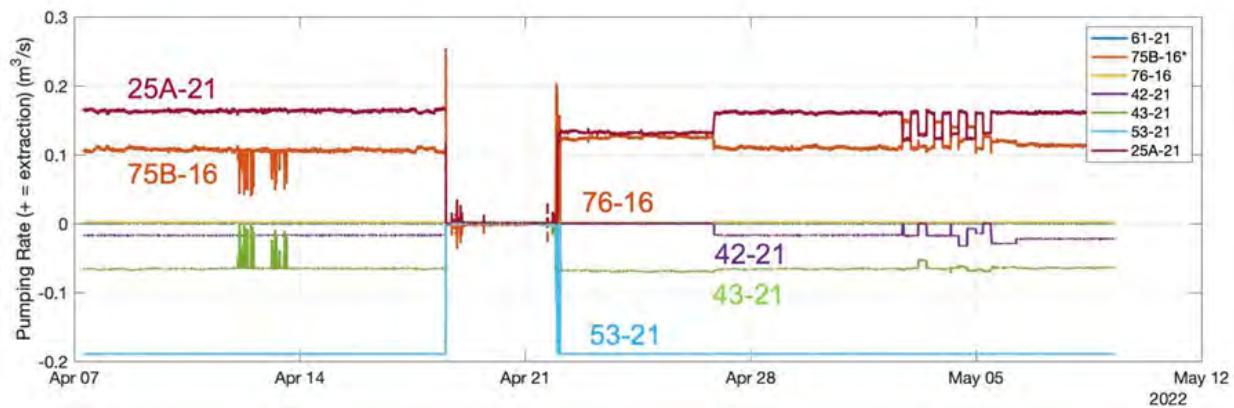
1852 Seismic event detection is influenced by ambient noise. At San Emidio, the noise level  
1853 during shutdown, when no pumping operations occurred, is systematically lower than before  
1854 shutdown and after restart, which could cause varying detection capability. By applying a  
1855 constant noise level to define the end of coda and calculate coda duration, the calculation of  
1856 coda duration magnitudes is not biased by varying noise (Pechmann et al., 2006; Koper et al.,  
1857 2020), allowing us to assess the effect of varying noise on detection. We defined a magnitude  
1858 threshold to be -1.3, above which the detection capability is comparable in all periods and  
1859 below which the smaller events are only reliably detected during shutdown when the noise  
1860 level is lower (Figure 62). Above magnitude -1.3, there are 121 events (0.4 events per hour)  
1861 before shutdown, 790 events (9.7 per hour) during shutdown, and 40 events (0.1 per hour)  
1862 after restart, indicating a significant increase in microseismicity during shutdown.

1863 Microseismicity also varies with time during shutdown. There is an apparent fluctuation  
1864 from day to night, whereby microseismicity during the night is generally more abundant than  
1865 during the day (Figure 62). This pattern is likely due to the higher noise level during the day  
1866 resulting from the construction activities related to a new production well during the 2022  
1867 April seismic deployment.


1868 We estimated MSE location uncertainties using a bootstrap analysis and assessed the  $V_p$   
1869 model resolution using checkerboard resolution tests. In the vertical cross-sections that are  
1870 approximately perpendicular to fault strikes (Figure 63), the events with location uncertainties  
1871 larger than 50 m along each direction are excluded.

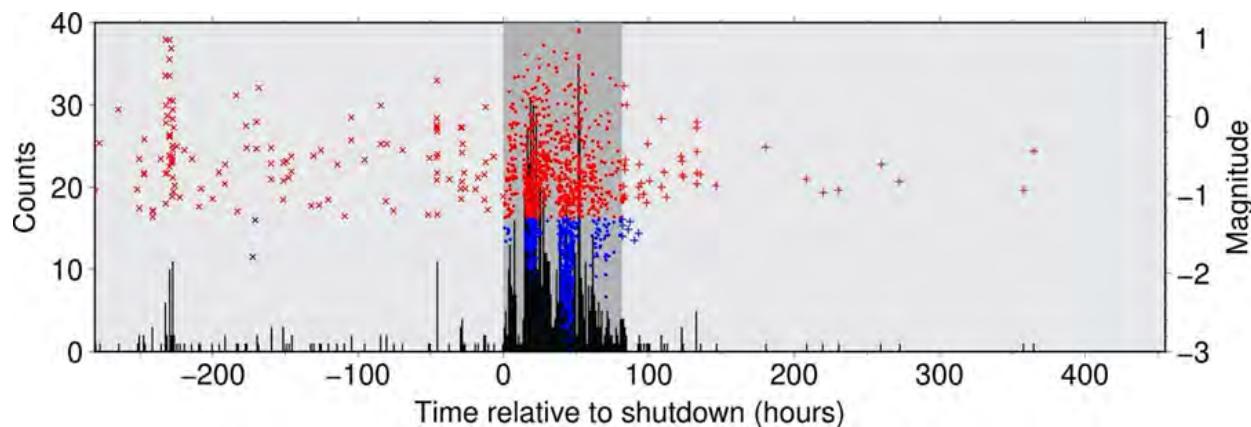
1872 Our high-precision event relocations effectively delineate the seismically active volume  
1873 and detailed seismicity structures. Most events occurred in a region bounded by the two  
1874 northern production wells 75B-16 and 76-16 and the southern production well 25A-21 (Figure  
1875 60). Most MSEs are located on or around the Basin Bounding Fault (BBF) or in the areas  
1876 between the BFF, Piedmont Fault (PF), and San Emidio Fault (SEF), based on the fault model  
1877 of Folsom et al. (2020) (Figure 60 and Figure 63). The MSEs form multiple clusters and  
1878 exhibit linear structures in both map and cross-section views (Figure 60 and Figure 63). In  
1879 map view, the seismicity lineations to the west of 295.6 km Easting strike from NNE to SSW  
1880 or from north to south, aligning with the strike directions of the BFF and SEF (Figure 60). To  
1881 the east of 295.6 km Easting, there are another two clusters at shallow depths, both of which  
1882 trend SSE to NNW (Figure 60). One of them is to the NNW of the two northern production  
1883 wells and the other is to the WSW of these two wells. It is noteworthy that the former cluster  
1884 occurred in the same area where a seismicity cluster occurred during the 2016 December  
1885 shutdown (Guo et al., 2023). In the cross-sections perpendicular to the strike of the BFF and  
1886 SEF, most of the clusters dip approximately 60°, generally consistent with the dip angles of  
1887 the BFF and SEF (Figure 63). The cluster to the WSW of the two northern production wells is  
1888 located very close to the depth extension of the NWF. It is important to point out that  
1889 although in map view the microseismicity distribution appears quite complex, if viewed  
1890 obliquely from the southeast, the distribution is nearly planar (Figure 64). We also note that  
1891 we find no systematic seismicity migration following the shutdown. However, migration did  
1892 occur within several small-scale clusters.

1893 Our  $V_p$  model reveals high-resolution structures at both large and small scales. At the  
1894 larger scale, the model shows high velocities below the Lake Range in the eastern part of the  
1895 model (east of the Fan Fault) and low velocities below the basin in the western part of the  
1896 model (Figure 63), consistent with the geologic model (Folsom et al., 2020). More  
1897 importantly, at a smaller scale, our model reveals lateral velocity contrasts in the reservoir at  
1898 elevations of -0.5 to 0.8 km from about 2 to 3 km distance along cross-sections perpendicular  
1899 to the strike of the BFF and SEF, as shown in Figure 63. The most obvious velocity contrasts  
1900 are the ones where the linearly distributed MSEs are located. Another notable feature in our  
1901 model is that most MSEs occurred within extremely low velocity zones (LVZs), with  
1902 velocities reduced by up to -40% relative to the depth-average velocity and even more if  
1903 compared to the high velocities to the east (Figure 63). This low velocity structure is  
1904 distributed along the BFF and is in direct contact with the perforated sections of the nearby  
1905 production wells (Figure 63).


1906      Although small offsets exist between the MSE locations and the modeled faults of Folsom  
1907      et al. (2020), the close spatial proximity and generally consistent orientations (strike and dip)  
1908      between the seismicity lineations and the modeled faults indicate that most MSEs likely occur  
1909      on patches along the pre-existing normal faults BBF and SEF, with additional MSEs  
1910      occurring on the PF and NWF (Figure 63). The small (< 200 m) offsets may be partially  
1911      attributed to uncertainties in the fault model, which was constructed without seismicity  
1912      constraints (Folsom et al., 2020), as well as errors in the MSE absolute locations. The BBF  
1913      and SEF faults are not only delineated by MSE locations but also characterized by strong  
1914      velocity contrasts in our velocity model, transitioning from high velocity in the east to low  
1915      velocity in the west (Figure 63).

1916      Most MSEs are contained within LVZs, which are distributed along the BBF (Figure 63).  
1917      These LVZs spatially coincide with high-temperature bodies to the west of the BBF and SEF  
1918      (Folsom et al., 2020), and are in direct contact with the production wells (Figure 63). It is  
1919      likely that these LVZs are filled with geothermal fluids migrating toward these wells through  
1920      permeable fault zones, especially the BBF and SEF faults, and the fractures in between the  
1921      faults (Figure 63).  $V_p$  is influenced by the bulk and shear modulus, density, and pore  
1922      properties (e.g., Hutchings et al., 2019). The decreasing bulk and shear modulus due to the  
1923      varying lithology from east to west can result in a decrease in velocities from east to west.  
1924      However, the negative velocity perturbations in these LVZs are much lower than those in the  
1925      zones just above (shallower than 0.8 km depth), as evident in all cross-sections in Figure 63.  
1926      A change in lithology from east to west alone may explain the moderately low velocities in  
1927      the overlying zones but cannot account for the extremely low velocities in these LVZs. Due to  
1928      the spatial coincidence of these LVZs and the fault patches and fractures delineated by the  
1929      MSEs, these LVZs can be attributed to decreased bulk and shear modulus due to faulting and  
1930      fracturing, high porosity and the filling of pore spaces and cracks with geothermal fluids.




1931 *Figure 60. Map view of MSE relocations, seismic deployment, pumping wells, and*  
1932 *the fault system. Dots, MSE epicenters colored by depth (positive above sea level);*  
1933 *blue star, M1.08 event; red star: M1.11 event; black triangles, seismographs; red*  
1934 *triangles, production wells; blue triangles, injection wells; lines, surface fault traces*  
1935 *with tick marks representing dip directions. RFF, Range Front Fault; NF,*  
1936 *Nightingale Fault; FF, Fan Fault; AF, Antithetic Fault; SEF, San Emidio Fault;*  
1937 *BBF, Basin Bounding Fault; PF, Piedmont Fault; NWF, NW Fault. The background*  
1938 *image shows the topography.*

1939



1940 *Figure 61. Pumping history before, during, and after the 2022 shutdown. Production wells*  
1941 *are in hot colors and have generally positive values, whereas injection wells are in cool*  
1942 *colors and have generally negative values.*

1943



1944 *Figure 62. Temporal evolution of microseismicity throughout the period of the seismic array*  
1945 *deployment. Time is relative to the start of shutdown (UTC 13:00 on April 18, 2022). Black*  
1946 *bars show the number of events with magnitude > -1.3 per hour (left vertical axis). Crosses,*  
1947 *dots, and pluses show magnitudes (right vertical axis) for the events before, during, and after*  
1948 *the shutdown period (dark gray shaded area), respectively. Events with magnitudes below -*  
1949 *1.3 are colored blue, and those above -1.3 are colored red.*

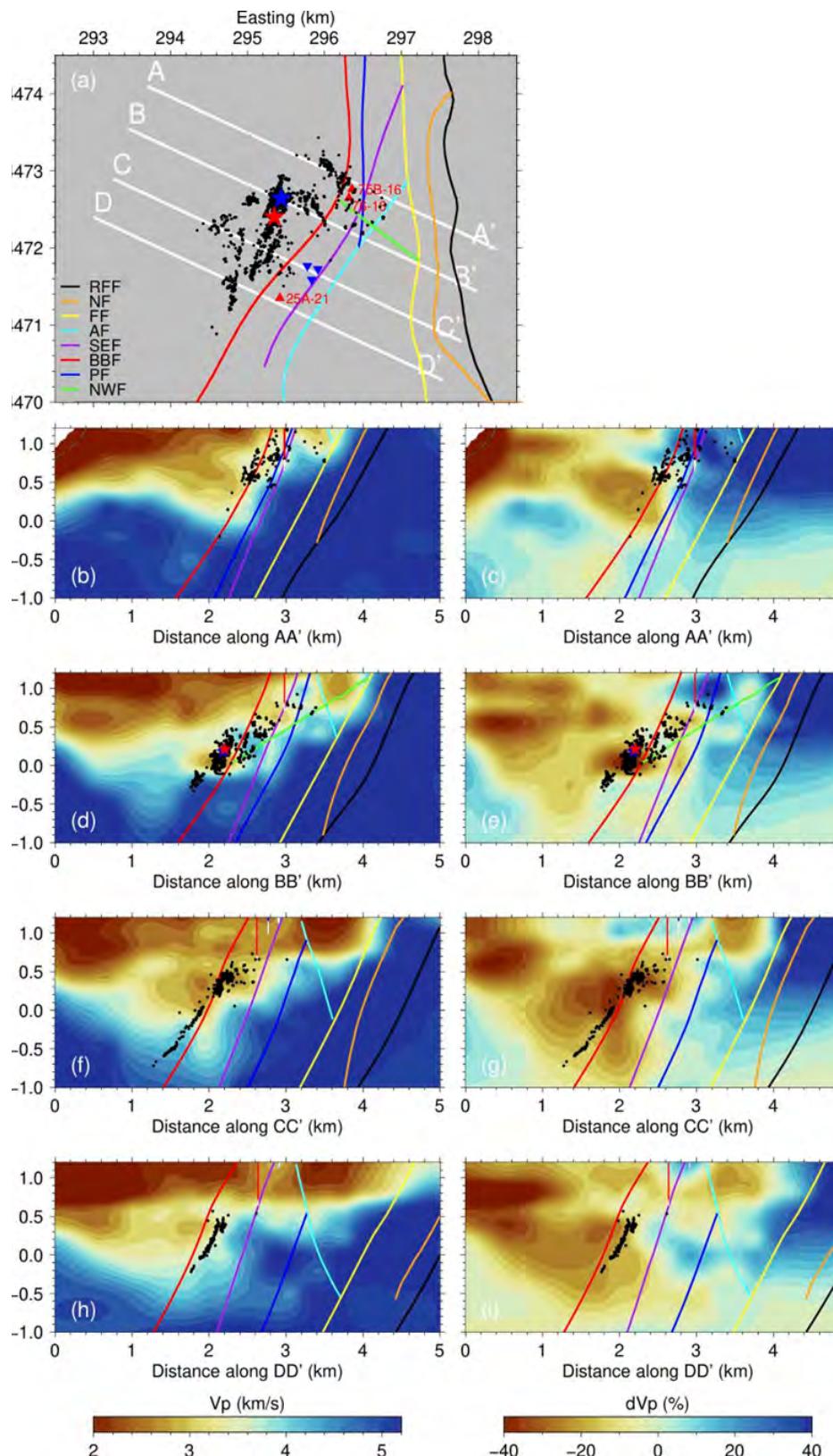
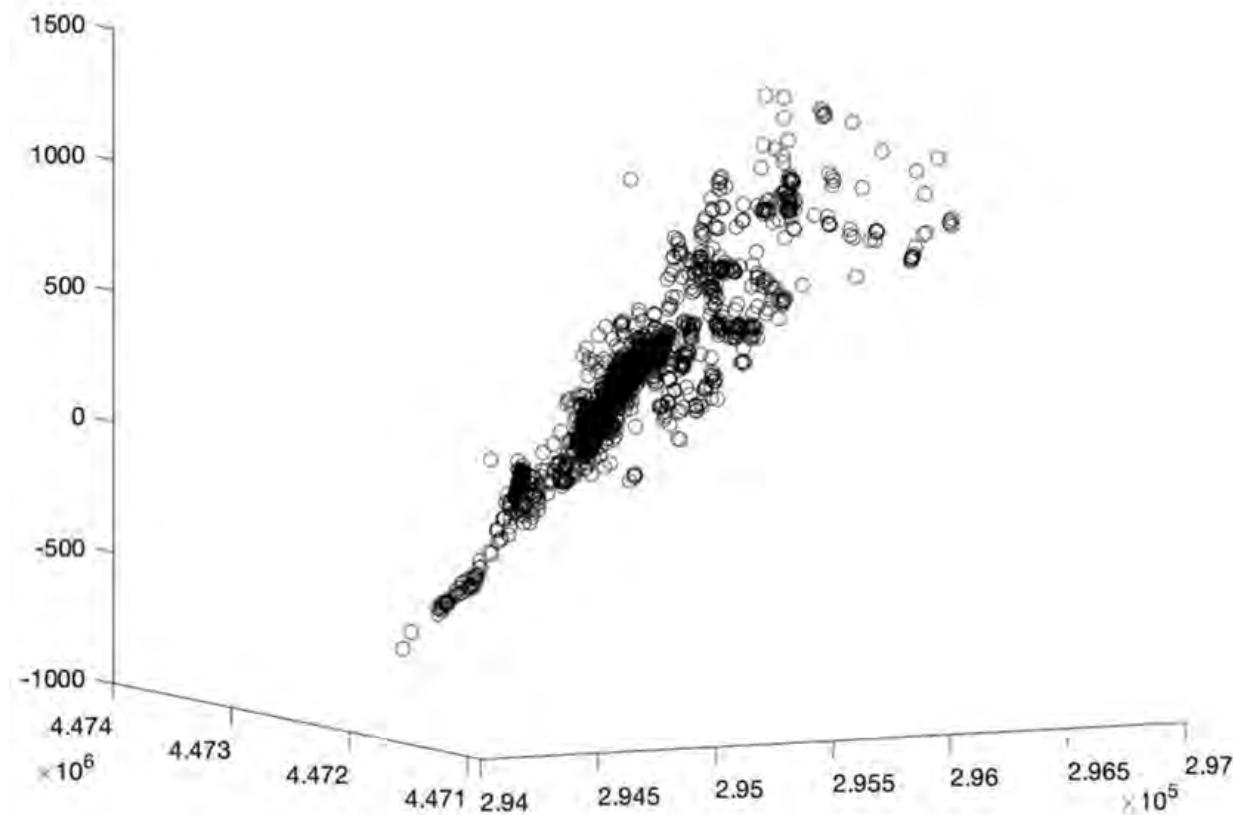
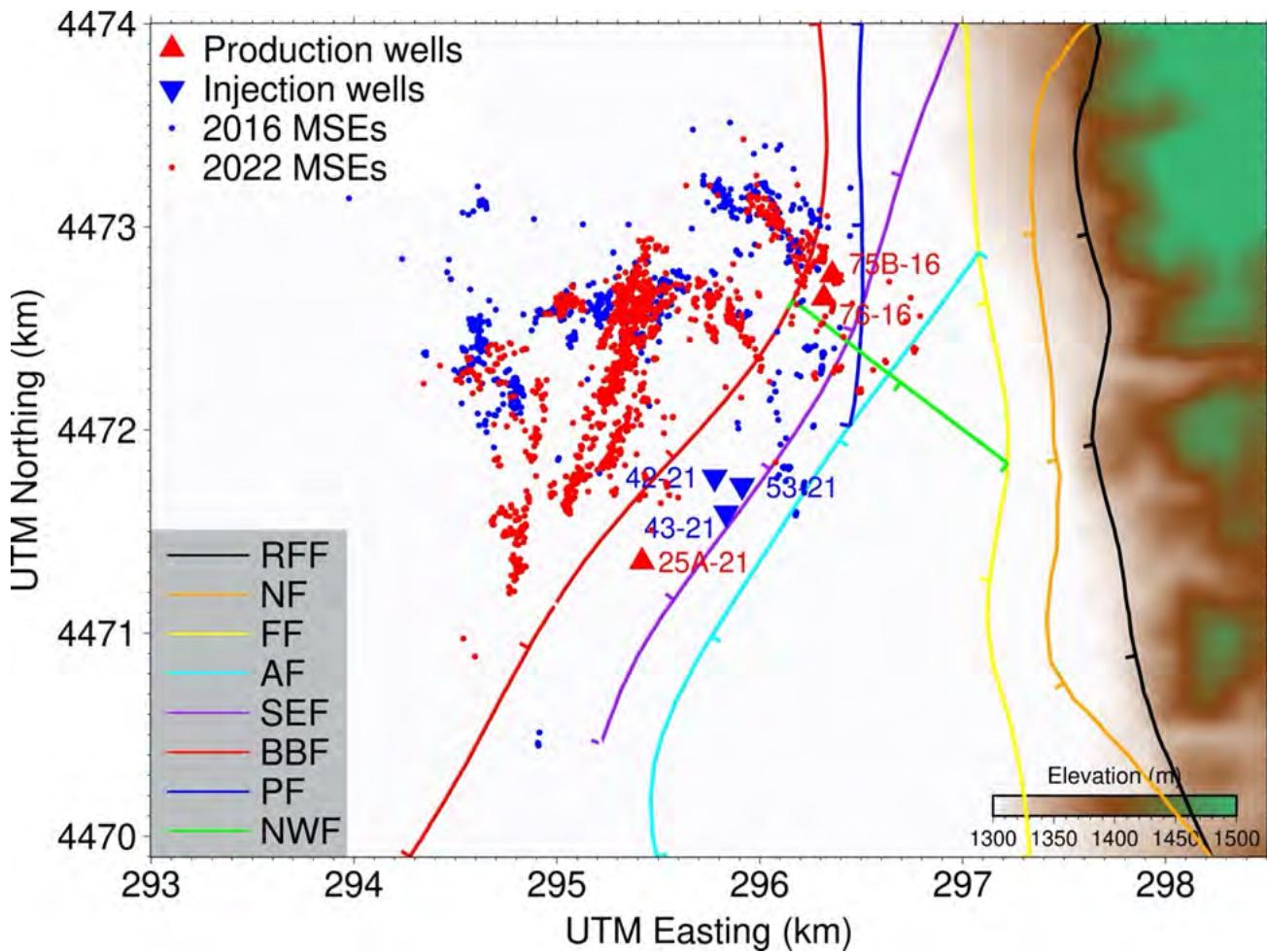





Figure 63. Map view and vertical cross-sections of event relocations (black dots) and the  $V_p$  model along four profiles that are approximately perpendicular to the main fault strikes. (a) Map of the microseismicity and four profiles (white lines). (b, d, f, h)  $V_p$  model. (c, e, g, i)  $V_p$  model perturbation (in percentage) relative to the depth-averaged 1-D model. Blue star (M1.08) and red star (M1.11) are the two largest events during shutdown. Red triangles, production wells; blue triangles, injection wells. Faults traces at the surface and at depth are showed as colored lines. In the cross-sections, the red-to-white and blue-to-white lines denote the depth trajectories of the production and injection wells, respectively, with the white parts at the bottom representing the perforated segments.

1951



1952 *Figure 64. Perspective view of the 3-D distribution of microseismicity in the 2022*  
1953 *data set. Note the near planarity of the distribution, despite the complex appearance*  
1954 *in map view. Coordinates in meters are vertical (elevation H above sea level), UTM*  
1955 *Northing (to the left), and UTM Easting (to the right).*



1956  
1957  
1958  
1959

*Figure 65. Comparison of the precise locations of microseismicity in 2016 (blue dots) and 2022 (red dots). The main differences are the greater westward extent of microseismicity in 2016 and the greater southward extent of microseismicity in 2022. Only events with location uncertainties less than 50 m are plotted here.*

**SECTION V. CALIBRATING STRESS MODELS ON OBSERVATIONS**

We have calibrated stress models of the San Emidio geothermal system using available data. To do so, we use the GEOS code as a common framework to calculate modeled values of several observable quantities. The mesh for the GEOS modeling appears in Figure 66. The boundary conditions are listed in Table 12. The material properties are listed in Table 13.

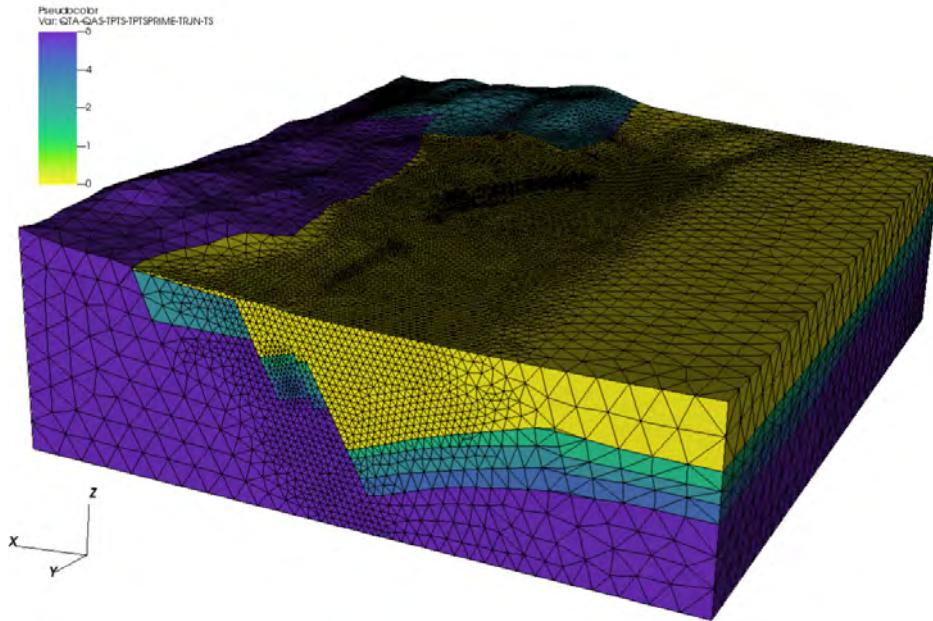



Figure 66. Mesh used for T-H-M and H-M modeling (view from northwest) showing blocks (element sets) of material properties corresponding to geologic units (from top to bottom): Qal (yellow), Qas (light green, hidden), Tpts (green), Tpts' (teal), TrJn (blue), and Ts (purple) (Luo et al. 2024; Feigl et al. 2024).

Table 12. Boundary conditions for H, T, and M.

| # name                 | fieldName            | component | setNames            | scale | units | functionName  |
|------------------------|----------------------|-----------|---------------------|-------|-------|---------------|
| xconstraint            | totalDisplacement    | 0         | xneg;xpos;yneg;ypos | 0     | m     | NA            |
| yconstraint            | totalDisplacement    | 1         | xneg;xpos;yneg;ypos | 0     | m     | NA            |
| zconstraint            | totalDisplacement    | 2         | zneg                | 0     | m     | NA            |
| edge_pressure          | hydrostatic          | .         | yneg;ypos           | .     | .     | edge_pressure |
| edgeTemperature        | relative temperature | .         | yneg;ypos           | 0     | degC  | NA            |
| faultTemperature       | relative temperature | .         | fault_se_zneg       | 0     | degC  | NA            |
| well_42_21_temperature | relative temperature | .         | well_42_21          | -94.3 | degC  | NA            |
| well_43_21_temperature | relative temperature | .         | well_43_21          | -94.3 | degC  | NA            |
| well_53_21_temperature | relative temperature | .         | well_53_21          | -94.3 | degC  | NA            |
| well_25A_21            | mass flux            | .         | well_25A_21         | 987   | kg/s  | well_25A_21   |
| well_75B_16            | mass flux            | .         | well_75B_16         | 926   | kg/s  | well_75B_16   |
| well_76_16             | mass flux            | .         | well_76_16          | 931   | kg/s  | well_76_16    |
| well_42_21             | mass flux            | .         | well_42_21          | -987  | kg/s  | well_42_21    |
| well_43_21             | mass flux            | .         | well_43_21          | -987  | kg/s  | well_43_21    |
| well_53_21             | mass flux            | .         | well_53_21          | -987  | kg/s  | well_53_21    |
| well_61_21             | mass flux            | .         | well_61_21          | 923   | kg/s  | well_61_21    |

1971

Table 13. Material properties for each set of elements.

| # name                   | unit     | fieldName                      | component | scale    |
|--------------------------|----------|--------------------------------|-----------|----------|
| permeability_x_QTA       | $m^2$    | rockPerm_permeability          | 0         | 1.50E-12 |
| permeability_y_QTA       | $m^2$    | rockPerm_permeability          | 1         | 1.50E-12 |
| permeability_z_QTA       | $m^2$    | rockPerm_permeability          | 2         | 1.07E-14 |
| porosity_QTA             |          | rockPorosity_referencePorosity | NA        | 3.00E-01 |
| permeability_x_QAS       | $m^2$    | rockPerm_permeability          | 0         | 4.30E-11 |
| permeability_y_QAS       | $m^2$    | rockPerm_permeability          | 1         | 4.30E-11 |
| permeability_z_QAS       | $m^2$    | rockPerm_permeability          | 2         | 3.07E-13 |
| porosity_QAS             |          | rockPorosity_referencePorosity | NA        | 3.50E-01 |
| permeability_x_TPTS      | $m^2$    | rockPerm_permeability          | 0         | 1.70E-12 |
| permeability_y_TPTS      | $m^2$    | rockPerm_permeability          | 1         | 1.70E-12 |
| permeability_z_TPTS      | $m^2$    | rockPerm_permeability          | 2         | 1.70E-12 |
| porosity_TPTS            |          | rockPorosity_referencePorosity | NA        | 5.00E-02 |
| permeability_x_TPTSPRIME | $m^2$    | rockPerm_permeability          | 0         | 2.40E-11 |
| permeability_y_TPTSPRIME | $m^2$    | rockPerm_permeability          | 1         | 2.40E-11 |
| permeability_z_TPTSPRIME | $m^2$    | rockPerm_permeability          | 2         | 2.40E-11 |
| porosity_TPTSPRIME       |          | rockPorosity_referencePorosity | NA        | 1.00E-01 |
| permeability_x_TRJN      | $m^2$    | rockPerm_permeability          | 0         | 3.10E-14 |
| permeability_y_TRJN      | $m^2$    | rockPerm_permeability          | 1         | 3.10E-14 |
| permeability_z_TRJN      | $m^2$    | rockPerm_permeability          | 2         | 3.10E-14 |
| porosity_TRJN            |          | rockPorosity_referencePorosity | NA        | 5.00E-02 |
| permeability_x_TS        | $m^2$    | rockPerm_permeability          | 0         | 3.10E-14 |
| permeability_y_TS        | $m^2$    | rockPerm_permeability          | 1         | 3.10E-14 |
| permeability_z_TS        | $m^2$    | rockPerm_permeability          | 2         | 3.10E-14 |
| bulk_modulus_QTA         | Pa       | rock_bulkModulus               | NA        | 7.40E+09 |
| shear_modulus_QTA        | Pa       | rock_shearModulus              | NA        | 4.50E+09 |
| density_QTA              | $kg/m^3$ | rock_density                   | NA        | 2.12E+03 |
| bulk_modulus_QAS         | Pa       | rock_bulkModulus               | NA        | 5.70E+09 |
| shear_modulus_QAS        | Pa       | rock_shearModulus              | NA        | 4.30E+09 |
| density_QAS              | $kg/m^3$ | rock_density                   | NA        | 2.40E+03 |
| bulk_modulus_TPTS        | Pa       | rock_bulkModulus               | NA        | 1.55E+10 |
| shear_modulus_TPTS       | Pa       | rock_shearModulus              | NA        | 1.26E+10 |
| density_TPTS             | $kg/m^3$ | rock_density                   | NA        | 2.12E+03 |
| bulk_modulus_TPTSPRIME   | Pa       | rock_bulkModulus               | NA        | 1.74E+10 |
| shear_modulus_TPTSPRIME  | Pa       | rock_shearModulus              | NA        | 1.41E+10 |
| density_TPTSPRIME        | $kg/m^3$ | rock_density                   | NA        | 2.67E+03 |
| bulk_modulus_TRJN        | Pa       | rock_bulkModulus               | NA        | 2.04E+10 |
| shear_modulus_TRJN       | Pa       | rock_shearModulus              | NA        | 1.66E+10 |
| density_TRJN             | $kg/m^3$ | rock_density                   | NA        | 2.67E+03 |
| bulk_modulus_TS          | Pa       | rock_bulkModulus               | NA        | 2.86E+10 |
| shear_modulus_TS         | Pa       | rock_shearModulus              | NA        | 2.15E+10 |
| density_TS               | $kg/m^3$ | rock_density                   | NA        | 2.80E+03 |
| biot_QTA                 |          | rockPorosity_biotCoefficient   | NA        | 3.60E-01 |
| biot_QAS                 |          | rockPorosity_biotCoefficient   | NA        | 3.60E-01 |
| biot_TPTS                |          | rockPorosity_biotCoefficient   | NA        | 3.60E-01 |
| biot_TPTSPRIME           |          | rockPorosity_biotCoefficient   | NA        | 3.60E-01 |
| biot_TRJN                |          | rockPorosity_biotCoefficient   | NA        | 3.60E-01 |
| biot_TS                  |          | rockPorosity_biotCoefficient   | NA        | 3.60E-01 |
| fault_se_permeability_x  | $m^2$    | rockPerm_permeability          | 0         | 1.50E-12 |
| fault_se_permeability_y  | $m^2$    | rockPerm_permeability          | 1         | 1.50E-12 |
| fault_se_permeability_z  | $m^2$    | rockPerm_permeability          | 2         | 1.07E-14 |
| porosity_TS              |          | rockPorosity_referencePorosity | NA        | 5.00E-02 |

To quantify the performance of the models, we consider four different technical performance metrics (TPMs), as summarized in the columns of Table 14. The rows indicate different levels of performance. Specifically, each numerical value represents the misfit equal to the mean absolute deviation of the residual differences between the observed values  $U_{obs}$  and modeled values  $U_{mod}$ :

$$misfit = \text{mean}(\text{abs}(U_{obs} - U_{mod})) \quad (5)$$

This definition of the misfit was specified for the state of the art in 2020 (row 1 in Table 14), the minimum requirement for success (row 2), and the target level (row 3) in the SOPO. Row 4 in the table shows the level of performance that was realized and evaluated in 2021 as part of Task 6. Row 5 shows the level of performance that has been realized using the data sets used to calibrate the GEOS models in Task 9. Row 6 shows the level of performance remaining to be determined (TBD) in Subtask 9.5 using auditing data sets.

In the following sections, we discuss the calibration of the models in Subtasks 9.1, 9.2, 9.3, and 9.4, to evaluate TPMs 2, 4, 3, and 1, respectively.

*Table 14. Technical performance metrics (TPMs) for four types of observable quantities (columns) at several levels of performance (rows).*

|                                                  | TPM 1a<br>Microseismic Events:<br>location                                                                                                               | TPM 1b<br>Microseismic Events:<br>time | TPM 2a<br>Stress indicators:<br>Orientation                                              | TPM 2b<br>Stress indicators:<br>Magnitude                                                                                 | TPM 3<br>Pressure in observation<br>wells                                                       | TPM 4<br>Vertical displacement |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|
| Current state of the art in 2020                 | Location 250 m                                                                                                                                           |                                        | 20 deg                                                                                   | 10 MPa                                                                                                                    | 50 kPa                                                                                          | GPS-InSAR 10 mm                |
| Minimum requirement from SOPO                    | location 250 m                                                                                                                                           |                                        | 20 deg                                                                                   | 10 MPa                                                                                                                    | 50 kPa                                                                                          | 10 mm                          |
| Target level from SOPO                           | location 100 m                                                                                                                                           |                                        | 10 deg                                                                                   | 5 MPa                                                                                                                     | 20 kPa                                                                                          | 5 mm                           |
| Realized in 2021 from existing data (Task 5)     | 2016 shutdown 72 m                                                                                                                                       | —                                      | 10 deg                                                                                   | No borehole breakouts were observed in Well 26A-21, providing an upper bound on input to GEOS model. [Janke et al., 2020] | Observed pressure in 6 wells during 2017 flow test. Model is Thies H-only (i.e., leaky aquifer) | 2 kPa                          |
| Realized 2024 on calibration data set (Task 9)   | Position residual is defined as the minimum distance between the observed event location during 2016 shutdown and the modeled location. $\Delta CFS < 0$ | TBD                                    | Percentage of events during 2016 shutdown that occur when $\Delta CFS > \text{critical}$ | 60%                                                                                                                       | $S_{22}$ magnitude in 1 well model: GEOS long-term THM obs: from density of cuttings            | TBD                            |
| Realized 2024 on auditing data set (Subtask 9.5) | MSes during 1-month deployment before, during, and after 2022 shutdown                                                                                   | TBD                                    | Percentage of events during 2022 shutdown that occur when $\Delta CFS > \text{critical}$ | 85%                                                                                                                       | Tune temperature in input to GEOS. Consider BCs in T.                                           | TBD                            |

Cells shaded in green indicate that the TPM successfully met the specification. Cells shaded in yellow indicate caveats discussed in the narrative. Magenta-colored text indicates quantities to be determined (TBD).

**1993      Calibration of long-term T-H-M model on borehole observations (Subtask 9.1 & TPM 2)**

1994      In Subtask 5.1, we calibrated the macroscale model to match the orientation and  
1995      magnitude of various stress indicators, as described above. Specifically, the “pre-stress” initial  
1996      condition for the long-term T-H-M model was set to match the orientation of the maximum  
1997      compressive horizontal stress  $S_{Hmax}$  at an azimuth of N10°E, as selected by Jahnke et al.  
1998      [2023] based on regional stress indicators.

1999      To evaluate the orientation of the stress field (TPM 2a), we plan to consider the  
2000      orientation of maximum compressive horizontal stress  $S_{Hmax}$  at specific locations. To do so,  
2001      we plan to use the observed data set consisting of the azimuths of the drilling-induced tensile  
2002      fractures (DITFs) picked at several depths from the borehole image log in Well 17A-21 when  
2003      it was drilled in July 2022. The modeled values of  $S_{Hmax}$  will be computed using the long-term  
2004      T-H-M model. The mean of the absolute value of residual (misfit) will be compared to the  
2005      minimum requirement of 20.0 degrees specified in the SOPO.

2006      To evaluate the magnitude of stress in TPM 2b, we plan to consider the magnitude of the  
2007      vertical component of stress, i.e.  $|\sigma_{zz}|$  conventionally abbreviated  $S_V$ . The observed values are  
2008      derived from a vertical profile constructed from density measurements of cuttings returned to  
2009      the surface while drilling Well 17A-21. The modeled values will be calculated from the long-  
2010      term T-H-M model computed by GEOS.

2011      *Table 15. Technical performance metrics (TPMs 2a and 2b) for stress indicators (columns) at  
2012      several levels of performance (rows).*

|                                                  | TPM 2a<br>Stress indicators:<br>Orientation                                                                                                                            | TPM 2b<br>Stress indicators:<br>Magnitude |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Current state of the art in 2020                 | 20 deg                                                                                                                                                                 | 10 MPa                                    |
| Minimum requirement from SOPO                    | 20 deg                                                                                                                                                                 | 10 MPa                                    |
| Target level from SOPO                           | 10 deg                                                                                                                                                                 | 5 MPa                                     |
| Realized in 2021 from existing data (Task 5)     | Observations are stress inferred from regional indicators, nearby wells, and focal mechanisms from 2016 MSE. Model is GEOS equilibrium solution. [Jahnke et al., 2023] | 10 deg                                    |
| Realized 2024 on calibration data set (Task 9)   | $S_{Hmax}$ azimuth in Well 17A-21. Observation is DITF. Model is GEOS long-term THM solution. Metric: meanabs(mod-obs)                                                 | TBD                                       |
| Realized 2024 on auditing data set (Subtask 9.5) | Tune temperature in input to GEOS. Consider BCs in $T$ .                                                                                                               | TBD                                       |
|                                                  |                                                                                                                                                                        | TBD                                       |

2013      Cells shaded in green indicate that the TPM successfully met the specification. Cells  
2014      shaded in yellow indicate caveats discussed in the narrative. Magenta-colored text  
2015      indicates quantities to be determined (TBD).

***Calibration of long-term T-H-M model on geodetic observations (Subtask 9.2 & TPM 4)***

To describe the geodetic data analyzed in previous tasks, we are developing a fully coupled, thermo-hydro-mechanical (“T-H-M”) numerical model using the open-source GEOS code developed at Lawrence Livermore National Laboratory (e.g., Liu et al., 2018; Settgast et al., 2018). To constrain the modeling effort, the WHOLESCALE team is analyzing multiple types of observational data at San Emidio. Our long-term T-H-M modeling uses the same set of finite elements in the tessellated mesh of tetrahedral elements (Luo et al., 2024). For the mechanical and hydrologic aspects of the model, we use the same material properties, initial conditions, and boundary conditions as assumed for the short-term H-M model (Luo et al., 2024). The modeled viscosity of water is assumed to be constant, i.e. it does not vary with temperature. For the thermal aspects of the modeling, the material properties are listed in Table 13 and the boundary conditions are listed in Table 12. The initial conditions are set to the “natural state” temperatures before production began shown as red contours in Figure 1 (Folsom et al., 2022). The modeling results in terms of vertical displacement rate are shown in map view (Figure 67).

We have calibrated the long-term T-H-M model using geodetic observations from InSAR and GPS in Subtask 9.2.

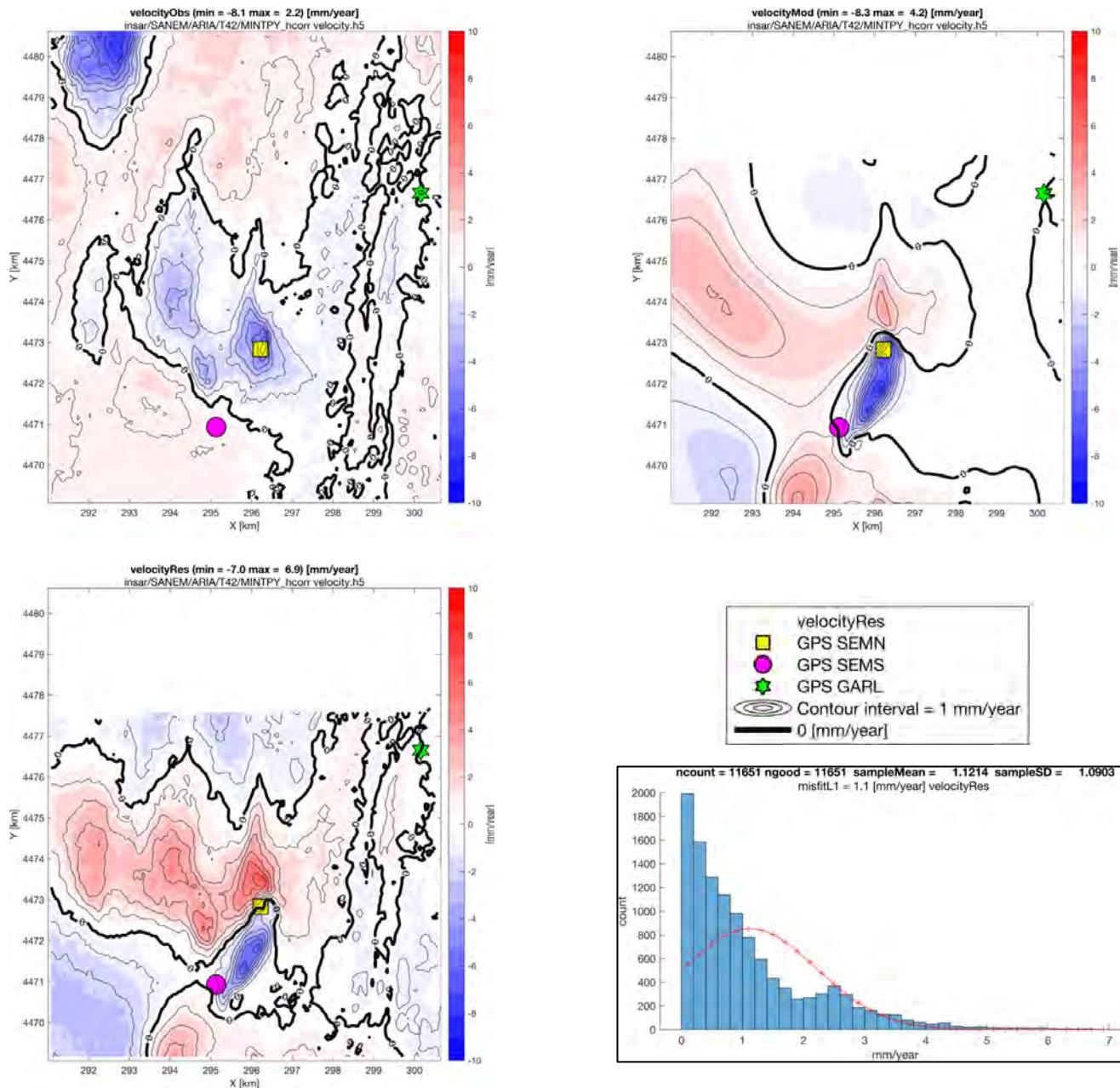
To evaluate TPM 4, we consider vertical displacement and its temporal derivative, velocity. In the latter case, the observed value is the mean vertical velocity (in mm/year) from 2016 to 2022 as measured by InSAR. The modeled values are calculated from the long-term T-H-M model implemented in GEOS. The difference of these two values is the residual difference. The three fields appear in map view in Figure 67. The absolute values of the residuals are plotted as a histogram in the lower-right panel of Figure 67. The misfit statistic, i.e. the mean absolute value of the residual difference, is 1.1 mm/year for the pixels where the observed velocity is at least twice its estimated standard deviation in absolute value.

Another calibration considers the relative velocity of a point located near the center of the subsiding bowl at GPS station SEMN with respect to a point located at the edge of the subsiding bowl at GPS station SEMS. As shown in Figure 43, this velocity is  $7 \pm 2$  mm/year as observed by GPS over an 18-month interval and (also)  $7 \pm 2$  mm/year as observed by InSAR from 2016 to 2022. In terms of the rate of vertical displacement, however, the T-H-M simulations are greater than the GPS and InSAR observations by a factor of  $\sim 4$ .

Following the presentation of the geodetic measurements of deformation as observed by InSAR and GPS and the modeling results from GEOS, we compare the latter to the former.

In Area C, on the playa to the west of the production wells, the modeled deformation field (Figure 67c) differs markedly from the deformation field observed by InSAR (Figure 41). The observed deformation field shows a velocity gradient greater than 1 mm/year per kilometer where the modeled displacement field is essentially uniformly less than 2 mm/year.

In Area A, near the production wells, the shape of the modeled subsidence “bowl” (Figure 67c) roughly mimics that observed by InSAR in Sentinel-1 Track 42 (Figure 41). The modeled rate of vertical displacement, however, is significantly higher than the observed rate. To quantify this difference, we consider the (relative) vertical displacement of a point located in the center of the geothermal field (near GPS station SEMN) with respect to a point located at the southern edge of the geothermal field (near GPS station SEMS). This rate is  $-28.2 \pm 0.1$  mm/year in the


model. The InSAR estimate is  $-7.5 \pm 0.2$  mm/year, as estimated from InSAR data acquired between 2016-01-07 and 2022-06-04 in Sentinel-1 Track 42 without accounting for atmospheric effects (yellow circles in upper panel of Figure 44). The InSAR estimate agrees well with the value of  $-7.6 \pm 0.4$  mm/year estimated from the GPS data between January 2021 and April 2022 by a least-squares fit (red points with error bars Figure 44). A realistic estimate of the uncertainty on both geodetic rates is more likely to be of the order of 2 mm/year.

The shape of the modeled displacement field agrees approximately with that observed by InSAR near the producing wells at the center of the geothermal field. The modeled rate of vertical displacement, however, agrees with that estimated from GPS and InSAR data only to within a factor of four. Further tuning of the model parameters, especially spatial permeability, will be required to match the geodetic observations.

*Table 16. Technical performance metric (TPM 4) for vertical displacement (columns) at several levels of performance (rows).*

|                                                  | TPM 4                                                                                                 |                           |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------|
|                                                  | Vertical displacement                                                                                 |                           |
| Current state of the art in 2020                 | GPS-InSAR                                                                                             | 10 mm                     |
| Minimum requirement from SOPO                    |                                                                                                       | 10 mm                     |
| Target level from SOPO                           |                                                                                                       | 5 mm                      |
| Realized in 2021 from existing data (Task 5)     | $V_z(\text{INSAR}) - V_z(\text{GPS})$ for SEMN w.r.t. SEMS                                            | 2 mm/y                    |
| Realized 2024 on calibration data set (Task 9)   | $V_z$ at SEMN wrt SEMS.<br>Obs is InSAR and GPS. Model: long-term THM GEOS.                           | obs=7±2mm/y<br>mod~28mm/y |
| Realized 2024 on auditing data set (Subtask 9.5) | <i>Time dependent displacement at SEMN wrt SEMS. Obs is InSAR and GPS. Model: long-term THM GEOS.</i> | TBD                       |

Cells shaded in green indicate that the TPM successfully met the specification. Cells shaded in yellow indicate caveats discussed in the narrative. Magenta-colored text indicates quantities to be determined (TBD).



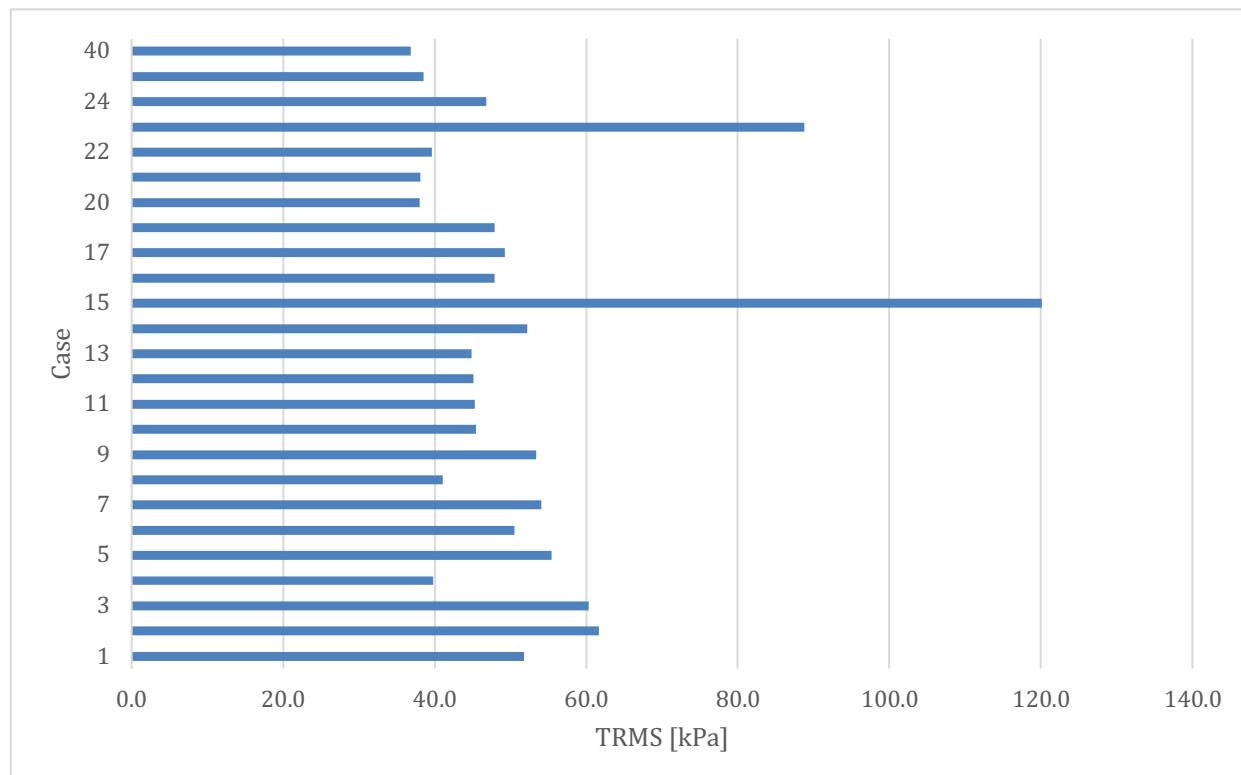
2075 *Figure 67. Map view of the mean vertical velocity (in mm/year) from 2016 to 2022 as*  
 2076 *observed by InSAR (upper left panel), as modeled by the long-term T-H-M solution in*  
 2077 *GEOS (upper right), and displayed as the residual difference of the modeled minus*  
 2078 *the observed fields (lower left). The map coordinates are Easting and Northing in the*  
 2079 *UTM cartographic projection. A legend for the three maps appears in the upper part*  
 2080 *of the lower-right panel. A histogram of the absolute values of the residual*  
 2081 *differences appears in the lower half of the lower-right panel.*

2082 ***Calibrating the H-M model on hydrologic observations (Subtask 9.3 & TPM 3)***

2083 The following section includes excerpts, some verbatim, from several sources (Feigl et al., 2022b; Feigl  
2084 et al., 2023; Feigl et al., 2024; Luo et al., 2024). It also includes new material in preparation for a  
2085 manuscript entitled WHOLESCALE modeling of hydro-mechanical processes at San Emidio, Nevada,  
2086 U.S. on time scales of days: December 2016 by Xi Luo, Chris Sherman, Kurt L. Feigl, John Murphy,  
2087 John Akerley, Hiroki Sone, Michael A. Cardiff, Jesse Hampton, Hao Guo, Clifford H. Thurber, and  
2088 Herbert F. Wang.

2089 We have calibrated the short-term H-M model using pressure measurement from a flow  
2090 test conducted in 2017. To evaluate TPM 3, the observed data set consists of pressure  
2091 measurements recorded in six wells over eight days in 2017. The modeled values are  
2092 calculated from a short-term H-M simulation computed using GEOS. For this calibration, the  
2093 metric is the root-mean-square (RMS) of residuals accumulated over all six wells.

2094 In this type of modeling, permeability is an extremely important parameter. In Subtask 9.3,  
2095 we considered many different combinations of permeability for the various regions in the short-  
2096 term H-M simulation, as shown in Table 18. The RMS statistics for the different sets of input  
2097 permeabilities are shown as a bar graph in Figure 68. For our preferred solution (case 40), the  
2098 RMS of the residual pressure values is 40.9 kPa.


2099 ***Table 17. Technical performance metric (TPM 3) for pressure in observation wells***  
2100 ***(columns) at several levels of performance (rows).***

|                                                  | TPM 3                                                                                                                                             |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | Pressure in observation wells                                                                                                                     |
| Current state of the art in 2020                 | 50 kPa                                                                                                                                            |
| Minimum requirement from SOPO                    | 50 kPa                                                                                                                                            |
| Target level from SOPO                           | 20 kPa                                                                                                                                            |
| Realized in 2021 from existing data (Task 5)     | Observed pressure in 6 wells during 2017 flow test. Model is Theis H-only (on each well individually)<br>2 kPa                                    |
| Realized 2024 on calibration data set (Task 9)   | Observed pressure in 6 wells during 2017 flow test. Model is short-term GEOS H-M. Metric is total RMS of residuals over 6 wells.<br><b>37 kPa</b> |
| Realized 2024 on auditing data set (Subtask 9.5) | Observed pressure in 13 observation wells before, during, and after 2022 shutdown. Model is short-term GEOS H-M.<br>TBD                           |

2101 Cells shaded in green indicate that the TPM successfully met the specification. Cells  
2102 shaded in yellow indicate caveats discussed in the narrative. Magenta-colored text  
2103 indicates quantities to be determined (TBD).

2104

Table 18. Summary of permeability of rock formations for GEOS model input cases.



2105

Figure 68. Overall (“total”) RMS of residual pressure in kPa for each permeability.



2106 *Figure 69. Pressure changes in observation wells during a flow test in 2017, showing*  
2107 *observed pressure as blue dots, simulated pressure calculated using a hydrology-*  
2108 *only model with COMSOL (Cardiff et al., 2023) as red curves, modeled pressure*  
2109 *calculated using the hydro-mechanical simulation with GEOS (case 40) as black*  
2110 *curves. The title and subtitles give the total root-mean-square (TRMS) and root-*  
2111 *mean-square (RMS) residual difference between observed and simulated pressure*  
2112 *values for the COMSOL (C) and GEOS (G) models respectively.*

2113 *Calibration of short-term H-M model on seismic observations (Subtask 9.4 and TPM 1)*

2114 In Subtask 9.4, we have calibrated the short-term H-M model using the timings, locations,  
2115 and focal mechanisms for microseismic events recorded before, during and after the shutdown in  
2116 December 2016. To evaluate TPM 1, we evaluate the Coulomb failure criterion on sets of planes  
2117 using the simulated stress field calculated by a GEOS solution. We assume that the rock is  
2118 critically stressed during normal operations.

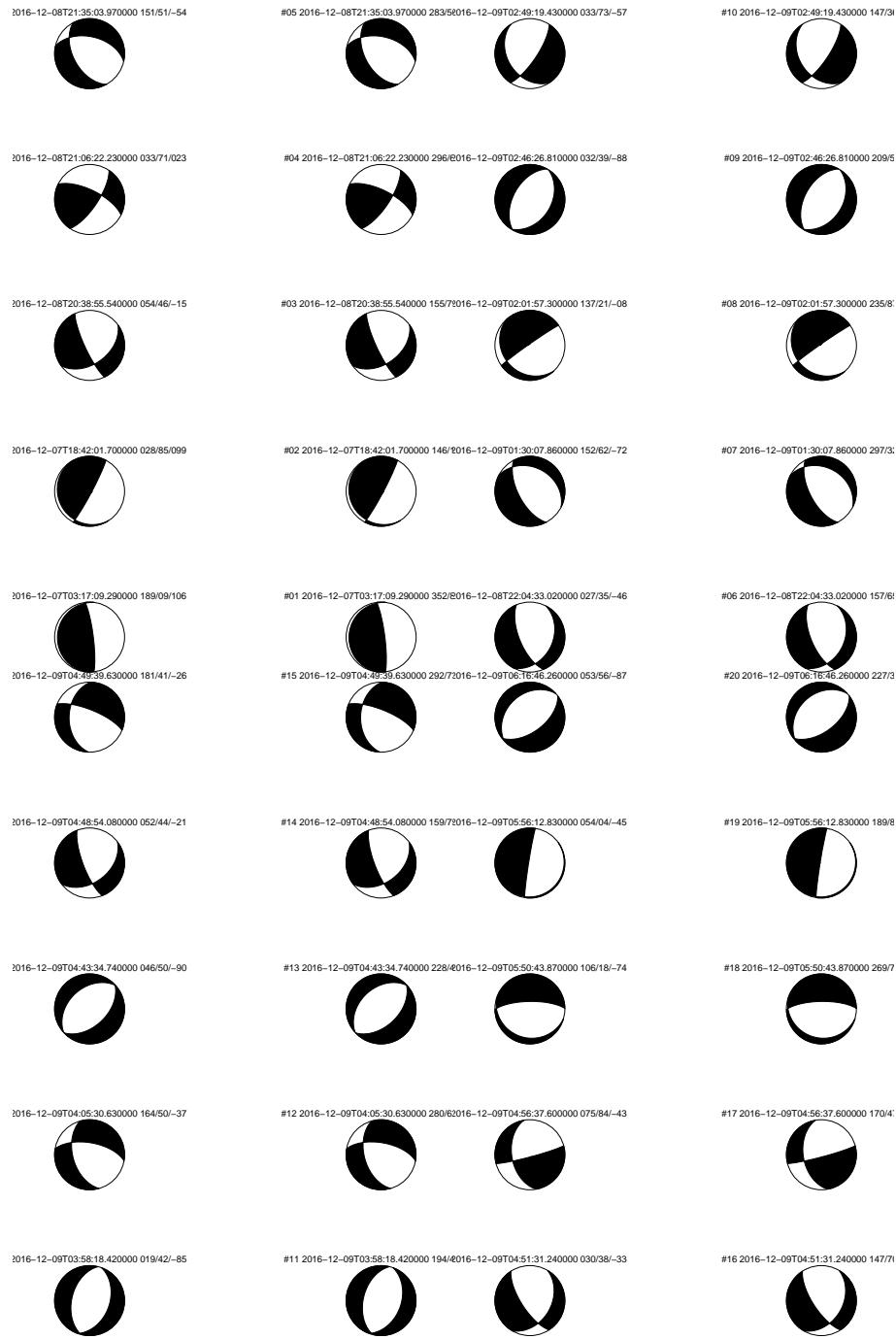
2119 Following equation (3) of Oppenheimer et al. (1988), we write the proximity of a rock  
2120 volume to failure as a Coulomb failure function  $F = |\tau_p| - \mu(\sigma_p - p) - S_0$ , where  $|\tau_p|$  is the  
2121 magnitude of the shear traction vector,  $\sigma_p$  is the normal traction (a scalar) and  $p$  is the fluid pore  
2122 pressure within the rock. We assume that the internal friction coefficient  $\mu = 0.6$  and that  
2123 cohesion  $S_0 = 0$ . We follow more recent conventions and denote the value of  $F$  as CFS and  
2124 temporal changes in  $F$  as  $\Delta CFS$ . Since the magnitude of the shear stress is always positive, CFS  
2125 does not distinguish between dextral and sinistral shear. Similar notational conventions appear  
2126 elsewhere (e.g., Vavryčuk, 2014; Kusumawati et al., 2021). Oppenheimer et al. (1988) also note  
2127 that “a physical assumption implicit in the criterion is that the quantity  $\sigma_p - p$  [effective stress]  
2128 be greater than zero; otherwise different modes of failure will occur”, citing Jaeger and Cook  
2129 (1979, p. 96). To follow this sign convention, as used in rock mechanics, we multiply each  
2130 component of the stress tensor from GEOS by  $-1$ .

2131 The  $\Delta CFS$  values are calculated with respect to an (arbitrary) reference value  $CFS(tref)$  at  
2132 time  $tref$ . In other words, at time  $ti$ , the change in Coulomb failure stress  $\Delta CFS(ti) = CFS(ti) -$   
2133  $CFS(tref)$ . Since we assume critically stressed conditions at the reference time  $tref$ , a positive  
2134 value of  $\Delta CFS > 0$  implies that failure is favored.

2135 Here, we consider only the 32 microseismic events for which Guo et al. (2023) calculated a  
2136 focal mechanism from seismic data. Each event includes two possible fault planes specified by  
2137 their strike, dip, and rake (Figure 70). The Coulomb Failure Stress  $\Delta CFS$  is positive for 28 of the  
2138 32 events (88%). This result is sensitive to the permeability values assumed in the modeling. For  
2139 example, decreasing the permeability values in the X- and Y- directions by a factor of 10  
2140 increases the number of events for which  $\Delta CFS$  is positive from 28 to 29 of 32.

2141 Next, we calculate the modeled change  $\Delta CFS$  in Coulomb failure stress on the (hypothetical)  
2142 optimally oriented plane at each grid point in a 3-dimensional grid with a spacing of 100 m. The  
2143 model calculates  $\Delta CFS$  at each 1-hour time step in the model.

2144 To evaluate the timings of the microseismic events in TPM 1a, we extract the modeled  
2145 change  $\Delta CFS$  at the grid point nearest the precise location of each microseismic event at the  
2146 corresponding time step in the model. Figure 72 and Figure 73 show results as time series for the  
2147 shutdowns in 2016 and 2022, respectively. Of the ~1000 events during each shutdown, a  
2148 majority occur when the modeled value of  $\Delta CFS$  is above critical.


2149 To evaluate the locations of the microseismic events in TPM 1b, Figure 74 and  
2150 **UTM Easting [km]**

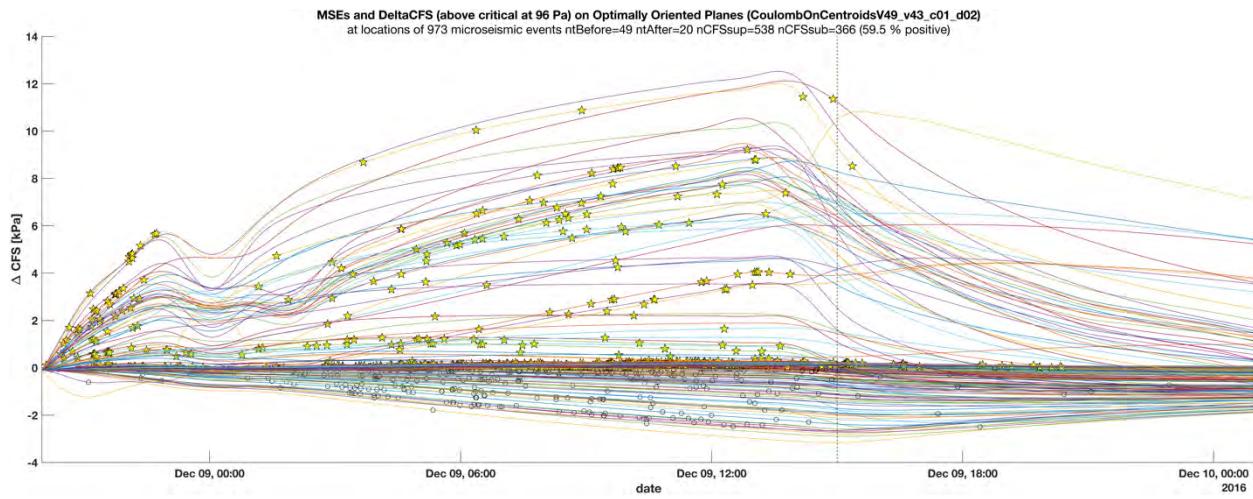
2151 Figure 75 show the results in map view the shutdowns in 2016 and 2022, respectively. In  
2152 each case, most of the events occur in areas where the modeled value of  $\Delta CFS$  is positive.

2153 *Table 19. Technical performance metrics (TPMs 1a and 1b) for microseismic events*  
2154 *(columns) at several levels of performance (rows).*

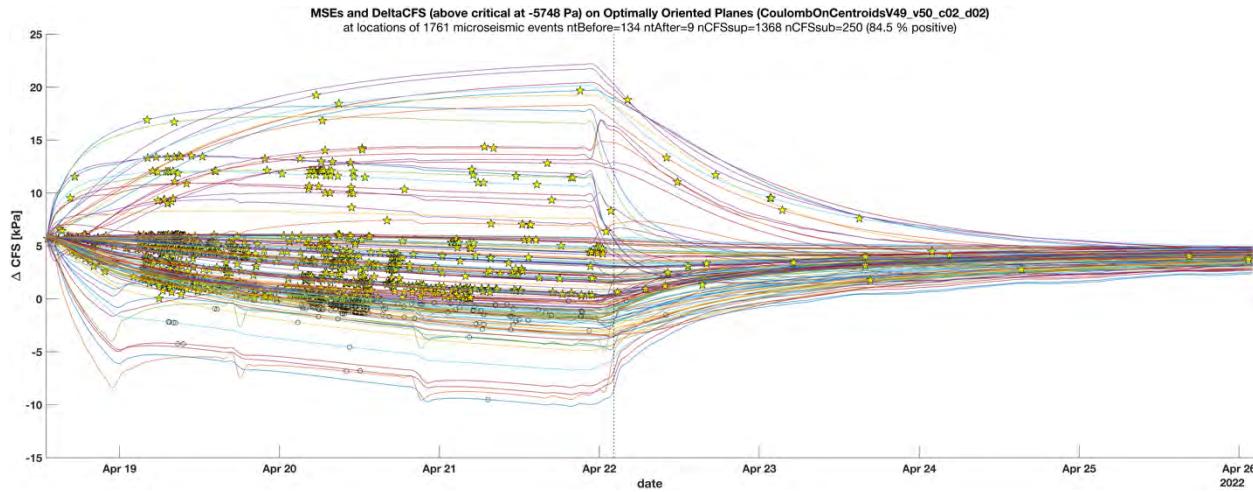
|                                                  | TPM 1a<br>Microseismic Events:<br>location                                                                                                                       | TPM 1b<br>Microseismic Events:<br>time                                            |            |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------|
| Current state of the art in 2020                 | Location 250 m                                                                                                                                                   |                                                                                   |            |
| Minimum requirement from SOPO                    | location 250 m                                                                                                                                                   |                                                                                   |            |
| Target level from SOPO                           | location 100 m                                                                                                                                                   |                                                                                   |            |
| Realized in 2021 from existing data (Task 5)     | 2016 shutdown 72 m                                                                                                                                               | —                                                                                 | —          |
| Realized 2024 on calibration data set (Task 9)   | Position residual is defined as the minimum distance between the observed event location during 2016 shutdown and the modeled contour ACFS = 0<br><br><b>TBD</b> | Percentage of events during 2016 shutdown that occur when $\Delta CFS > critical$ | <b>60%</b> |
| Realized 2024 on auditing data set (Subtask 9.5) | <i>MSEs during 1-month deployment before, during, and after 2022 shutdown</i><br><br><b>TBD</b>                                                                  | Percentage of events during 2022 shutdown that occur when $\Delta CFS > critical$ | <b>85%</b> |

2155 *Cells shaded in green indicate that the TPM successfully met the specification. Cells*  
2156 *shaded in yellow indicate caveats discussed in the narrative. Magenta-colored text*  
2157 *indicates quantities to be determined (TBD).*




2160

2161 *Figure 70. Fault plane solutions for microseismic events in December 2016 listing*  
 2162 *time of event as well as strike/dip/rake for each of the two possible fault planes (Guo*  
 2163 *et al., 2023).*

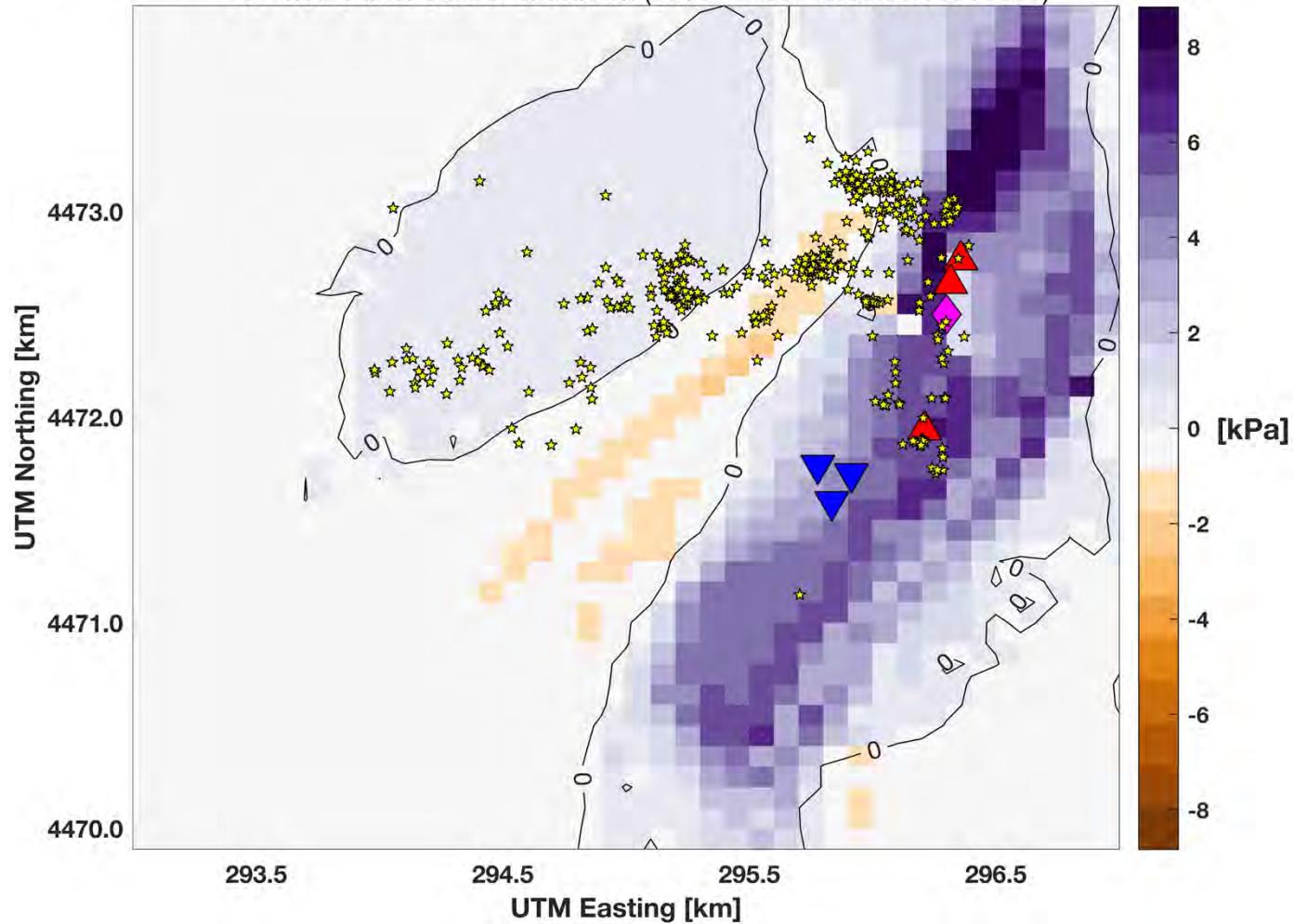



2164 *Figure 71. Modeled change in Coulomb Failure Stress ( $\Delta \text{CFS}$ ) calculated on fault*  
2165 *planes inferred from seismic data in December 2016 {Guo, 2023 #50405}. For each*  
2166 *event, the magenta bar corresponds to  $\Delta \text{CFS}$  in kPa to the fault plane, the gray bar*  
2167 *to the auxiliary plane. According to the sign convention used in rock mechanics,*  
2168 *positive values of  $\Delta \text{CFS}$  indicate conditions favorable to fault slip. The  $\Delta \text{CFS}$  values*  
2169 *are calculated with respect to a reference time of 2016/12/08 19:23 UTC, i.e., ten*  
2170 *minutes before the shutdown began.*

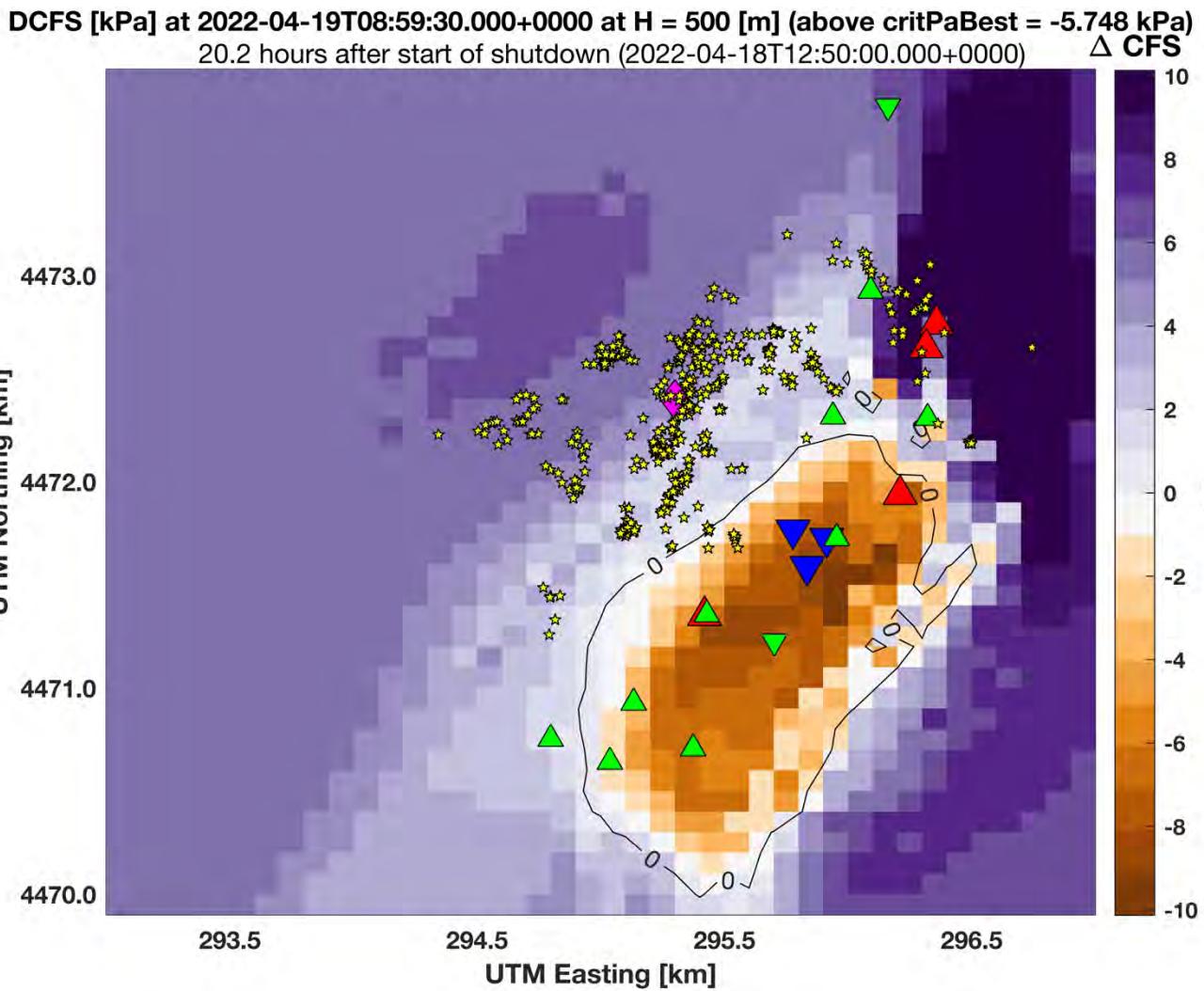
2171



2172 *Figure 72. Time series of the change in Coulomb failure stress  $\Delta CFS$  on hypothetical*  
 2173 *orientated planes. The calculation includes the microseismic events during*  
 2174 *the 2016 shutdown that have been precisely relocated using the REST workflow*  
 2175 *described above (Thurber et al. 2024; m.s. in preparation).*




2176 *Figure 73. Time series of the change in Coulomb failure stress  $\Delta CFS$  on hypothetical*  
 2177 *orientated planes. The calculation includes the microseismic events during*  
 2178 *the 2022 shutdown for which precise locations are available (Guo et al., submitted*  
 2179 *2024/08/22 to Geophys. Res. Lett.).*


2180

2181

DCFS [kPa] at 2016-12-09T05:59:30.000+0000 at H = 500 [m] (above critPaBest = 0.096 kPa)  
10.4 hours after start of shutdown (2016-12-08T19:33:00.000+0000)  $\Delta$  CFS



2182 *Figure 74. Numerical solution for changes  $\Delta$ CFS in Coulomb failure stress on a 3D*  
 2183 *map shows the modeled values of  $\Delta$ CFS calculated at  $t_i = 2016/12/09 00:59:30$*   
 2184 *UTC, i.e. 5.4 hours after the shutdown began. The reference time is  $t_{ref} = 2016/12/08$*   
 2185 *18:33 UTC, i.e., one hour before the shutdown began. Yellow stars indicate precise*  
 2186 *locations of microseismic events which occurred during the time interval  $t \in [t_{ref}, t_i]$*   
 2187 *as determined using the REST workflow described above (Thurber et al. 2024; m.s.*  
 2188 *in preparation). The modeled values of  $\Delta$ CFS at an elevation  $H = 500$  m above the*  
 2189 *WGS84 geoid, i.e. depths of approximately 700 m below the ground surface.*  
 2190 *Triangles indicate wells: red for production, blue for injection. The magenta lozenge*  
 2191 *indicates the location of a representative point located near the primary production*  
 2192 *wells.*



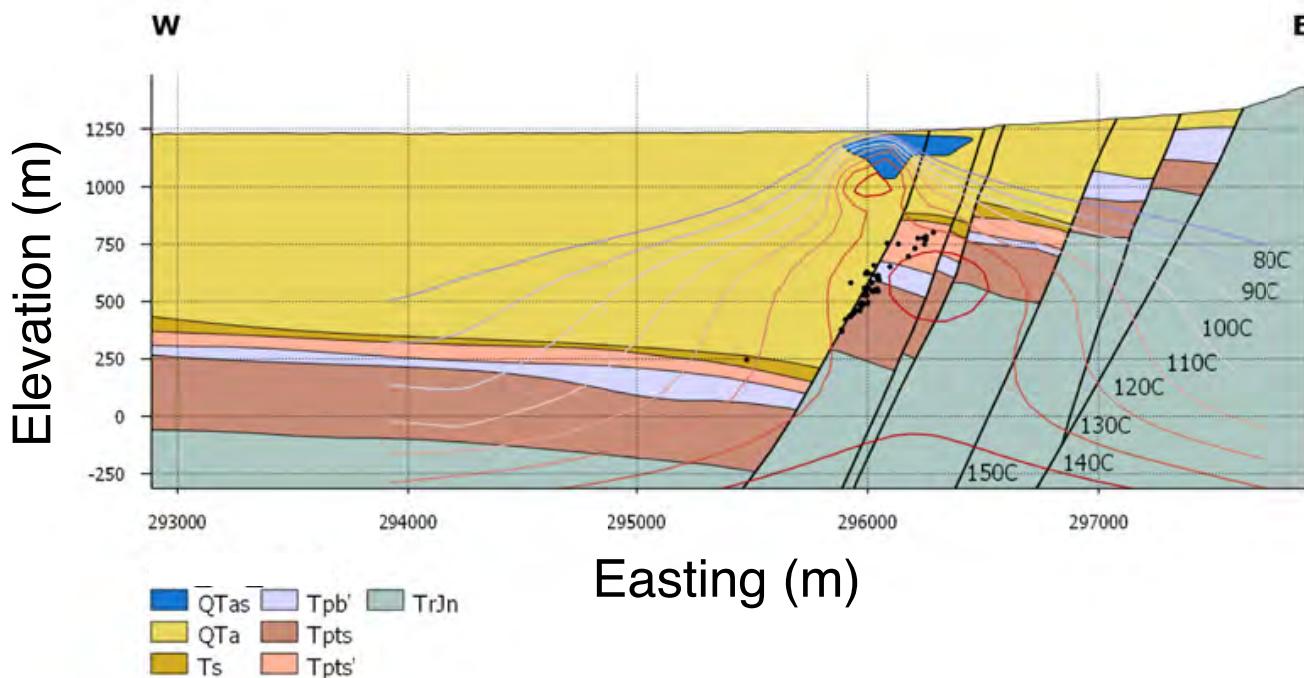
2194 *Figure 75. Numerical solution for changes  $\Delta CFS$  in Coulomb failure stress on a 3D*  
 2195 *field in response to the shutdown of reservoir operations in April 2022. The map*  
 2196 *shows the modeled values of  $\Delta CFS$  calculated at  $t_i = 2022/04/19 00:59:30$  UTC, i.e.*  
 2197 *20.2 hours after the shutdown began. The reference time is  $t_{ref} = 2022-04-18$*   
 2198 *12:50:00, i.e., when the shutdown began. Yellow stars indicate precise locations of*  
 2199 *microseismic events which occurred during the time interval  $t \in [t_{ref}, t_i]$  (Guo et al.,*  
 2200 *submitted 2024/08/22 to Geophys. Res. Lett.). The modeled values of  $\Delta CFS$  at an*  
 2201 *elevation  $H = 500$  m above the WGS84 geoid, i.e. depths of approximately 700 m*  
 2202 *below the ground surface. Triangles indicate wells: red for production, blue for*  
 2203 *injection, green for observation. The magenta lozenge indicates the location of a*  
 2204 *representative point located at the epicenter of a microseismic event.*

2205

2206

*Calibration on All Observations (Subtask 9.5)*

2207 After calibrating the macroscale and mesoscale stress models of the geothermal system  
2208 against the four key datasets (borehole, geodetic, observation well, and microseismic event  
2209 locations) individually, we plan to incorporate the results into a consistent, fully-coupled,  
2210 multi-scale model of the geothermal system.


2211

2212

## SECTION VI: DISCUSSION – IMPROVING CONCEPTUAL MODELS

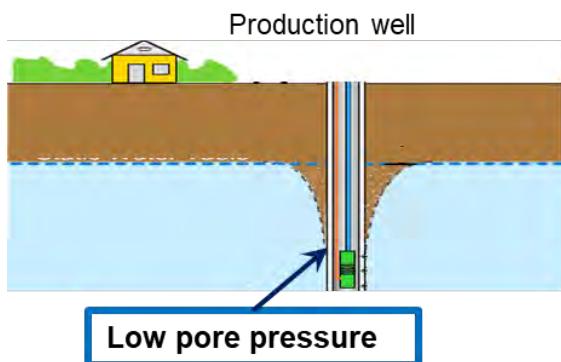
2213  
2214

The vertical cross section in Figure 76 summarizes the structure of the geothermal system at San Emidio.

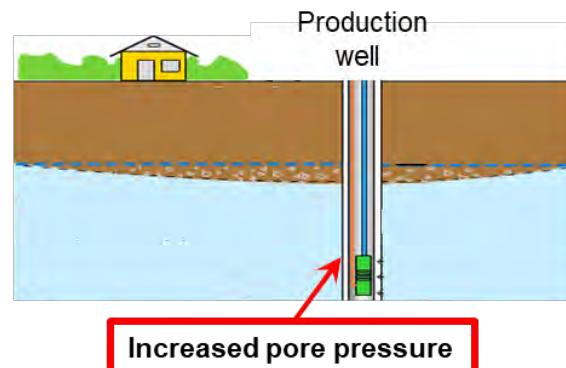


2215  
2216  
2217  
2218  
2219  
2220  
2221  
2222  
2223  
2224  
2225  
2226  
2227  
2228

Figure 76. Geologic cross section, showing primary lithologic units, wells, and faults, as updated in 2022 with geologic units consistent with those mapped in the field (Rhodes et al., 2010; Rhodes, 2011; Rhodes et al., 2011). Color codes denote geologic units: QTas, silicified sediments; QTa, alluvium further subdivided by grain size and clay content; Ts, Late Miocene siltstones, tilted and indurated; Tpb', Upper basaltic andesite; Tpts, Lower tuffs; Tpts', Upper tuffs and tuffaceous sediments; TrJn, Nightingale formation. Vertical plane is an E-W transect at UTM Northing coordinate 472,900 m Red contour lines show the “natural state” temperature ranging from 80 °C to 150°C (Folsom et al., 2020). Relocated microseismic events (Guo et al., 2023) are shown as black dots. They and the faults have been projected from 200 m onto the vertical plane. Most of the hypocenters are located between the San Emidio Fault (SEF) and the Basin Bounding Fault (BBF). Horizontal axis shows Easting coordinate in meters. Vertical coordinate axis shows elevation above mean sea level (WGS 84 geoid) in meters.


2229

2230


### Simple Conceptual Model

2231 How can we explain the observation that the microseismic events tend to occur when the  
2232 power plant is NOT operating, neither producing nor injecting? We hypothesize that it has  
2233 something to do with the wells, or at least the fluids around them. We first observed this  
2234 phenomenon at Brady Hot Springs during the PoroTomo experiment. We hypothesized a  
2235 mechanism in 2018 by publishing a peer-reviewed paper by Cardiff et al. that includes many of  
2236 the WHOLESCALE team members as co-authors. As sketched in Figure 77, the basic idea is  
2237 that production causes drawdown. When pumping stops, the fluid pressure recovers. Let's look  
2238 at a point at a specific depth near a production well. During normal operations, the drawdown  
2239 creates a so-called "cone of depression" around the production well. At our observation point,  
2240 the pore-fluid pressure is low, the effective normal stress is high, and a potential fault is clamped.  
2241 Once the pumping at the production well stops, though, the fluid level recovers, the pore pressure  
2242 increases, the slip tendency increases, and microseismic events are more likely. The bottom line  
2243 is that fluid pressure recovers when production stops.

#### Normal Plant Operation



#### Plant Shutdown (no pumping)



Around production well:

- pumping causes drawdown
- cone of depression
- pore pressure is low
- effective normal stress is high
- faults are clamped

During plant shutdown:

- pumping ceases
- fluid level recovers
- pore pressure increases
- effective normal stress decreases
- slip tendency increases
- microseismic events more likely

2244  
2245  
2246  
2247

Figure 77. Visualization of changes in pore pressure and effective stress near a production well during normal plant operations (left) and during a shutdown (right). In both panels, the upper edge of the blue-shaded area is a heuristic representation of the hydraulic head, e.g., the so-called "water table".

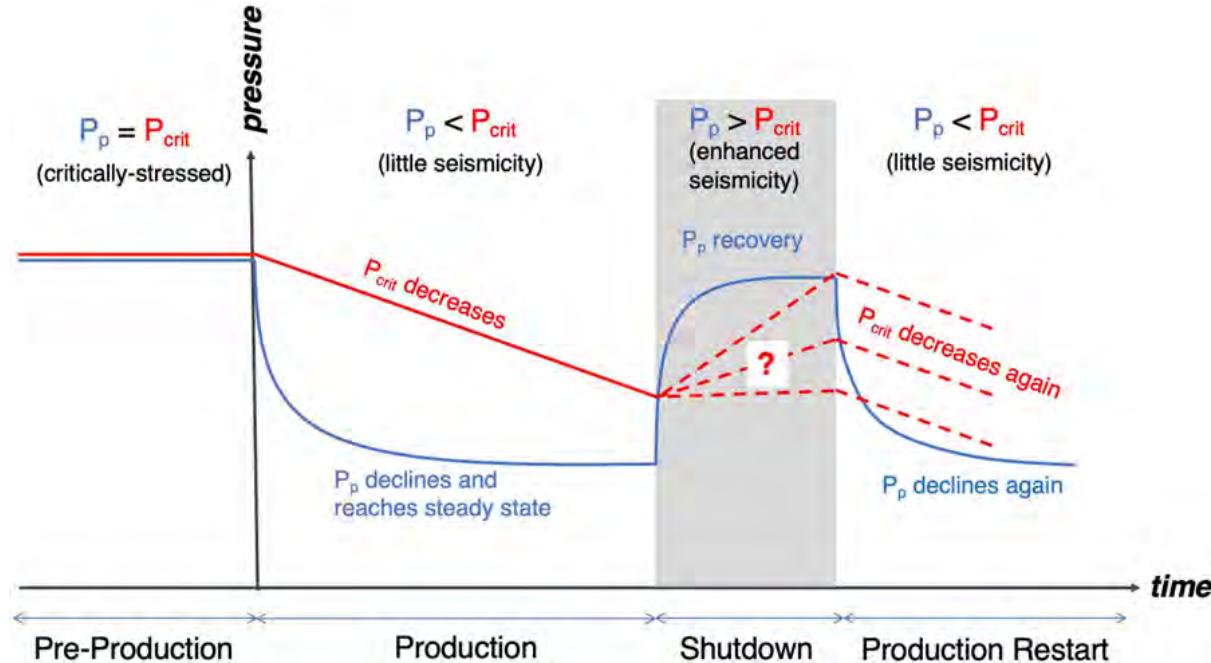
2248

### Critical value of pore-fluid pressure

2249 *The following section is excerpted, nearly verbatim, from a peer-reviewed paper (Guo et al., 2023).*2250 We propose a conceptual model for the microseisms associated with the cycle of plant  
2251 operations. As sketched in Figure 78, this model describes how the pore-fluid pressure  $P_p$  (blue  
2252 curve) and critical pore pressure  $P_{crit}$  (red curve) evolve over time due to changes in plant  
2253 operations and reservoir stress, . As defined in reservoir geomechanics (e.g., Zoback, 2007), the  
2254 critical pore pressure  $P_{crit}$  is the magnitude of pore pressure above which faulting is induced,  
2255 which depends on the reservoir stress state and frictional strengths of faults. Here we describe  
2256 how  $P_{crit}$  is related to the reservoir stress state and fault strength.2257 First, we clarify the underlying assumptions and the mechanical setting. In this discussion,  
2258 compressional stresses are reckoned positive. As constrained by Guo et al. (2023) and Jahnke et  
2259 al. (2023), the faulting environment is either normal faulting ( $S_v > S_{Hmax} > S_{hmin}$ ) or trans-tensional  
2260 ( $S_v = S_{Hmax} > S_{hmin}$ ), where  $S_v$ ,  $S_{Hmax}$ , and  $S_{hmin}$  are vertical, maximum horizontal, and minimum  
2261 horizontal principal stresses, respectively. We assume the vertical stress  $S_v$  to equal the  
2262 maximum principal stress  $\sigma_1$  because secular strain rates from GPS show areal dilation at San  
2263 Emidio, according to Kreemer et al. (2012). Consequently, the minimum principal stress  $\sigma_3$   
2264 equals the minimum horizontal stress  $S_{hmin}$ . If we consider failure on optimally oriented fault  
2265 planes, which is the case for the normal faults in San Emidio, then the relation between the  
2266 magnitudes of the principal stresses and the pore pressure  $P_p$  at failure can be described using the  
2267 Coulomb criterion as:

2268 
$$S_v - P_p = (S_{hmin} - P_p)(1 + \sin\varphi)/(1 - \sin\varphi) \quad (6)$$

2269 where  $\varphi$  is the friction angle. From equation (6), we can derive the expression for  $P_{crit}$  by solving  
2270 for  $P_p$ ,


2271 
$$P_{crit} = [(1 + \sin\varphi)/2\sin\varphi] S_{hmin} - [(1 - \sin\varphi)/2\sin\varphi] S_v \quad (7)$$

2272 This equation provides the magnitude of  $P_p$  required to induce slip, given knowledge  
2273 about the principal stress magnitudes. Because  $S_v$  does not change due to reservoir cooling or  
2274 local tectonics considered here, the *change*  $\Delta P_{crit}$  the critical pressure is influenced only by the  
2275 change  $\Delta S_{hmin}$  in the minimum compressive horizontal stress.

2276 
$$\Delta P_{crit} = [(1 + \sin\varphi) / 2\sin\varphi] \Delta S_{hmin} \quad (8)$$

2277 If we assume a friction angle  $\varphi = 30$  degrees, typical of crustal materials, then equation  
2278 (8) shows that the change  $\Delta P_{crit}$  in the critical value is a factor of 1.5 greater than  $\Delta S_{hmin}$ .2279 Next, we discuss qualitatively how  $\Delta S_{hmin}$  and  $\Delta P_{crit}$  evolve over time during plant  
2280 operation. Before the beginning of production, we assume that the crust is critically stressed  
2281 such that  $P_p$  and  $P_{crit}$  are at the same level. During normal operations, pumping at production  
2282 wells decreases pore pressure  $P_p$ . At the same time, a combination of thermoelastic  
2283 contraction and tectonic loading could decrease the minimum horizontal principal stress  $S_{hmin}$   
2284 and thus  $P_{crit}$  according to equation (8). As a result,  $P_p$  remains below  $P_{crit}$  and seismicity is  
2285 inhibited.2286 During the shutdown time interval (shaded in gray in Figure 78), the pore pressure  $P_p$   
2287 recovers rapidly and exceeds  $P_{crit}$ , inducing microseismicity. After production resumes,  $P_{crit}$

2288 decreases at a similar rate as before the shutdown due to reduced  $S_{hmin}$  whereas  $P_p$  decreases  
2289 more quickly to a value less than  $P_{crit}$  and thus inhibits microseismicity.



2290 *Figure 78. Schematic diagram of mechanism for inducing microseismicity during the*  
2291 *production pumping cessation at San Emidio. The time axis divides reservoir*  
2292 *behavior into four operational periods: Pre-Production, Production, Shutdown, and*  
2293 *Production Restart. The interplay of critical pore pressure  $P_{crit}$  (red curve) and*  
2294 *reservoir fluid pressure  $P_p$  (blue curve) illustrates the mechanism for induced*  
2295 *microseismicic events (Guo et al., 2023). The shutdown at San Emidio in December*  
2296 *2016 (gray shaded area) continued for about one day.*

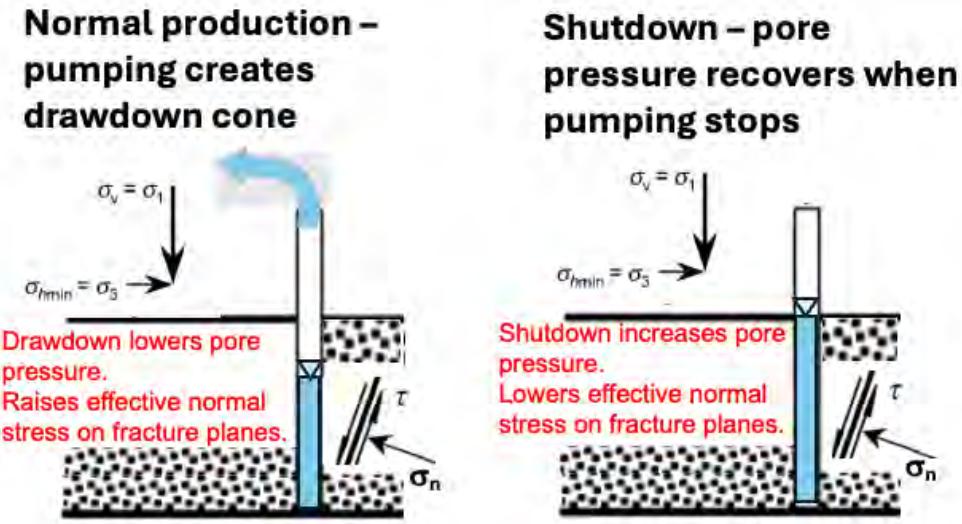
2297

### Cyclic behavior

2298 *This section is excerpted essentially verbatim from the proceedings of a conference (Wang et al., 2024).*

2299 Extraction of heat from geothermal reservoirs requires a working fluid circulating in hot  
2300 rock. Efficiently managing the resource must consider how fundamental physical variables of  
2301 temperature and fluid pressure control reservoir stresses. Simulating thermal-hydrologic-  
2302 mechanical (T-H-M) processes in heterogeneous rock is typically approached using numerical  
2303 models calibrated and validated from field observations. T-H-M models are based on conceptual  
2304 models and idealized physics. The WHOLESCALE project at the San Emidio Geothermal Field  
2305 uses Lawrence Livermore's GEOS code to model the three-dimensional stress field through time  
2306 (Feigl et al., 2024; Luo et al., 2024). The code allows for geometric flexibility, heterogeneity,  
2307 and coupling between thermal (T), hydrologic (H), and mechanical (M) processes as well as  
2308 limited chemical (C) but not biological (B) processes. Although T-H-M codes are indispensable  
2309 tools for understanding reservoir behavior for reservoir management, their complexity and detail  
2310 can obscure the controlling processes. Another difficulty is choosing an appropriate mesh and  
2311 time step that are numerically reasonable because observations may span many orders of  
2312 magnitude in space and time, e.g., deformation over months and years associated with InSAR  
2313 and rapid microseismic events too small to be captured by InSAR.

2314 The WHOLESCALE project is a case study of the stress evolution of a geothermal reservoir.  
2315 Focus was placed on approximately annual maintenance shutdowns when all injection and  
2316 production pumping ceased and rapid changes of fluid pressure occurred. Seismic networks were  
2317 in place near production wells for a few days before and after shutdowns in December 2016  
2318 (Warren et al., 2018), March 2021 (Thurber et al., 2022), and April 2022 (Thurber et al., 2024).  
2319 Microseismic event clusters occurred for each of these years immediately following pumping  
2320 cessation in the same small region and few microseismic events occurred before or after the  
2321 shutdown. The 2021 array of 37 three-component nodes was a preliminary experiment for the  
2322 larger deployment in 2022 of 450 three-component nodes. The 2022 data are still being analyzed.  
2323 Therefore, the analysis in this paper is based on microseismic events detected in 2016 by 1302  
2324 vertical-component seismographs with 80-meter spacing (Guo et al., 2023).


2325 The semi-quantitative analysis consists of three detailed WHOLESCALE studies conducted  
2326 for the 2016 shutdown – seismic analysis of microseismic events for locations, focal  
2327 mechanisms, and coda magnitudes (Guo et al., 2023), hydrologic simulation (Cardiff et al.,  
2328 2023), and geomechanical stress inversion of focal mechanisms (Jahnke et al., 2023). Guo et al.  
2329 (2023) interpreted their observations with a scenario in which microseismic events are the result  
2330 of time-varying changes in reservoir fluid pressure (Figure 78).

2331 An almost universally adopted assumption underlying their scenario is that slip occurs on  
2332 shear discontinuities when the Coulomb Failure Stress  $CFS$  exceeds some critical value. As  
2333 defined above, this definition involves the shear stress, the coefficient of friction, the normal  
2334 stress, and the pore-fluid pressure.

2335 We address three aspects of Figure 78: (1) the numerical values for the axes, (2) choosing  
2336 among the three dashed-line paths for the critical value of pore pressure  $P_{crit}$  during the shutdown  
2337 period, and (3) the recurrence of microseismic events in the same general area. The field Kaiser  
2338 effect in crystalline-rock geothermal reservoirs will be invoked as part of the interpretation. The

2339 Kaiser effect is the empirical observation that faults/fractures have a “memory” of the maximum  
2340 stress state at which they previously experienced failure (Zang et al., 2014).

2341 In the sections that follow, we first establish the state of stress using a simple hydro-  
2342 geomechanical model of fluid extraction near a normal fault. Then we consider the different  
2343 operational periods by focusing on the six days of microseismic activity around the shutdown  
2344 that began on December 8, 2016. We then consider the production periods before and after the  
2345 shutdown period. Finally, we discuss the modeling choices and assumptions that produced a  
2346 microseismic event cycle.



2347 *Figure 79. Sketch of conceptual hydro-mechanical response to production versus*  
2348 *cessation of pumping. During production effective normal stress increases on nearby*  
2349 *dipping failure planes. When pumping stops, effective normal stress decreases on*  
2350 *nearby failure planes to trigger microearthquakes (adapted from Dusseault et al.,*  
2351 *2001).*

### State of Stress

2352 The geologic model (Figure 76) used by the WHOLESCALE team portrays the San Emidio  
2353 geothermal reservoir as hot permeable rock within a zone of north-striking, west-dipping, normal  
2354 faults in the Basin and Range Province (e.g., Rhodes et al., 2011; Folsom et al., 2020; Feigl et  
2355 al., 2024; Luo et al., 2024). Jahnke et al. (2023) found  $S_{Hmax}$  to be oriented at N10°E (i.e., nearly  
2356 parallel to the overall strike of the normal fault system) by considering the World Stress Map,  
2357 slickenlines, wellbore stress indicators from nearby geothermal fields, and the secular strain rate.  
2358 This stress state is used to define the “pre-stress” in the numerical modeling (Luo et al., 2024;  
2359 Feigl et al. 2024). Microseismic events with coda magnitude less than zero were recorded in the  
2360 northeastern part of the field between the San Emidio Fault (SEF) on the east and the Basin  
2361 Bounding Fault (BBF) on the west at depths between 500 m and 800 m below surface (Guo et  
2362 al., 2023). Figure 55 shows that the microseismic events are located along two distinct planes –  
2363 the deeper one with the majority of events dipping ~60° and the shallower one with fewer events  
2364 dipping ~40°.  
2365

2366 Based on the geologic and finite-element models, we adopted the simple hydro-mechanical  
2367 H-M model sketched in Figure 79 for first-order estimates of stress changes caused by  
2368 poroelastic and thermal processes. Although Figure 79 represents normal faulting, the same  
2369 Mohr-circle analysis applies for strike-slip because the vertical stress  $S_v \cong S_{Hmax}$ , where  $S_{Hmax}$ , the  
2370 axis of maximum horizontal stress, is in the direction of strike (Jahnke et al., 2023). Similarly,  
2371 the geometry of Figure 79 applies to heat extraction as well as fluid extraction, albeit with  
2372 different boundary conditions.

### Pressure Over Shutdown Cycle

2373 We consider the two time intervals that establish a Thermal-Hydrologic-Mechanical (T-H-M)  
2374 cycle of stress and pore pressure changes: 1) The 20-hour shutdown of plant operations for  
2375 annual maintenance and 2) The 364 days of geothermal energy operations through fluid injection  
2376 and production. We begin by focusing on the 20-hour shutdown period on December 8, 2016  
2377 because the microseismic events that occurred immediately after cessation of pumping and pore  
2378 pressure increase near production wells are the observations from which our conceptual model  
2379 can be analyzed semi-quantitatively. We then proceed to the subsequent production period that  
2380 begins after normal injection-production pumping resumes. We used self-consistent values for  
2381 the initial condition at shutdown, which lead back to the same values at the end of a year to  
2382 explain recurring microseismic activity associated with maintenance shutdowns. In this way, we  
2383 backtrack to the production period preceding shutdown but do not consider the pre-production  
2384 period.

2385 We assume the reservoir is in a critical stress state at the start of shutdown at a depth of 700  
2386 meters where microseismic events occur. Therefore, the reservoir fluid pressure is set equal to  
2387 the critical fluid pressure, that is,  $P_p = P_{crit} = 7000$  kPa for a slip plane dipping  $60^\circ$  (Table 20).  
2388 The flow rate of  $0.3 \text{ m}^3/\text{sec}$  (nearly 5000 gal/min) just prior to December 8, 2016 went suddenly  
2389 to zero. Cardiff et al. (2023) simulated fluid pressure recovery in the near-well region due to the  
2390 sudden cessation of pumping using hydrologic properties obtained from earlier pumping tests.  
2391 Within hours, increases of approximately 40 kPa occurred at lateral distances of several hundred  
2392 meters from the pumping wells, which decreased to 10 kPa at distances of one kilometer.  
2393 Significantly, the simulated rapid pore pressure recovery occurred in the region near the  
2394 production wells where microseismic events were located. Similarly, pore pressure increases of  
2395  $\sim 150$  kPa were measured and modeled during a plant shutdown at the geothermal field at Brady  
2396 Hot Springs, Nevada (Patterson et al., 2017; Cardiff et al., 2018). Under the assumption of an  
2397 initial critical stress state in the fault zone, these small pressure increases were sufficient to  
2398 trigger microseismic events.

2399 Guo et al. (2023) obtained locations and coda magnitudes of  $\sim 100$  microseismic events over  
2400 several days before, during, and after the plant shutdown (Figure 80). Only minor microseismic  
2401 activity occurred before or after the shutdown period. During the 20 hours of shutdown, three  
2402 broad clusters of events occurred. Microseismic activity leads to a redistribution of stresses to re-  
2403 establish equilibrium of the rock mass plus a small hysteretic strengthening according to the  
2404 Kaiser effect (Zang et al., 2014). We treat the strengthening as a linear increase of  $P_{crit}$  from its  
2405 initial value to a value 50 kPa larger over 20 hours.

This brings us to the end of the shutdown period, when we have  $P_{crit} = P_p = 7050$  kPa. The transient response of  $P_{crit}$  and  $P_p$  to microseismic activity and hydrologic recovery is summarized in Figure 81a. The changes in fluid pressures from first-order simple stress calculations are consistent with finite-element modeling of *changes* in pore and critical pressure by Luo et al. (2024). As shown in Figure 71, the change in Coulomb failure stress  $\Delta CFS$  was between 10 and 50 kPa for 28 of 32 microseismic events during the shutdown period for which focal mechanisms were determined by Guo et al. (2023). The Coulomb Failure Function increases are generally smaller than Kaiser-effect strengthening in other studies. However, Liu et al. (2011) estimated values as small as 10 kPa, although they more typically found values of several hundred kPa for a series of four earthquakes of increasing magnitude between 2 and 4 at the Danjiangkou Reservoir in Hubei Province, China, which were interpreted to be a stress-memory sequence.

Given the small magnitudes of the San Emidio microseismic events, a speculative but plausible explanation is that the triggering threshold scales with the size of discontinuity that is activated.

The initial condition for the production period after the pumps restart is that at the end of the shutdown period,  $P_{crit} = P_p = 7050$  kPa (Figure 81a). Resumption of pumping leads to sudden, rapid drawdown of  $P_p$  near the production wells that brings pore pressure back to its pre-shutdown value. This rapid drawdown period is approximately one day in duration whereas the production period is on the order of a year. The different transient responses of  $P_p$  and  $P_{crit}$  reflect different T-H-M processes over these different time spans. The short time scale of one day after production resumes is dominated by the transient drawdown of  $P_p$  near the production wells whereas the reservoir gradually cools at an estimated rate of one degree Celsius per year over the longer time scale of one year. The resulting reservoir contraction decreases  $P_{crit}$ , that is, it increases the tendency for slip on the normal faults SEF and BBF.

An estimate of the effect of cooling on  $P_{crit}$  can be made from the mathematical equivalence of the constitutive equations of poroelasticity and thermoelasticity. Equating volumetric strain due to a change in pore-fluid pressure  $\Delta P_p$  with that due to a change in temperature  $\Delta T$  gives

$$(1/H)\Delta P_p = \alpha\Delta T \quad (9)$$

where  $H$  is the poroelastic expansion coefficient and  $\alpha$  is the volumetric thermal expansion coefficient (Wang, 2000). The term  $H$  is equal the Biot-Willis coefficient  $K/a_{BW}$  is

$$\alpha_{BW} = 1 - K/K' \quad (10)$$

where  $K$  is the drained bulk modulus of the porous medium, and  $K'$  is the bulk modulus of the solid constituents. The Biot-Willis coefficient will have a value of about  $a_{BW} = 0.75$  at reservoir depth. The caveat in this analogy between poroelastic and thermal effects is that the boundary conditions differ. For example, a Coulomb Failure criterion might be applied on a basin bounding normal fault whereas a Newton's law-of-cooling or specified temperature profile condition might be applied in the thermal model.

2444 Next, we consider an order-of-magnitude estimate of the changes in fluid pressure  
2445 and temperature. Using plausible values for the expansion coefficients suggests that  
2446 the ratio  $\Delta P/\Delta T$  is between 10 and 100 kPa/°C (Table 20. Principal stresses,  
2447 hydrostatic fluid pressure,  $P_{\text{hydro}}$ , resolved shear and normal stress on fault planes,  
2448 and critical pore pressure at depths where microseismic events occur. The values are  
2449 from the stress inversion by Janke et al. (2023) for the 1636-m deep Kosmos 1-9  
2450 well.

| Depth, m | $S_v \cong S_{\text{Hmax}}$ , MPa | $S_{\text{Hmin}}$ , MPa | $P_{\text{hydro}}$ , MPa | Fault dip, degrees | Shear stress, MPa | Normal stress, MPa | $P_{\text{crit}}$ , MPa |
|----------|-----------------------------------|-------------------------|--------------------------|--------------------|-------------------|--------------------|-------------------------|
| 500      | 12.0                              | 7.2                     | 3.5                      | 60                 | 2.1               | 8.4                | 4.9                     |
|          |                                   |                         |                          | 40                 | 2.4               | 10.0               | 6.0                     |
| 600      | 14.4                              | 8.6                     | 4.2                      | 60                 | 2.5               | 10.0               | 5.8                     |
|          |                                   |                         |                          | 40                 | 2.9               | 12.0               | 7.2                     |
| 700      | 16.8                              | 10.1                    | 4.9                      | 60                 | 2.9               | 11.8               | 7.0                     |
|          |                                   |                         |                          | 40                 | 3.3               | 14.0               | 8.5                     |

2451 Table 21). In other words, a temperature decrease of 1°C means that the same strain would  
2452 result from a fluid pressure decrease of 100 kPa for values in the first row and 10 kPa for values  
2453 in the second row. A temperature decrease of 0.5°C and a thermal expansion coefficient  $\alpha$  of  $5 \times$   
2454  $10^{-5}$  would be equivalent to a decrease in  $P_{\text{crit}}$  of 50 kPa for the values in the first row. These  
2455 estimates imply that temperature decline over a year would decrease  $P_{\text{crit}}$  by approximately the  
2456 same amount as the strengthening from the Kaiser effect during the shutdown period (Figure  
2457 81b).

2458 In summary, a plausible explanation for the repeating pattern of microseismic events from  
2459 shutdown-to-shutdown is that the combination of Kaiser-effect strengthening and temperature  
2460 weakening offset each other between shutdowns. If this hypothesis is correct, then we would  
2461 expect that “older” geothermal reservoirs are likely to see decreases in seismicity as the  
2462 temperature field stabilizes.

2463 We now consider the production period for the year preceding the December 2016 shutdown.  
2464 In Section 3.2 we described the rapid post-shutdown decline of  $P_p$  in response to resuming  
2465 operations and the gradual lowering of reservoir temperature over the year. The net result was  
2466 that  $P_{\text{crit}}$  and  $P_p$  at the end of a full-year production period returned, by design, to exactly the  
2467 same initial values chosen for them at the start of the shutdown period. We assume the shutdown  
2468 production period is equivalent to the shutdown production period, therefore being consistent  
2469 with a scenario in which microseismic events recur repeatedly.

2470 To review, the three sets of observations that facilitated a semi-quantitative analysis of pore  
2471 pressure and critical pressure during the shutdown period and post-production period were:

1. Coda magnitudes and focal mechanisms of ~100 microseismic events obtained from an array of 1302 geophones operating for six days that bracketed December 8, 2016.
2. Principal stress directions obtained from inverting the microseismic focal mechanisms and other stress indicators.
3. Pressure changes simulated using parameters obtained by modeling pumping tests. Pressures measured in the reservoir during shutdown allowed us to validate these order-of-magnitude modeled pressure changes.

These observations were combined with a hydro-geomechanical model of slip occurring on small fractures aligned with regional geologic structure and a hypothetical average annual reservoir temperature decline of the order of ~1 °C/yr.

### Discussion

The hypothesized sequence of reservoir changes in fluid pressure, microseismic activity, and temperature results in an cyclic sequence of microseismic events (Figure 82). The argument can be critiqued for its fine-tuned balance of processes that weaken and strengthen meter-scale fractures. Uncertainties of at least a factor of two are likely for the *changes* in  $P_{crit}$  and  $P_p$  at each step in Figure 82, and, therefore, the net-zero change of critical pressure could as easily have been several hundred kPa. Thus, some selective choices were made to present a heuristic, semi-quantitative justification of the T-H-M scenario.

In the remainder of this section, we address several uncertainties and assumptions that challenge the delicate balance of small stress changes in the closed-loop T-H-M scenario presented in Figure 82. Although we can dismiss some, others are problematic. Specifically, we consider the: (1) decadal-scale tectonic changes that modify stresses in the geothermal field, (2) net changes in reservoir fluid content, (3) diverse nature of hydrologic, microseismic, and stress field data in terms of spatial and numerical uncertainties, (4) slip-patch size, (5) magnitude of stress drop of microseismic events, and (6) Kaiser stress-memory effect

We estimated that reservoir cooling of 1°C per year was approximately equivalent to a stress relaxation on the bounding faults between 10 and 100 kPa depending on our choice for thermal expansion. Here we consider the magnitude of stress relaxation due to a tectonic strain rate in the northern Basin and range of 10 nanostrain/year (Bennett et al., 2003). Using a modulus of 20 GPa converts the strain rate to a stress change of 20 Pa/year, well below the Coulomb Failure Function change of 50 kPa due to pumping recovery. Therefore, the tectonic strain rate is considered negligible.

The geothermal plant operates with an above-ground, closed-loop system that transfers heat from the geothermal brine (from the production wells) to the motive fluid in the power plant. Then the cooled brine is pumped to separate injection wells. Therefore, we expect no significant reservoir contraction from the loss of subsurface brines. We also assume no significant recharge at reservoir depths.

The hydrologic, microseismic, and stress inversion results were integrated into the Coulomb Failure Function for the simple hydro-geomechanical model of the San Emidio fault zone (Figure 79). The hydrologic data were pumping test data whose changes were in the tens of kilopascals and whose spatial resolution was tens of meters. These data were appropriate for the T-H-M scenario. The microseismic events were generally located along a planar feature near the

BBF that was approximated by the simple hydro-geomechanical model applied to tiny slip patches of 1 to 10 meters (Figure 66 and Figure 79). The stress-inversion results from focal mechanisms would realistically only be quantitative at the megapascal level. Nonetheless, the values at 700-meter depth worked surprisingly well. After these choices were made for numerical values of initial stresses and pore pressure, the rest of the scenario's Coulomb Failure Function changes were rooted in the hydrologic data. The numerous assumptions mean that the model is a plausible, but not definitive, explanation for the recurrence of microseismic activity in the same region.

The size of a microseismic slip patch can be estimated from the seismic moment  $M_o = GAU$ , where  $G$  is shear modulus,  $A$  is fault area and  $U$  is mean slip. The moment is related to the seismic moment magnitude through the relationship (Hanks and Kanamori, 1979)

$$M_w = (2/3) \log M_o - 10.7 \text{ (in cgs units)} \quad (11)$$

Taking  $G = 20 \text{ GPa}$ , the same as the poroelastic expansion coefficient in Table 2, a  $M_w = 0$  earthquake can be viewed as occurring on a patch area  $A = 100 \text{ m}^2$  with displacement  $U = 0.5 \text{ mm}$  and a  $M_w = -2$  earthquake as having  $A = 1 \text{ m}^2$  and  $U = 0.05 \text{ mm}$ . In other words, a rectangular or circular slip patch would have length dimension between 1 and 10 meters. Thus, the size of the slip patches is small relative to the assumption of a uniform stress field in the fault zone where microseismic events occurred. Magnitudes between -2 and zero have been classified as "nano" earthquakes by Bohnhoff et al. (2010).

The underlying assumption for microseismic events immediately after shutdown is that the fault zone contains many discrete slip patches with a distribution of orientations centered around the maximum principal stress direction. Individual patches might also have a distribution of frictional strength centered around a value of 0.6. Sudden failure on a small slip patch within the fault zone is presumed to be the source of microseismic events. Stress redistribution due to the slip event is spatially limited. Negligible stress interaction among slip patches is plausible given their small size.

Stress drops reported for shallow earthquakes are typically between 1 and 100 megapascals (Yamada et al., 2007; Abercrombie, 2021; Shearer et al., 2022). Stress drops appear to be largely independent of magnitude for  $M > 6$ , but with a tendency to decrease for smaller magnitudes. Stress drops of several megapascals are obtained for seismic events with magnitude less than one. Even a one-megapascal stress drop is 50-100 times the pore pressure increase during shutdown. If stress drops are several megapascals for the triggered microearthquakes at San Emidio, it is most likely that each small magnitude event occurs on a patch that had not slipped previously, obviating the need to rebuild the fault stress on a particular slip surface from one shutdown to the next.

Goertz-Allmann et al. (2011) measured stress drops for about 1000 earthquakes during hydraulic stimulation at the Basel geothermal site. The median  $\Delta\sigma$  was 2.3 MPa. This value turns out to be almost perfectly consistent with the definition of seismic moment  $M_o = GAU$  and Kostrov's (1974) stress drop equation  $\Delta\sigma = GU/(cA^{1/2})$ , where  $c$  is a geometric factor for patch shape ( $c=1$  for a circle or square). Combining these two equations gives  $\Delta\sigma = (G/c)(U/A^{1/2})$ . If  $U$  scales with the linear dimension  $A^{1/2}$ , i.e., patch length, then  $\Delta\sigma$  is scale independent. Based on

2555 the values for patch dimensions in Section 4.1,  $\Delta\sigma = 2.5$  MPa for both  $M_w = 0$  and  $M_w = -2$ , that  
2556 is, stress drop is invariant by the theory.

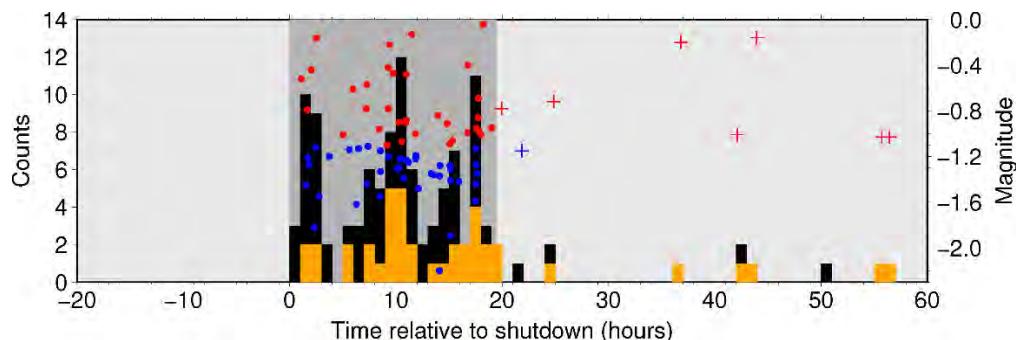
2557 Given the small patch sizes computed from the moment magnitudes of the San Emidio  
2558 microearthquakes, it seems most likely that they occur on individual patches (Kostrov, 1974).  
2559 After a slip event, stresses redistribute in the fault zone and bring other favorably oriented  
2560 patches into play for slip, either immediately (cascading) or at a future time, based on some  
2561 statistical distribution of frictional strength. For a patch model, the magnitude of the stress drop  
2562 is not an important factor for a cluster of microearthquake recurrence in the fault zone.

2563 Alternatively, it is possible that mean stress drops might be less than one megapascal.  
2564 Goertz-Allmann et al. (2011) observed that stress drop decreased by a factor of five as the pore  
2565 pressure perturbation propagated radially. They found it plausible that this decrease could occur  
2566 because effective stresses are decreased. Another explanation is that stress drops during  
2567 shutdown at San Emidio are lower than predicted by the Kostrov (1974) theory. In Brune's  
2568 (1970) model, stress drop for a given  $M_o$  is smaller for larger patch radius.

$$2569 \Delta\sigma = 7M_o / (16 r^3) \quad (4)$$

2570 Figure 83 is a plot of Eqn. (4) from Abercrombie's (2021) compilation. Several data sets  
2571 from laboratory to field scale are shown on a plot of patch radius vs. seismic moment with stress-  
2572 drop contours superimposed. The region of the plot most relevant to the microearthquakes during  
2573 shutdown is for moments  $M_o$  between  $10^6$  and  $10^9$  Newton-meters, corresponding to moment  
2574 magnitudes  $M_w$  between -2 and 0.

2575 Different methods of obtaining stress drop give results that differ by orders of magnitude.  
2576 For example, Longobardi et al. (2023) used a time domain method to find stress drops of 0.01  
2577 MPa for injection-induced earthquakes at The Geysers geothermal field, but Kwiatek et al.  
2578 (2015) obtained stress drops of 1 MPa using a corner-frequency method. The earthquake  
2579 magnitudes were between 1 and 1.5.


2580 In summary, the stress drop of the triggered earthquakes at San Emidio might be anywhere  
2581 from 10 kPa to several MPa, depending on how moment magnitude is interpreted for source  
2582 parameters. Given the small size of slip patches, it is likely that a sufficient number of favorably  
2583 oriented fractures are present to make recurrence on the same patch unlikely. If, on the other  
2584 hand, stress drops were sufficiently small, patches could regain sufficient strength between  
2585 shutdowns to slip again.

2586 The Kaiser effect applies to re-activation of a slipped patch, which is unlikely to be the case.  
2587 However, invoking the strengthening effect still applies in the sense that stress redistribution  
2588 after a slip event requires triggering new, slightly stronger patches drawn from a statistical  
2589 distribution of strength around the critical mean.

2590 Another potential issue is that the observation of the field Kaiser effect in several enhanced  
2591 geothermal projects was in the context of injection pressures on the order of megapascals (Baisch  
2592 and Harjes, 2003; Kwiatek et al., 2014), whereas it is being invoked at San Emidio for small  
2593 pressure increases of tens of kilopascals as drawdowns recover from shutdown near production  
2594 wells. Some support for small Kaiser-effect stress memory values was noted in Section 3.1 in the  
2595 case of reservoir-induced seismicity.

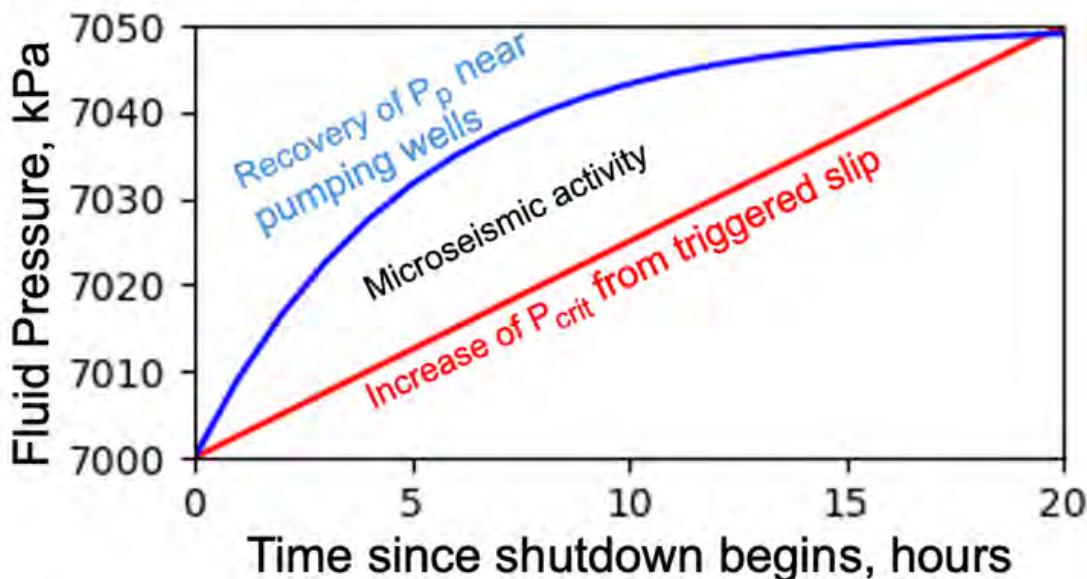
2596 A final relevant case study for this discussion is that Kim and Avouac (2023) did not observe  
2597 the Kaiser effect in the Otaniemei, Finland geothermal field. However, they attributed the  
2598 absence of the Kaiser effect to injection locations far enough apart for different stimulation  
2599 stages to mute the effect. Also, Kim and Avouac (2023) were able to model the Kaiser effect  
2600 micromechanically, using rate-state friction. Previously, the Kaiser effect was primarily an  
2601 empirical observation.

2602 The San Emidio field experiment is a case study of a microearthquake cycle associated with  
2603 several coupled T-H-M processes – heat extraction, fluid pumping changes, and microearthquake  
2604 activity. The focus of the experiment was the 20-hour shutdown of all well injection and  
2605 production on December 8, 2016. We have linked the T-H-M processes associated with the one-  
2606 day perturbation caused by cessation and restarting of all pumping operations at the San Emidio  
2607 geothermal field to the resumption of normal operations for a year. The T-H-M balancing  
2608 mechanisms that led to a microseismic event cycle were: (1) slip on fractures and faults (M)  
2609 within hours of pore pressure recovery at production wells (H), (2) strengthening due to Kaiser  
2610 effect (M), and (3) sub-critical re-loading of the fractures and faults (M) due to reservoir  
2611 temperature decline of a degree Celsius per year (T). The recurring nature of microseismic  
2612 events implies fine-tuned coupling among T-H-M processes that produce stress changes of 10 to  
2613 100 kPa in geothermal reservoirs.

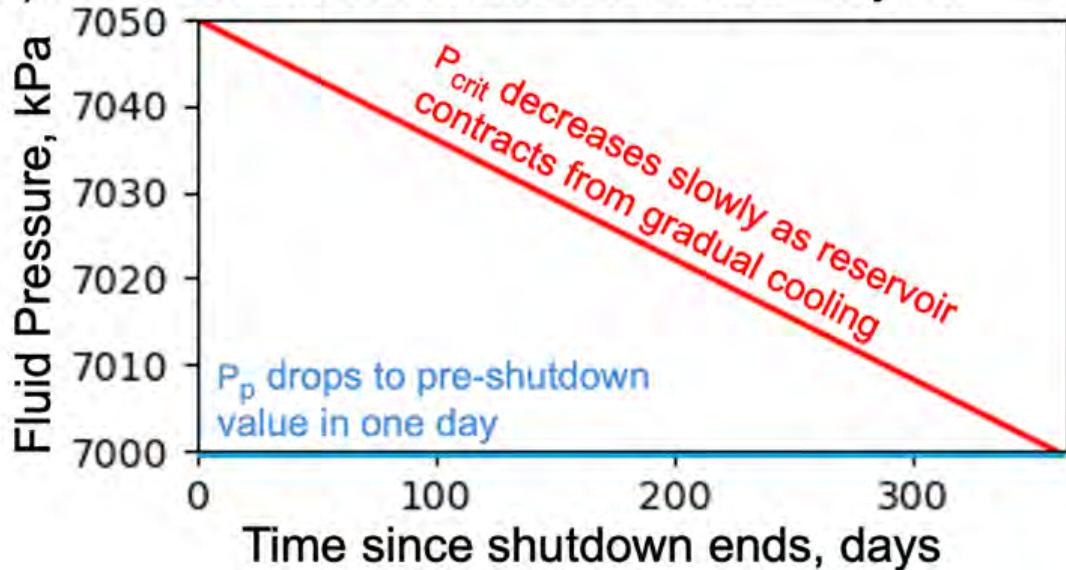


2614 *Figure 80. Microseismic event frequency with superposed coda magnitudes shown by*  
2615 *crosses, dots, and pluses before, during, and after shutdown, respectively. Event*  
2616 *detection might be affected by different day-night noise levels. Zero time is when*  
2617 *shutdown began at 2016-12-08 19:33 UTC (Guo et al., 2023).*

2618 *Table 20. Principal stresses, hydrostatic fluid pressure,  $P_{\text{hydro}}$ , resolved shear and*  
2619 *normal stress on fault planes, and critical pore pressure at depths where*  
2620 *microseismic events occur. The values are from the stress inversion by Janke et al.*  
2621 *(2023) for the 1636-m deep Kosmos 1-9 well.*

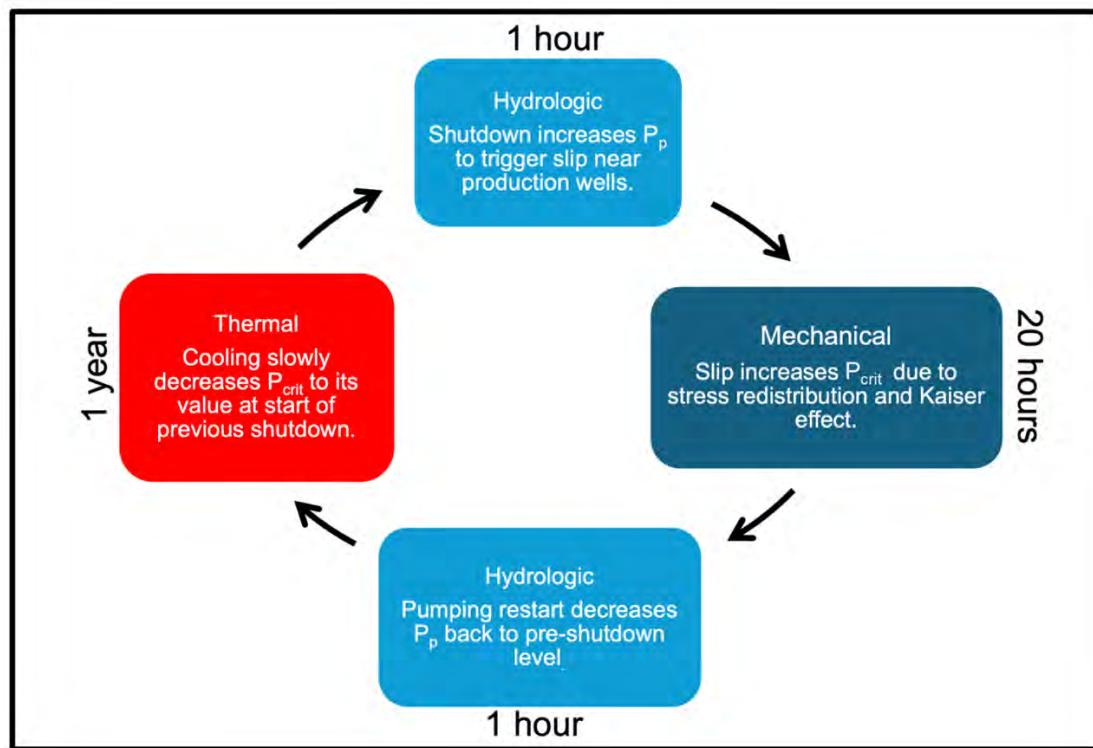

| Depth, m | $S_v \cong S_{\text{Hmax}}$ , MPa | $S_{\text{min}}$ , MPa | $P_{\text{hydro}}$ , MPa | Fault dip, degrees | Shear stress, MPa | Normal stress, MPa | $P_{\text{crit}}$ , MPa |
|----------|-----------------------------------|------------------------|--------------------------|--------------------|-------------------|--------------------|-------------------------|
| 500      | 12.0                              | 7.2                    | 3.5                      | 60                 | 2.1               | 8.4                | 4.9                     |
|          |                                   |                        |                          | 40                 | 2.4               | 10.0               | 6.0                     |
| 600      | 14.4                              | 8.6                    | 4.2                      | 60                 | 2.5               | 10.0               | 5.8                     |
|          |                                   |                        |                          | 40                 | 2.9               | 12.0               | 7.2                     |
| 700      | 16.8                              | 10.1                   | 4.9                      | 60                 | 2.9               | 11.8               | 7.0                     |
|          |                                   |                        |                          | 40                 | 3.3               | 14.0               | 8.5                     |

<sup>2622</sup> *Table 21. Reservoir fluid pressure change equivalent to 1°C temperature change.*  
<sup>2623</sup> *Other choices of the material coefficients scale proportionately according to*  
<sup>2624</sup> *Equation (9).*


| Poroelastic<br>Expansion<br>Coefficient, 1/H, GPa | Thermal<br>Expansion, 1/°C | ΔP/ΔT, kPa/°C |
|---------------------------------------------------|----------------------------|---------------|
| 20 GPa                                            | 10 <sup>-5</sup> /°C       | 100           |
| 20 GPa                                            | 10 <sup>-6</sup> /°C       | 10            |

2625

(a) Shutdown Period – 1 day




(b) Post-Shutdown Production Period – 1 year



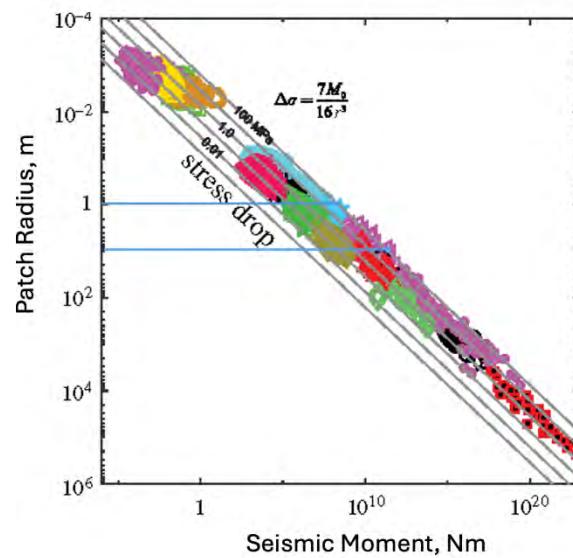

2626  
2627  
2628  
2629  
2630

Figure 81. Conceptual modeling using estimates of critical pore pressure  $P_{crit}$  (red lines) and reservoir fluid pressure  $P_p$  (blue curves) during (a) 20-hour shutdown period and (b) one-year production period either before or after a shutdown period. The decrease of  $P_p$  between (a) and (b) is exponential for a time scale of hours in (a), but it appears as a step decrease for a time scale of several hundred days in (b).



2631  
2632

Figure 82. Hydrologic, Mechanical, and Thermal Processes that lead to microseismic earthquake cycle associated with annual shutdown of all pumping.



2633  
2634  
2635  
2636  
2637

Figure 83. Slip-patch radius vs. seismic moment for different values of stress drop between 1 kPa and 100 MPa. The small rectangle between radii of 1 and 20 meters and seismic moment between  $10^6$  and  $10^9$  Nm, corresponds to moment magnitudes between -2 and 0. Colored blobs are different data sets from laboratory to field scale compiled by Abercrombie (2021).

2638

## SECTION VII. CONCLUSIONS

2639 The rich, 4-D data sets at San Emidio constrain multiphysics T-H-M modeling. Synoptic  
2640 measurements of pressure, seismicity, and deformation during three scheduled shutdowns  
2641 provide information on the spatial distribution and temporal evolution of stress.

2642 Laboratory testing shows little or no anisotropy in seismic velocity at the centimeter scale in  
2643 rock samples.

2644 We have used the GEOS multiphysics code in two sets of simulations. The *long-term*  
2645 simulations account for thermal, hydrological, and mechanical (T-H-M) processes over time  
2646 scales of days to decades. The *short-term* simulations account for hydro-mechanical processes  
2647 over time scales on the order of hours to days. In both cases, the result is a modeled stress field  
2648  $\sigma(t, x, y, z)$  as a function of time and position.

2649 We find that the orientations of faults, fractures, and conductive fluid pathways produce  
2650 pressure propagation that varies considerably, even between wells that are within few hundred  
2651 meters of each other. In some cases, a single large aperture feature dominates the fluid flow,  
2652 whereas a more distributed zone consisting of a network of fractures accommodates the fluid  
2653 flow in other cases. Also, the orientations of the conductive fractures do not necessarily coincide  
2654 with the overall orientation of the largest fault structures. The mechanical responses of these  
2655 conductive features also vary on spatial scales of the order of hundreds of meters.

2656 The azimuth of maximum compressive horizontal stress  $S_{Hmax}$  calculated from the long-term  
2657 T-H-M simulation agrees to within 20 degrees of the orientation of drilling-induced tensile  
2658 fractures (DITF) picked from borehole image log of Well 17A-21.

2659 Geodetic observations from GPS and InSAR data show downward vertical displacement  
2660 (subsidence) at rates of  $7 \pm 2$  mm/year near production wells. The long-term T-H-M simulations  
2661 match the shape of the deformation field near the producing wells observed by InSAR. In terms  
2662 of the rate of vertical displacement, however, the T-H-M simulations are greater than the GPS  
2663 and InSAR observations by a factor of  $\sim 4$ .

2664 Most of the microseismic events in December 2016 and April 2022 are located within 400 m  
2665 of a production well at depths between 400 and 700 m. Most of the microseismic events are  
2666 observed when production is stopped.

2667 Using the short-term H-M model, we have calculated the stress field as a function of time.  
2668 We then evaluate the Coulomb failure criterion on sets of planes using the simulated stress field  
2669 calculated in the GEOS solution. Assuming that the rock is critically stressed during normal  
2670 operations, we derive the change in Coulomb Failure Stress  $\Delta CFS$ . According to the sign  
2671 convention used in rock mechanics, positive values of  $\Delta CFS$  indicate conditions favorable to  
2672 fault slip. The simulated change in Coulomb Failure Stress  $\Delta CFS$  is positive for 28 of the 32  
2673 events (88%) during the 2016 shutdown for which focal mechanisms were determined by Guo et  
2674 al. (2023).

2675 Extending the same approach, we also calculate the modeled change  $\Delta CFS$  in Coulomb  
2676 failure stress on (hypothetical) optimally oriented planes at every location in the study area and  
2677 at all times during the interval when seismic observations are available. The timings and  
2678 locations of points when and where the simulated change in Coulomb Failure Stress  $\Delta CFS$  takes  
2679 a positive value are comparable to those of the microseismic events observed during the

2680 shutdown in December 2016. To perform a post-audit of the model results, we have used data  
2681 from a seismic array consisting of 450 three-component seismographs deployed before, during,  
2682 and after a planned shutdown in April 2022.

2683 The observations support the working hypothesis that increasing pore-fluid pressure reduces  
2684 the effective normal stress acting across fault zones. During normal operations, pumping in deep  
2685 production wells decreases fluid pressures and thus increases the effective normal stresses on  
2686 faults, reducing microseismicity. During planned shutdowns, the cessation of production  
2687 increases pore-fluid pressure along conductive pathways that are connected to production wells,  
2688 and reduces effective normal stress. As a result, micro-seismic events tend to occur on small-  
2689 scale, critically stressed fault patches and fractures within the reservoir.

2690 Thermoelastic effects over years are comparable to changes in hydraulic and mechanical  
2691 stresses over time scales of hours to days. Changes in tectonic stress are not significant over the  
2692 reservoir lifetimes. The stress analysis suggests that no major hazard is to be expected from  
2693 normal operations or planned plant shutdowns.

2694 Spatial variations in the local stress state are also observed, indicating stress heterogeneity in  
2695 the reservoir. These results combine to indicate that the geothermal reservoir at San Emidio is a  
2696 fractured, fluid filled, and permeable body that has developed along the existing normal faults.

2697

2698

## SECTION IX. DATA MANAGEMENT PLAN

2699 For each subtask, datasets were submitted to the DOE Geothermal Data Repository (GDR),  
2700 as described in the Data Management Plan (DMP). The WHOLESCALE project used the  
2701 following definitions quoted from the FOA<sup>14</sup> and excerpted in the DMP<sup>15</sup>.

2702

2703 *Data Preservation: "Data preservation means providing for the usability of data beyond  
2704 the lifetime of the research activity that generated them."*

2705

2706 *Data Sharing: "Data sharing means making data available to people other than those who  
2707 have generated them. Examples of data sharing range from bilateral  
2708 communications with colleagues, to providing free, unrestricted access to anyone  
2709 through, for example, a web-based platform."*

2710

2711 *Digital Research Data: "The term digital data encompasses a wide variety of information  
2712 stored in digital form including: experimental, observational, and simulation data;  
2713 codes, software and algorithms; text; numeric information; images; video; audio;  
2714 and associated metadata. It also encompasses information in a variety of different  
2715 forms including raw, processed, and analyzed data, published and archived data."*

2716

2717 *Research Data: "The recorded factual material commonly accepted in the scientific  
2718 community as necessary to validate research findings, but not any of the following:  
2719 preliminary analyses, drafts of scientific papers, plans for future research, peer  
2720 reviews, or communications with colleagues. This 'recorded' material excludes  
2721 physical objects (e.g., laboratory samples). Research data also do not include:*

2722

2723 *(A) Trade secrets, commercial information, materials necessary to be held  
2724 confidential by a researcher until they are published, or similar information which  
2725 is protected under law; and  
2726 (B) Personnel and medical information and similar information the disclosure of  
2727 which would constitute a clearly unwarranted invasion of personal privacy, such as  
2728 information that could be used to identify a particular person in a research study."*

2729

2730 *Validate: "In the context of DMPs, 'validate' means to support, corroborate, verify, or  
2731 otherwise determine the legitimacy of the research findings. Validation of research  
2732 findings could be accomplished by reproducing the original experiment or analyses;  
2733 comparing and contrasting the results against those of a new experiment or  
2734 analyses; or by some other means."*

2735

2736 *Protected Data: Data that "should be protected from immediate public disclosure by  
2737 DOE". This category applies to "data developed outside of the proposed work at  
2738 private expense that will be used in the course of the proposed work".*

2739

2739 *Limited Rights Data: Protected data that will be "kept confidential"*

2740

2741 We implemented the DMP using two password-protected file-serving systems: (1) Shared  
2742 Google Drive<sup>16</sup> for working versions of evolving files, such as figures and scripts; and (2) Data  
2743 Foundry<sup>17</sup>: for sharing stable files, such as large data files. Both file-sharing systems were  
2744 organized according to the Tasks and Subtasks listed in the SOPO. Table 22 summarizes all the  
2745 datasets submitted to the GDR or made publicly available.

<sup>14</sup> EERE (2019), Subsurface Stress and Lost Circulation in Geothermal Drilling Funding Opportunity Announcement (FOA) Number DE-FOA-0002083, edited by Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). <https://eere-Exchange.energy.gov>

<sup>15</sup> [https://foundry.openei.org/61/task1-coordination/subtask15-datamanagement?resources\[\]](https://foundry.openei.org/61/task1-coordination/subtask15-datamanagement?resources[])=5046865

<sup>16</sup> [https://drive.google.com/drive/folders/0AK\\_zKpw3PfinUk9PVA](https://drive.google.com/drive/folders/0AK_zKpw3PfinUk9PVA)

<sup>17</sup> <https://foundry.openei.org/61>

Table 22. WHOLESCALE dataset submissions to the GDR and other publicly available sites.

| Title                                                                                                                         | Authors                                                                                                                                         | URL                                                                                                                                                                                                                                                                                                                 | Citation (MLA)                                                                                                                                                                                                                                                                                                                                                                      | Status                                   |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Passive Seismic Emission Tomography Results at San Emidio Nevada.                                                             | Warren, Ian, Folsom, Matthew, Akerley, John, and Feigl, Kurt L.                                                                                 | <a href="https://gdr.openei.org/submissions/1441">https://gdr.openei.org/submissions/1441</a>                                                                                                                                                                                                                       | Warren, Ian, Folsom, Matthew, Akerley, John, and Feigl, Kurt. Passive Seismic Emission Tomography Results at San Emidio Nevada. United States: N.p., 01 Dec, 2016. Web. doi: 10.15121/1924268.                                                                                                                                                                                      | Curated                                  |
| Seismic Survey 2016 Metadata at San Emidio, Nevada                                                                            | Lord, Neal, Heath, Ben, Guo, Hao, Warren, Ian, Bradshaw, Sabrina, Thurber, Cliff, Akerley, John and Feigl, Kurt                                 | <a href="https://gdr.openei.org/submissions/1386">https://gdr.openei.org/submissions/1386</a>                                                                                                                                                                                                                       | Lord, Neal, Heath, Ben, Guo, Hao, Warren, Ian, Bradshaw, Sabrina, Thurber, Cliff, Akerley, John, and Feigl, Kurt. Seismic Survey 2016 Metadata at San Emidio, Nevada. United States: N.p., 05 Dec, 2016. Web. doi: 10.15121/1872549.                                                                                                                                                | Curated                                  |
| Seismic Survey 2016 data at San Emidio Nevada                                                                                 | Lord, Neal, Heath, Ben, Guo, Hao, Warren, Ian, Bradshaw, Sabrina, Thurber, Cliff, Akerley, John, and Feigl, Kurt                                | <a href="https://gdr.openei.org/submissions/1395">https://gdr.openei.org/submissions/1395</a>                                                                                                                                                                                                                       | Lord, Neal, Heath, Ben, Guo, Hao, Warren, Ian, Bradshaw, Sabrina, Thurber, Cliff, Akerley, John, and Feigl, Kurt. Seismic Survey 2016 Data at San Emidio Nevada. United States: N.p., 05 Jan, 2016. Web. <a href="https://gdr.openei.org/submissions/1395">https://gdr.openei.org/submissions/1395</a> .                                                                            | Curated                                  |
| WHOLESCALE Catalog of Rock Samples at San Emidio Nevada collected in January 2021 Version 2.0.                                | Klech, Samantha, Bradshaw, Sabrina, Hampton, Jesse, and Feigl, Kurt                                                                             | <a href="https://gdr.openei.org/submissions/1396">https://gdr.openei.org/submissions/1396</a>                                                                                                                                                                                                                       | Klech, Samantha, Bradshaw, Sabrina, Hampton, Jesse, and Feigl, Kurt. WHOLESCALE Catalog of Rock Samples at San Emidio Nevada collected in January 2021 Version 2.0. United States: N.p., 12 Jan, 2021. Web. doi: 10.15121/1879102.                                                                                                                                                  | Curated                                  |
| WHOLESCALE Catalog of Rock Samples at San Emidio Nevada collected in January 2021.                                            | Klech, Samantha, Folsom, Matthew, Gates, Chris, Ricks, Quid, Jahnke, Benjamin, Sone, Hiroki, Hampton, Jesse, Bradshaw, Sabrina, and Feigl, Kurt | <a href="https://gdr.openei.org/submissions/1357">https://gdr.openei.org/submissions/1357</a>                                                                                                                                                                                                                       | Klech, Samantha, Folsom, Matthew, Gates, Chris, Ricks, Quid, Jahnke, Benjamin, Sone, Hiroki, Hampton, Jesse, Bradshaw, Sabrina, and Feigl, Kurt. WHOLESCALE Catalog of Rock Samples at San Emidio Nevada collected in January 2021. United States: N.p., 12 Jan, 2021. Web. doi: 10.15121/1838419.                                                                                  | Curated                                  |
| GPS Station RINEX Files and Position Time-Series.                                                                             | Feigl, Kurt                                                                                                                                     | <a href="https://gdr.openei.org/submissions/1338">https://gdr.openei.org/submissions/1338</a>                                                                                                                                                                                                                       | Feigl, Kurt. GPS Station RINEX Files and Position Time-Series. United States: N.p., 14 Oct, 2021. Web. <a href="https://gdr.openei.org/submissions/1338">https://gdr.openei.org/submissions/1338</a> .                                                                                                                                                                              | Curated                                  |
| Magnetotelluric Data Collected in 2016 over the San Emidio Geothermal Field in Nevada.                                        | Folsom, Matt, Warren, Ian, Gasperikova, Erika, Libbey, Ryan, Feucht, Daniel, and Garazini, Stefano                                              | <a href="https://gdr.openei.org/submissions/1434">https://gdr.openei.org/submissions/1434</a>                                                                                                                                                                                                                       | Folsom, Matt, Warren, Ian, Gasperikova, Erika, Libbey, Ryan, Feucht, Daniel, and Garazini, Stefano. Magnetotelluric Data Collected in 2016 over the San Emidio Geothermal Field in Nevada. United States: N.p., 09 Nov, 2016. Web. doi: 10.15121/1974786.                                                                                                                           | Curated                                  |
| WHOLESCALE: Mass Flux Rates for Wells at San Emidio in December 2016                                                          | Cardiff, Mike, Akerley, John, and Feigl, Kurt L.                                                                                                | <a href="https://gdr.openei.org/submissions/1552">https://gdr.openei.org/submissions/1552</a>                                                                                                                                                                                                                       | Cardiff, Mike, Akerley, John, and Feigl, Kurt L. WHOLESCALE: Mass Flux Rates for Wells at San Emidio in December 2016. United States: N.p., 01 Dec, 2016. Web. doi: 10.15121/2006850.                                                                                                                                                                                               | Curated                                  |
| WHOLESCALE: Coordinates of wells at San Emidio, Nevada                                                                        | Cardiff, Mike, Akerley, John, and Feigl, Kurt L.                                                                                                | <a href="https://gdr.openei.org/submissions/1551">https://gdr.openei.org/submissions/1551</a>                                                                                                                                                                                                                       | Cardiff, Mike, Akerley, John, and Feigl, Kurt L. WHOLESCALE: Coordinates of wells at San Emidio, Nevada. United States: N.p., 25 Sep, 2023. Web. doi: 10.15121/2006837.                                                                                                                                                                                                             | Curated                                  |
| WHOLESCALE: Microseismic Event Catalog for San Emidio, Nevada 2022. United States                                             | Hao Guo, Clifford H. Thurber, Peter Sobol, Neal E. Lord, Sabrina L. Bradshaw, Kurt L. Feigl                                                     | <a href="https://gdr.openei.org/submissions/1614">https://gdr.openei.org/submissions/1614</a>                                                                                                                                                                                                                       | Guo, Hao, Thurber, Clifford H., Sobol, Peter, Lord, Neal E., Bradshaw, Sabrina L., and Feigl, Kurt L. WHOLESCALE: Microseismic Event Catalog for San Emidio, Nevada 2022. United States: N.p., 20 Apr, 2024. Web. doi: 10.15121/2373193.                                                                                                                                            | Curated                                  |
| WHOLESCALE: Seismic Survey Data from San Emidio Nevada 2021                                                                   | Lord, Neal, Heath, Ben, Cunningham, Erin, Thurber, Cliff, Bradshaw, Sabrina, and Feigl, Kurt L.                                                 | <a href="https://gdr.openei.org/submissions/1478">https://gdr.openei.org/submissions/1478</a>                                                                                                                                                                                                                       | Lord, Neal, Heath, Ben, Cunningham, Erin, Thurber, Cliff, Bradshaw, Sabrina, and Feigl, Kurt L. WHOLESCALE: Seismic Survey Data from San Emidio Nevada 2021. United States: N.p., 06 Apr, 2021. Web. <a href="https://gdr.openei.org/submissions/1478">https://gdr.openei.org/submissions/1478</a> .                                                                                | Curated                                  |
| WHOLESCALE: Seismic Survey Metadata from San Emidio Nevada 2021                                                               | Lord, Neal, Heath, Ben, Cunningham, Erin, Thurber, Cliff, Bradshaw, Sabrina, and Feigl, Kurt                                                    | <a href="https://gdr.openei.org/submissions/1463">https://gdr.openei.org/submissions/1463</a>                                                                                                                                                                                                                       | Lord, Neal, Heath, Ben, Cunningham, Erin, Thurber, Cliff, Bradshaw, Sabrina, and Feigl, Kurt. WHOLESCALE: Seismic Survey Metadata from San Emidio Nevada 2021. N.p., 06 Apr, 2021. Web. <a href="https://gdr.openei.org/submissions/1463">https://gdr.openei.org/submissions/1463</a> .                                                                                             | Curated                                  |
| WHOLESCALE Subtask 4.5 Seismic survey 2021 at San Emidio Nevada example data                                                  | Lord, Neal                                                                                                                                      | <a href="https://gdr.openei.org/submissions/1356">https://gdr.openei.org/submissions/1356</a>                                                                                                                                                                                                                       | Lord, Neal. WHOLESCALE Subtask 4.5 Seismic survey 2021 at San Emidio Nevada example data. United States: N.p., 07 May, 2021. Web. <a href="https://gdr.openei.org/submissions/1356">https://gdr.openei.org/submissions/1356</a> .                                                                                                                                                   | In Progress (NREL to curate on DataLake) |
| WHOLESCALE: Seismic Waveform Data from San Emidio, Nevada 2022                                                                | Lord, Neal E., Sobol, Peter, Guo, Hao, Thurber, Clifford H., Warren, Ian, Bustos, D.J., Bradshaw, Sabrina L., and Feigl, Kurt L.                | <a href="https://gdr.openei.org/submissions/1610">https://gdr.openei.org/submissions/1610</a>                                                                                                                                                                                                                       | Lord, Neal, E., Sobol, Peter, Guo, Hao, Thurber, Clifford H., Warren, Ian, Bustos, D.J., Bradshaw, Sabrina L., and Feigl, Kurt L. WHOLESCALE: Seismic Waveform Data from San Emidio, Nevada 2022. United States: N.p., 05 Apr, 2022. Web. <a href="https://gdr.openei.org/submissions/1610">https://gdr.openei.org/submissions/1610</a> .                                           | Curated                                  |
| 2022 seismic metadata                                                                                                         | Kurt Feigl, Cliff Thurber, & Neal Lord.                                                                                                         | <a href="http://ds.iris.edu/mda/407/starttime=2022-03-01T00%3A00%3A00&amp;endtime=2022-05-15T23%3A59%3A59">http://ds.iris.edu/mda/407/starttime=2022-03-01T00%3A00%3A00&amp;endtime=2022-05-15T23%3A59%3A59</a>                                                                                                     | Kurt Feigl, Cliff Thurber, & Neal Lord. (2022). WHOLESCALE survey at San Emidio, Nevada, USA [Data set]. International Federation of Digital Seismograph Networks. <a href="https://doi.org/10.7914/m5qf-nh37">https://doi.org/10.7914/m5qf-nh37</a>                                                                                                                                | Published on publicly available website  |
| P-wave velocity tomography estimated from seismic data collected in December 2016                                             | Guo, H., C. Thurber, I. Warren, B. A. Heath, M. Folsom, H. Sone, N. Lord, J. Akerley, and K. L. Feigl                                           | <a href="https://onlinelibrary.wiley.com/doi/10.1029/2023JB027008/suppl-data/Supplement3doi-10.1029/2023JB027008file=2023JB027008-sup-0002-table-S1-SI2.csv">https://onlinelibrary.wiley.com/doi/10.1029/2023JB027008/suppl-data/Supplement3doi-10.1029/2023JB027008file=2023JB027008-sup-0002-table-S1-SI2.csv</a> | Included as supplementary information to Guo et al. (2023). Guo, H., C. Thurber, I. Warren, B. A. Heath, M. Folsom, H. Sone, N. Lord, J. Akerley, and K. L. Feigl (2023), Enhanced Microseismicity During Production Pumping Cessation at the San Emidio Geothermal Field (Nevada, USA) in December 2016, <i>Journal of Geophysical Research: Solid Earth</i> , 128, e2023JB027008. | Published on publicly available website  |
| Catalog of microseismic events in December 2016, including event origin times, relocations, magnitudes, and focal mechanisms. | Guo, H., C. Thurber, I. Warren, B. A. Heath, M. Folsom, H. Sone, N. Lord, J. Akerley, and K. L. Feigl                                           | <a href="https://onlinelibrary.wiley.com/doi/10.1029/2023JB027008/suppl-data/Supplement3doi-10.1029/2023JB027008file=2023JB027008-sup-0002-table-S1-SI2.csv">https://onlinelibrary.wiley.com/doi/10.1029/2023JB027008/suppl-data/Supplement3doi-10.1029/2023JB027008file=2023JB027008-sup-0002-table-S1-SI2.csv</a> | Included as supplementary information to Guo et al. (2023). Guo, H., C. Thurber, I. Warren, B. A. Heath, M. Folsom, H. Sone, N. Lord, J. Akerley, and K. L. Feigl (2023), Enhanced Microseismicity During Production Pumping Cessation at the San Emidio Geothermal Field (Nevada, USA) in December 2016, <i>Journal of Geophysical Research: Solid Earth</i> , 128, e2023JB027008. | Published on publicly available website  |

2743 **SECTION X. PROJECT OUTPUT**

2744 *Publications, conference papers, and presentations*

2745 Accepted Manuscripts of (peer-reviewed) Journal Articles:

2746 1) Jahnke, B., H. Sone, H. Guo, C. Sherman, I. Warren, C. Kreemer, C. H. Thurber, and K. L.  
2747 Feigl (2023), Geomechanical analysis of the geothermal reservoir at San Emidio, Nevada,  
2748 *Geothermics*, 110, 102683. <https://doi.org/10.1016/j.geothermics.2023.102683>  
2749 ABSTRACT: The WHOLESCALE (Water and Hole Observations Leverage Effective Stress  
2750 Calculations and Lessen Expenses) project is aiming to simulate the spatial distribution and  
2751 temporal evolution of stress throughout the geothermal system at San Emidio, Nevada, United  
2752 States, via a thermo-hydro-mechanical reservoir model. Focal mechanisms for microseismic  
2753 events during a temporary shutdown of the geothermal power plant in 2016 were analyzed  
2754 through linear stress-inversion methods to infer the in-situ reservoir stress state. This analysis  
2755 was supplemented by other geophysical and geological data, including focal mechanisms  
2756 from regional earthquakes, slickenlines on exposed fracture surfaces, wellbore stress  
2757 indicators observed in the surrounding region, and secular strain rate measurements. From the  
2758 inferences of in-situ reservoir stress, 78 different realizations of stress models were generated  
2759 over reasonable ranges for the values of maximum compressive horizontal stress ( $S_{Hmax}$ )  
2760 azimuth and ratios of principal stress magnitudes. Evaluation of slip tendencies on fault  
2761 planes determined for the microseismic events for each realization of the initial stress model  
2762 suggests the reservoir stress state as transtensional with an  $S_{Hmax}$  azimuth between N and  
2763 N30°E.  
2764  
2765 2) Guo, H., C. Thurber, I. Warren, B. Heath, M. Folsom, H. Sone, N. Lord, J. Akerley, and K. L.  
2766 Feigl (2023), Enhanced microseismicity during production pumping cessation at the San  
2767 Emidio geothermal field (Nevada, USA) in December 2016, *J. Geophys. Res.: Solid Earth*,  
2768 128, e2023JB027008. <https://doi.org/10.1029/2023JB027008>  
2769 ABSTRACT: Tectonic activity, geothermal fluids, and microseismic events (MSEs) tend to  
2770 occur in similar locations as a result of spatiotemporal changes in the subsurface stress state.  
2771 To quantify this association, we analyze data from a dense seismic array deployed at the San  
2772 Emidio geothermal field, Nevada for 1 week in December 2016 to coincide with a 19.45-hr  
2773 shutdown of all injection and production pumping operations. 123 MSEs were detected, of  
2774 which 101 occurred during the shutdown. The spatial association of the MSEs with the  
2775 production wells suggests a causal relationship between the production cessation and the  
2776 MSEs. Here we performed a detailed analysis to investigate reservoir material properties,  
2777 distribution of seismically activated faults, and local stress state. We determined the  
2778 hypocenters, magnitudes, and focal mechanisms for the MSEs, P-wave tomographic velocity  
2779 model, and local stress tensor. The results show that most MSEs occurred near the production  
2780 wells. Magnitudes fall between -2.2 and 0.0 with larger events located closer to the  
2781 production wells. Most MSEs occurred within a westward-dipping normal fault zone in the  
2782 reservoir associated with anomalously low P-wave velocity values. The focal mechanism and  
2783 stress inversion results show predominantly normal faulting with the maximum horizontal  
2784 stress oriented north-south. We suggest that the MSEs during shutdown were triggered on  
2785 pre-existing, small-scale, critically stressed fault patches in the reservoir as the pore pressure  
2786 increased around the production wells when the production pumping ceased. We interpret the  
2787 larger MSE magnitudes closer to the production wells as a result of higher pore pressure  
increase.

2788 3) Tung, S., O. Kaven, M. Shirzaei, T. Masterlark, H. F. Wang, W.-C. Huang, and K. L. Feigl  
2789 (2024), Seismicity zoning at Coso geothermal field and stress changes from fluid production  
2790 and migration, *Earth and Planetary Science Letters*, 646,  
2791 <https://doi.org/10.1016/j.epsl.2024.119000>

2792 ABSTRACT: The Coso geothermal field is a major geothermal power production site in the  
2793 western United States. It has been observed that low-magnitude seismic events ( $M < 3.71$ ) are  
2794 unevenly distributed in three distinct zones, namely, nearfield ( $< 3$  km), midfield (3–6 km),  
2795 and farfield ( $> 6$  km) from the Coso geothermal plant. These zones exhibit distinct changes in  
2796 earthquake location before and during geothermal production episodes that began in 1986.  
2797 After 1986, the midfield region of the main flank experiences a significantly lower seismicity  
2798 rate than the surrounding areas before production episodes. During 2014–2019, the farfield  
2799 earthquakes cluster in the eastern and western parts of the greater Coso area, which is  
2800 discernably different from how those pre-production earthquake events were distributed along  
2801 the conjugate NW-SE and SW-NW trending structures across the main flank. Here, we  
2802 analyze the stage of stress with finite-element-based poroelastic simulations to illustrate how  
2803 the spatiotemporal evolution of the seismicity is associated with the pattern of stress  
2804 perturbations caused by fluid migration amid the operations of geothermal power plants.  
2805 Generally, ~70% of co-production seismicity is found in zones of increased Coulomb stress  
2806 between 2014 and 2019 at >99% confidence. Meanwhile, the midfield zone of seismic paucity  
2807 overlaps with the zone of decreasing pore-fluid pressure. Overall, the results provide a  
2808 physical explanation of how decadal geothermal operations at Coso have perturbed stress-  
2809 field changes and contributed to the evolving characteristic seismic pattern, shedding insights  
2810 into assessing the seismic hazard in other geothermal settings.

2811 4) Guo, H., C. Thurber, E. Cunningham, M. Cardiff, N. Lord, P. Sobol, H. Wang, and K. L.  
2812 Feigl (2025), Microseismicity Modulation Due to Changes in Geothermal Production at San  
2813 Emidio, Nevada, USA.

2814 This manuscript was accepted by *Geophysical Research Letters* on 27 January 2025  
2815 It was provisionally assigned the following URL <http://dx.doi.org/10.1029/2024GL112063>  
2816 ABSTRACT: Brief cessations of geothermal production can induce seismicity, a phenomenon  
2817 that has drawn increasing attention in recent years. Such observations are rare, and the  
2818 underlying mechanism requires careful analysis. In April 2022, a dense seismic and  
2819 hydrologic monitoring system, was deployed at the San Emidio geothermal field, Nevada, to  
2820 accompany a planned power plant shutdown. Using the dense seismic array data, we detected  
2821 and located ~1,800 microseismic events (MSEs) and developed a high-resolution tomographic  
2822 P-wave velocity model. We observed substantially increased microseismicity during  
2823 shutdown. Most MSEs occurred on pre-existing normal faults, which are contained within  
2824 extremely low-velocity zones that are likely damaged, fluid-filled, and hydraulically  
2825 connected to nearby production wells. Hydrologic data show rapid fluid pressure increases of  
2826 <60 kPa following the shutdown. We suggest that the cessation of production rapidly  
2827 increased fluid pressures along pre-existing fault zones, activating critically stressed fault  
2828 patches and fractures and producing microseismicity.

Books or other non-periodical, one-time publications:

- 2829 1) Kleich, S. J. (2022), Mechanical and Poroelastic Properties of Lithologic Units Within the San  
2830 Emidio Geothermal System, Nevada, United States, M.S. thesis (Jesse Hampton, advisor).  
2831 University of Wisconsin-Madison. <https://minds.wisconsin.edu/handle/1793/83523>  
2832 ABSTRACT: The primary objective of the WHOLESCALE project is to simulate the  
2833 temporal evolution and spatial distribution of stress in and around the geothermal reservoir at  
2834 San Emidio, Nevada, United States. To constrain stress modeling efforts, laboratory  
2835 measurements of static and dynamic elastic stiffness were performed using oriented rock  
2836 samples collected from outcrops located near the San Emidio geothermal field. In this work,  
2837 we sought to understand (1) the static and dynamic elastic properties of the rock formations,  
2838 (2) the existence or absence of anisotropy or heterogeneity-controlled behavior at the  
2839 millimeter to centimeter scales, (3) whether the elastic properties are stress dependent, and (4)  
2840 whether there exists any stress induced anisotropy under reasonable net mean stress  
2841 variations. To evaluate the existence of anisotropy or heterogeneity, we measured ultrasonic  
2842 velocities,  $V_p$  and  $V_s$ , at 45-degree increments around the circumference of oriented cylindrical  
2843 specimens for each rock type. Combining the three-dimensional velocity data with geological  
2844 and textural descriptions, we addressed whether the material properties are heterogeneity-  
2845 controlled and/or anisotropic at the plug scale. Static and dynamic elastic moduli were also  
2846 measured at the net mean stresses of interest for each of the rock types obtained. Dynamic  
2847 stress dependence and whether each material analyzed contained stress induced anisotropy  
2848 were evaluated via stepped hydrostatic ultrasonic velocity measurements. The work presented  
2849 herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE),  
2850 U.S. Department of Energy, under Award Numbers DE-EE0007698 and DE-EE0009032.  
2851
- 2852 2) Jahnke, B. (2022), Geomechanical Analysis of the Geothermal Reservoir at San Emidio,  
2853 Nevada and Fracture Toughness Anisotropy of EGS Collab Testbed Rocks, M.S. thesis  
2854 (Hiroki Sone, advisor). University of Wisconsin-Madison.  
2855 <http://digital.library.wisc.edu/1793/83225>  
2856 ABSTRACT: The WHOLESCALE (Water and Hole Observations Leverage Effective Stress  
2857 Calculations and Lessen Expenses) project is aiming to simulate the spatial distribution and  
2858 temporal evolution of stress throughout the geothermal system at San Emidio, Nevada, United  
2859 States. Towards this goal, the stress state of a thermo-hydro-mechanical reservoir model is  
2860 being constrained. Focal mechanisms recovered from microseismic events during a power  
2861 plant shut down in 2016 were extensively analyzed through linear stress inversion methods to  
2862 infer the in situ reservoir stress state. Additionally, other geophysical data including focal  
2863 mechanisms from regional earthquakes, sickenlines, wellbore stress indicators observed in the  
2864 surrounding region, and secular strain rate measurements were used to check consistencies  
2865 with the in-situ reservoir stress state. From the estimates of in-situ reservoir stress, 78  
2866 different realizations of stress models were generated based on a range of maximum  
2867 compressive horizontal stress ( $S_{Hmax}$ ) azimuths and relative principal stress magnitudes. To  
2868 investigate which stress model best describes the 2016 microseismicity, slip tendency  
2869 analyses were performed using each of the 78 realizations of the stress models. Stress models  
2870 with azimuths of  $S_{Hmax}$  ranging from North to N20°E and relative magnitudes of  $S_v$ ,  $S_{Hmax}$ , and  
2871  $S_{hmin}$  describing a normal-transtensional regime produced the highest slip tendencies at where  
2872 the microseismic events occurred and are therefore the best estimates of the in-situ reservoir  
2873 stress state.

2874 Other publications, conference papers and presentations:

2875 1) Folsom, M., R. Libbey, D. Feucht, W. I., and S. Garanzini (2020), Geophysical Observations  
2876 and Integrated Conceptual Models of the San Emidio Geothermal Field, Nevada., paper  
2877 presented at Workshop on Geothermal Reservoir Engineering, Stanford, California, USA.  
2878 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2020/Folsom.pdf>

2879 ABSTRACT: The San Emidio Desert hosts a hidden, forced-convection geothermal resource  
2880 situated within a prominent right-step of the Lake Range in northwestern Nevada. The site has  
2881 produced power since 1988, undergoing several phases of development since. Recent  
2882 exploration drilling 1.5 to 2.5 km to the SW of the current production area has confirmed  
2883 162°C fluids 540 m below the surface with favorable permeability for development. This  
2884 paper presents results from an integrated modeling study of the system that takes advantage of  
2885 new geophysical data sets, including 211 broadband magnetotelluric stations, 1207 gravity  
2886 stations, 176 line-km of ground magnetic data and a passive seismic experiment conducted  
2887 with 1302 stations of 6 geophones each. These data are considered within the context of  
2888 drilling results and other datasets to develop updated geologic and conceptual models of the  
2889 geothermal system. Notable results are: (1) imaging of an extensive zone of  
2890 mineralized/silicified Tertiary sediments along an outflow path and up-dip of normal faulting;  
2891 (2) imaging of two distinct dome-shaped electrical conductors situated above zones of  
2892 enhanced temperature and permeability; (3) coincidence of one of these zones with enhanced  
2893 semblance of passive micro-seismic signals observed using a dense array; and (4) added  
2894 constraints on the fault block geometry within the right step of the Lake Range, with  
2895 implications for understanding the controls of deep permeability in the system.

2896 2) Kleich, S.J., Hampton, J.C., WHOLESCALE Team (2021). Poroelasticity measurements of  
2897 geothermal rocks. American Rock Mechanics Association (ARMA) Annual Symposium,  
2898 Houston, Texas. <https://doi.org/10.56952/ARMA-2022-0722>

2899 ABSTRACT: Although the elastic properties of rocks have been extensively studied for  
2900 decades, poroelastic coefficients resulting from applied external and fluid pressures are: (1)  
2901 difficult to measure precisely, and (2) often overlooked or oversimplified when modeling  
2902 subsurface volumes. The physical properties of porous solids are typically affected by  
2903 external stress and/or pore pressure. Physical properties such as elastic stiffness or  
2904 permeability can be described as functions of external stress ( $\sigma$ ) and pore pressure ( $P_p$ ).  
2905 Accordingly, the effective stress  $\sigma_e$  is defined as the external stress that, if applied in isolation,  
2906 would produce the same effect as the combination of  $\sigma$  and  $P_p$ . The usual assumption is that  
2907 the effective stress can be described through an effective stress coefficient  $n$  such that  $\sigma_e = \sigma_c$   
2908  $- nP_p$ . In the special case of volumetric strain in an isotropic poroelastic solid, this coefficient  
2909 is referred to as the Biot coefficient or the Biot-Willis coefficient  $\alpha$ . To understand the stress  
2910 in a geothermal reservoir, it is important to obtain accurate estimates of effective stress  
2911 coefficients. To do so, we perform laboratory measurements on various quarried granite  
2912 specimens and rock samples taken from surface outcrops around the geothermal field at San  
2913 Emidio, Nevada, U.S.A. The methodology uses confining pressure and pore pressure  
2914 oscillations over a range of conditions. The measured values produce a data set that can be  
2915 evaluated using the laws of poroelasticity to estimate the Biot coefficient. We also investigate  
2916 the possibility, and magnitude, of elastic and poroelastic property anisotropy due to texture  
2917 (e.g., oriented microcracks). This work will contribute to the WHOLESCALE project recently  
2918 funded by the Geothermal Technologies Office of the U.S. Department of Energy. The  
2919 acronym stands for "Water & Hole Observations Leverage Effective Stress Calculations and  
2920 Lessen Expenses". The goal of the WHOLESCALE project is to simulate the spatial  
2921 distribution and temporal evolution of stress in a geothermal system. To reach this goal, the  
2922 WHOLESCALE team proposes to develop a methodology that will incorporate and interpret  
2923 data from four methods of measurement into a multi-physics model that couples thermal,  
2924 hydrological, and mechanical (T-H-M) processes over spatial scales ranging from the  
2925 diameter of a borehole ( $\sim 0.1$  m) to the extent of the entire field ( $\sim 10$  km) and temporal scales  
2926 ranging from the duration of a micro-seismic event ( $\sim 1$  second) to the typical lifetime of a  
2927 producing field (3 decades).

2928 3) Tung, S., C. S. Sherman, T. Masterlark, M. A. Cardiff, H. F. Wang, and K. L. Feigl (2021),  
2929 Modeling Displacement, Strain, and Stress via a Library of Green's functions Calculated with  
2930 the Finite Element Method: Application to Coso Geothermal Field, California, U.S.A., in  
2931 *Meeting of the American Geophysical Union*,  
2932 <https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/963052>

2933 ABSTRACT: To calculate the displacement field at the earth's surface, we are developing a  
2934 new method based on the linear superposition of multiple Green's functions for cubic voxels  
2935 in the subsurface. To do so, we expand on the approach of Masterlark [2003, JGR] to allow  
2936 dilation. The center of each voxel is located at a single node at the intersection of 8 cubic  
2937 (finite) elements. For each voxel, we specify a unit change in volume by imposing a 3-  
2938 dimensional vector displacement on each of the three orthogonal, planar, square surfaces  
2939 outlined by the diagonals of the elements' shared faces. As a result, each planar square surface  
2940 dilates into an octahedral shape composed of two pyramids sharing a square base, i.e. an  
2941 octahedron. To describe the material properties of the medium, we are building a 3-  
2942 dimensional model based on multiple geophysical data streams at the Coso geothermal field  
2943 as part of Phase I of the FORGE project. We then solve the governing equations for each  
2944 voxel to calculate the elastic response as a vector displacement field, i.e. the Green's function.  
2945 Each such Green's function is the partial derivative of surface displacement with respect to a  
2946 unit change in volume. These derivatives can be arranged as columns in the design matrix for  
2947 a linear inverse problem. To find the model that best fits the displacement field observed by  
2948 InSAR, we apply Bayesian inference using a prior model based on the mass fluxes of  
2949 produced and injected fluids, as reported monthly to the state of California.

2950 4) Tung, S., K. R. Blake, M. Shirzaei, M. A. Cardiff, T. Masterlark, H. F. Wang, and K. L. Feigl  
2951 (2021), Temporal Evolution and Spatial Distribution of stress and strain at Coso Geothermal  
2952 Field: January 2005 through June 2019, in *Fall Meeting American Geophysical Union*, edited.  
2953 <https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/956813>

2954 ABSTRACT: Coso geothermal field in California exhibits deformation and seismicity that  
2955 vary over time scales on the order of several months. Both of these signals are intertwined  
2956 with geothermal production and injection. To understand these signals, we model the time-  
2957 dependent deformation fields measured by interferometric synthetic aperture radar (InSAR)  
2958 and the Global Positioning System (GPS). To do so, we apply a new modeling approach  
2959 based on the superposition of Green's functions [S. Tung et al., this meeting]. Then we apply  
2960 Bayesian inference to evaluate the relative importance of two hypothesized mechanisms: (1)  
2961 poroelastic response to production and injection of geothermal fluids; and (2) thermoelastic  
2962 response to advective cooling by fluid flow. In both cases, the prior model is based on  
2963 monthly flow data reported to the state of California. After selecting the most likely model for  
2964 the subsurface processes driving the strain, we calculate the stress as a time-varying tensor  
2965 field. This tensor can be projected onto known fault planes to evaluate the Coulomb failure  
2966 criterion within each of the subsurface voxels in the model. Comparing the modeled timing  
2967 and location of the failing subsurface voxels to the observed timing and location of the  
2968 seismicity constitutes an additional test (i.e., post-fit audit) of the models.

2969 5) Thurber, C., Guo, H., Heath, B., Cardiff, M., Lord, N., Warren, I., & Feigl, K. (2021).  
2970 Structure and Stress Results from Nodal Seismic Array Deployments at the San Emidio  
2971 Geothermal Field, Nevada, U.S.A. 2021, in Fall Meeting American Geophysical Union S41A-  
2972 08. <https://ui.adsabs.harvard.edu/abs/2021AGUFM.S41A..08T>  
2973 ABSTRACT: We are analyzing seismic data from a 2016 deployment of more than 1,300  
2974 vertical-component nodal instruments in the San Emidio geothermal field during a planned  
2975 shutdown of the power plant, as part of the WHOLESCALE project supported by the U.S.  
2976 Department of Energy. Cessation of pumping was followed by a substantial increase in  
2977 microseismic activity, as has been observed at some other geothermal plant sites (e.g., Brady,  
2978 Blue Mountain). We model pressure changes due to pumping cessation and examine the  
2979 correlation between seismic event hypocenters and changes to effective normal stress within  
2980 the reservoir. We have also deployed a small array of 38 three-component (3-C) nodal  
2981 instruments at San Emidio in April 2021 to coincide with another planned plant shutdown.  
2982 Preliminary analysis of the two datasets reveals at least 130 microseismic events in 2016 and  
2983 more than 300 in 2021 during the shutdown periods, located within approximately the same  
2984 area. The large 2016 array also enabled the determination of a three-dimensional tomographic  
2985 model for P-wave velocity as well as focal mechanisms for about 40 events. The tomographic  
2986 model reveals large lateral variations in velocity, with structural features that are consistent  
2987 with normal faults dipping roughly westward. A stress inversion of the highest-quality focal  
2988 mechanisms yields a maximum compressive stress axis plunging nearly vertically toward the  
2989 northeast, consistent with other information. The intermediate and minimum compressive  
2990 stress axes are both close to horizontal, but their azimuths are not well constrained, with  
2991 overlapping probability distributions. These results will guide the design of an array of several  
2992 hundred 3-C nodal instruments to be deployed at the time of the next planned shutdown at  
2993 San Emidio in 2022.

2994 6) Jahnke, B., H. Guo, B. Heath, E. Cunningham, C. Sherman, H. Sone, I. Warren, C. Kreemer,  
2995 C. H. Thurber, K. L. Feigl, and The WHOLESCALE Team (2022) Spatial-Temporal Stress  
2996 Heterogeneity in the Geothermal Reservoir at San Emidio, Nevada, U.S, 47th Workshop on  
2997 Geothermal Reservoir Engineering, February 7-9, Stanford, CA.  
<https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2022/Jahnke.pdf>  
2998 ABSTRACT: We attempt to constrain models of the reservoir stress of a geothermal reservoir  
2999 in San Emidio, Nevada, which will be used in a reservoir- scale hydro-mechanical numerical  
3000 model. Our reservoir stress models are based on (1) the densities of subsurface lithologies, (2)  
3001 surface topography, (3) the relative magnitudes of the total vertical stress (S<sub>v</sub>), maximum  
3002 horizontal stress (S<sub>Hmax</sub>), and minimum horizontal stress (S<sub>Hmin</sub>), and (4) the azimuth of S<sub>Hmax</sub>.  
3003 The models are informed from stress indicators within a ~175 km radius of San Emidio which  
3004 provides constraints on (1) the relative magnitudes of S<sub>v</sub>, S<sub>Hmax</sub>, and S<sub>Hmin</sub>, and (2) the azimuth  
3005 of S<sub>Hmax</sub>. To evaluate how well the model represents the reservoir stress, focal mechanism data  
3006 from microseismic events which occurred within the reservoir during a plant shutdown in  
3007 2016 are used. Stress inversions (Vavryčuk, 2014) of the focal mechanism data estimate the in  
3008 situ principal stress orientations, their relative magnitudes, and preferred nodal planes. Then  
3009 the principal orientations of the model stresses at the locations of microseismic events were  
3010 compared to the principal stress orientations inverted from the focal mechanisms. These  
3011 analyses allow us to refine the reservoir stress model that agrees with field observations and is  
3012 therefore suitable to use to forward model the reservoir responses against production and  
3013 injection operations. In this paper, we provide a snapshot of work in progress, including the  
3014 highlights listed in the conclusions below. The work presented herein has been funded in part  
3015 by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. department of  
3016 Energy, under Award Numbers DE-EE0007698 and DE-EE0009032.  
3017

3018 7) Kleich, S.J., Folsom, M., Hampton, J., Feigl, K.L., & the WHOLESCALE Team. (2022).  
3019 Lab-scale structural analysis and poroelastic measurements of rocks from the San Emidio  
3020 Geothermal Field, Nevada, U.S., Proceedings, *47th Workshop on Geothermal Reservoir*  
3021 *Engineering*, , February 7-9, Stanford, CA.  
3022 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2022/Kleich.pdf>  
3023 ABSTRACT: In the WHOLESCALE project we aim to simulate the temporal evolution and  
3024 spatial distribution of stress in and around the geothermal reservoir at San Emidio, Nevada,  
3025 United States. To constrain the stress modeling efforts, we perform laboratory measurements  
3026 of elastic stiffnesses and effective pressure coefficients using oriented rock samples collected  
3027 from outcrops located near the San Emidio geothermal field. To help contextualize lab-scale  
3028 measurements through a field-scale lens, it is important to understand whether lab-scale rock  
3029 deformation is controlled by structural anisotropy and/or heterogeneity. To that end, we  
3030 measure ultrasonic velocities,  $V_p$  and  $V_s$ , at 45-degree increments around the circumference of  
3031 oriented cylindrical specimens for each rock type. Combining the three-dimensional velocity  
3032 data with geological and textural descriptions, we address whether the velocity is controlled  
3033 by heterogeneity and/or anisotropy at the plug scale. To better model stress in subsurface  
3034 volumes of a geothermal field, it is also important to obtain accurate estimates of elastic  
3035 stiffnesses and effective stress coefficients at the laboratory scale; particularly the Biot  
3036 coefficients which are the effective stress coefficients for volumetric strain in an elastic  
3037 porous solid. Using the information from the velocity structure and textural descriptions, we  
3038 physically measure the associated stiffnesses and Biot coefficients to help constrain material  
3039 behavior predictions within the stress model. In this paper, we provide a snapshot of the work  
3040 in progress, including the highlights listed in the Conclusions below. The work presented  
3041 herein has been funded in part by the Office of Energy Efficiency and Renewable Energy  
3042 (EERE), U.S. Department of Energy, under Award Numbers DE-EE0007698 and DE-  
3043 EE0009032.

3044 8) Kurt L. Feigl, Sui Tung, Hao Guo, Erin Cunningham, Jesse Hampton, Samantha J. Kleich,  
3045 Ben Jahnke, Ben Heath, Collin Roland, Matthew Folsom, John Akerley, Chris Sherman, Ian  
3046 Warren, Corné Kreemer, Hiroki Sone, Michael A. Cardiff, Neal E. Lord, Clifford H. Thurber,  
3047 Herbert F. Wang, and the WHOLESCALE Team (2022)  
3048 Overview and Preliminary Results from the WHOLESCALE project at San Emidio, Nevada,  
3049 U.S., *47th Workshop on Geothermal Reservoir Engineering*, February 7-9, Stanford, CA.  
3050 <https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2022/Feigl.pdf>  
3051 ABSTRACT: The WHOLESCALE acronym stands for Water & Hole Observations  
3052 Leverage Effective Stress Calculations and Lessen Expenses. The goal of the  
3053 WHOLESCALE project is to simulate the spatial distribution and temporal evolution of stress  
3054 in the geothermal system at San Emidio in Nevada, United States. To reach this goal, the  
3055 WHOLESCALE team is developing a methodology that will incorporate and interpret data  
3056 from four methods of measurement into a multi-physics model that couples thermal,  
3057 hydrological, and mechanical (T-H-M) processes over spatial scales ranging from the  
3058 diameter of a borehole (~0.1 m) to the extent of the entire field (~10 km) and temporal scales  
3059 ranging from the duration of a microseismic event (~1 second) to the typical lifetime of a  
3060 producing field (3 decades). The data sets include observations from geology, seismology,  
3061 drilling, geodesy, and hydrology. The WHOLESCALE team is taking advantage of the  
3062 perturbations created by changes in pumping operations to infer temporal changes in the state  
3063 of stress in the geothermal system. This rheological experiment is based on the key idea that  
3064 increasing pore-fluid pressure reduces the effective normal stress acting across preexisting  
3065 faults. The work plan includes: (1) measuring rock-mechanical material properties in the  
3066 laboratory, (2) manipulating the stress field via hydraulic and thermal methods, (3) measuring  
3067 the resulting response by geophysical methods, and (4) calculating the stress, strain, pressure,  
3068 and temperature in the geothermal system using an open-source, numerical simulator named  
3069 GEOSX. To interpolate and interpret these rich data sets, GEOSX uses the finite-element  
3070 method to solve the coupled differential equations governing the physics of a fractured,  
3071 poroelastic medium under stress. The study site at San Emidio includes a volume with length  
3072 of ~6 km, width ~5 km, and depth ~2 km. In this paper, we provide a snapshot of work in  
3073 progress, including the highlights listed in the conclusions below. The work presented herein  
3074 has been funded in part by the Office of Energy Efficiency and Renewable Energy (EERE),  
3075 U.S. Department of Energy, under Award Numbers DE-EE0007698 and DE-EE0009032.

3076 9) Kleich, S. J., M. Folsom, C. Sherman, K. L. Feigl, and J. C. Hampton (2022), Measurements  
3077 of elastic moduli and stress dependence of geothermal rocks, paper presented at 56th US Rock  
3078 Mechanics/Geomechanics Symposium, Santa Fe, New Mexico, USA, , 26-29 June 2022.  
3079 <https://santafe2022.armarocks.org/>  
3080 ABSTRACT: In the WHOLESCALE project we aim to simulate the temporal evolution and  
3081 spatial distribution of stress in and around the geothermal reservoir at San Emidio, Nevada,  
3082 United States. To constrain stress modeling efforts, we perform laboratory measurements of  
3083 static and dynamic elastic stiffnesses using oriented rock samples collected from outcrops  
3084 located near the San Emidio geothermal field. In this paper, we seek to understand (1) the  
3085 static and dynamic elastic properties of the rock formations, (2) the existence or absence of  
3086 anisotropy or heterogeneity-controlled behavior at the millimeter to centimeter scales, (3)  
3087 whether the elastic properties are stress dependent, and (4) whether there exists any stress  
3088 induced anisotropy under reasonable net mean stress variations. To evaluate the existence of  
3089 anisotropy or heterogeneity, we measure ultrasonic velocities,  $V_p$  and  $V_s$ , at 45-degree  
3090 increments around the circumference of oriented cylindrical specimens for each rock type.  
3091 Combining the three-dimensional velocity data with geological and textural descriptions, we  
3092 address whether the materials are heterogeneity-controlled and/or anisotropic at the plug  
3093 scale. Static and dynamic elastic moduli were also measured at the net mean stresses of  
3094 interest for each of the rock types obtained. Dynamic stress dependence and whether the  
3095 material contained stress induced anisotropy was evaluated via stepped hydrostatic ultrasonic  
3096 velocity measurements.

3097 10) Guo, H., Thurber, C. H., Heath, B. A., Cardiff, M. A., Lord, N. E., Warren, I., & Feigl, K. L.  
3098 (2022, April 19). *Seismic Analysis of Reservoir Conditions for Inducing Seismicity at the San*  
3099 *Emidio Geothermal Field, Nevada, USA*. Seismological Society of America (SSA) Annual  
3100 Meeting, Bellevue, Washington, USA.  
3101 [https://meetings.seismosoc.org/wp-content/uploads/2022/07/SSA\\_2022AM-Program-final.pdf](https://meetings.seismosoc.org/wp-content/uploads/2022/07/SSA_2022AM-Program-final.pdf)

3102 ABSTRACT: At the San Emidio geothermal field, Nevada, a substantial increase in  
3103 microseismic activity during a power plant shutdown (i.e., cessation of all production and  
3104 injection activities) was observed in December 2016 by a local seismic network with more  
3105 than 1,300 vertical component nodal instruments. Here, we present our seismic analysis of the  
3106 2016 dataset, including locating microseismic events (MEs), P-wave velocity ( $V_p$ )  
3107 tomography, focal mechanism (FM) inversion, and stress inversion, to investigate material  
3108 properties, distribution of existing faults, and local stress state in the reservoir for  
3109 understanding the mechanisms for inducing MEs during plant shutdown. The  $V_p$  model shows  
3110 large lateral variations, with main structural features that are consistent with normal faults  
3111 dipping westward. Two low- $V_p$  zones (LVZs) to the west of the surface trace of the main fault  
3112 and near some operational wells are imaged at depths of ~0.2-1.2 km below land surface. The  
3113 northern LVZ is closer to two production wells and the southern one is closer to four injection  
3114 wells. Most MEs occurred within or surrounding the northern LVZ. FM results show diverse  
3115 faulting regimes, dominated by normal faulting. Stress inversion using high-quality FMs  
3116 yields a maximum compressive stress axis plunging nearly vertically toward the northeast.  
3117 The intermediate and minimum compressive stress axes are both nearly close to horizontal  
3118 toward the WSW and SSE, respectively. Orientations of ME hypocenters and FMs show that  
3119 a majority of MEs may occur on a large-scale fault and/or some small-scale faults/fractures  
3120 within the LVZ, suggesting that the activation of faults/fractures due to pore pressure  
3121 increases caused by the cessation of pumping triggered some of the MEs. Modeling pressure  
3122 changes due to pumping cessation suggests fluid pressure increases of ~25-50 kPa at the  
3123 hypocenters of MEs, which are predominantly near shutdown production wells. The work  
3124 presented herein has been funded in part by the Office of Energy Efficiency and Renewable  
3125 Energy, U.S. Department of Energy, under Award Numbers DE-EE0007698 and DE-  
3126 EE0009032.

3127 11) C. Thurber, H. Guo, E. Cunningham, B. Heath, N. E. Lord, K. L. Feigl (2022), Microseismic  
3128 Activity During Three Shutdowns of the San Emidio Geothermal Plant, Nevada, 2022  
3129 American Geophysical Union Meeting.  
3130 <https://ui.adsabs.harvard.edu/abs/2022AGUFM.S32B..05T/abstract>

3131 ABSTRACT: We are analyzing seismic array data from three shutdowns of the San Emidio  
3132 geothermal plant in Nevada, in 2016, 2021, and 2022. In 2016, an array of ~1,300 vertical-  
3133 component seismic stations operated by Microseismic Inc. recorded for about a week, and  
3134 ~130 microseismic events were identified. In 2021, an array of 37 three-component stations  
3135 was deployed near the center of the 2016 array and recorded for about 4 weeks as part of the  
3136 WHOLESCALE project. Automated analysis of the data from only the first day of the 2021  
3137 shutdown yielded a catalog of about 900 microseismic events. In 2022, an array of 450 three-  
3138 component stations was deployed as part of the WHOLESCALE project, covering most of the  
3139 northern ~2/3 of the 2016 array footprint at twice the instrument spacing, and recorded for  
3140 about a month. Automated analysis of the data again from just the first day of the 2022  
3141 shutdown yielded a catalog of only about 30 microseismic events. In all three cases,  
3142 microseismic activity increased sharply after shutdown. In addition to the varying number of  
3143 events, our preliminary location results show very different spatial distributions for the events  
3144 from the three years. The 2016 events were concentrated beneath the northern part of the array  
3145 where the then primary production wells were situated. The 2021 events were located along  
3146 the northwest edge of the 2021 array, near a new production well. The 2022 events were  
3147 located between the 2016 and 2022 events. We are proceeding with the analysis of all three  
3148 data sets with a uniform workflow to produce comparable event catalogs. Next, we plan to  
3149 examine potential factors that may be responsible for the very different microseismic  
3150 responses to the three plant shutdowns.

3151 12) Cardiff, M., Sherman, C., Guo, H., Cunningham, E., Folsom, M., Warren, I., Sone, H.,  
3152 Thurber, C., Wang, H. F., & Feigl, K. L. (2023). WHOLESCALE - Calibration and  
3153 Simulation of hydro-mechanical Behavior at San Emidio, Nevada During Operational  
3154 Changes. *48th Workshop on Geothermal Reservoir Engineering Stanford University*. Stanford  
3155 University, Stanford, California, USA.  
3156 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Cardiff.pdf>

3157 ABSTRACT: Changes to geothermal pumping operations produce changes in reservoir fluid  
3158 pressure that propagate according to the arrangement of fluid sources / sinks (injection /  
3159 extraction wells, respectively) and reservoir permeability. These changes in fluid pressure  
3160 induce changes to effective stresses acting on potential fault planes, and thus alter fault  
3161 stability. For example, Cardiff et al. (2017) used a semi-analytical model, calibrated on  
3162 existing pressure data, to simulate pressure changes during site shutdown and associated  
3163 pumping cessation. They demonstrated that microseismic events observed post-shutdown  
3164 occurred where predicted fluid pressure increases (and effective stress decreases) between  
3165 0.05 MPa - 0.15 MPa were simulated. This work investigates pressure changes associated  
3166 with site shutdowns at the San Emidio Geothermal Field, Nevada. Using existing pumping  
3167 and pressure change data, we have calibrated finite element numerical models based in the  
3168 COMSOL and GEOSX platforms. Following calibration, we simulate expected pressure  
3169 changes and stress field changes within the San Emidio reservoir during site shutdowns. A  
3170 catalog of microseismic event times and locations measured post-shutdown is then compared  
3171 against the spatio-temporal changes in fluid pressures and effective stress simulated by our  
3172 models. In theory, once properly calibrated these models allow the prediction of future  
3173 seismicity as site operational changes are implemented, such as new pumping wells or  
3174 flowrate adjustments. In this paper, we provide a snapshot of work in progress. The work  
3175 presented herein has been funded in part by the Office of Energy Efficiency and Renewable  
3176 Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0009032.

3177 13) Feigl, K. L., Guo, H., Cunningham, E., Hampton, J., Folsom, M., Akerley, J., Cusini, M.,  
3178 Sherman, C., & Warren, I. (2023, February 6). The 2022 WHOLESCALE Deployment at San  
3179 Emidio, Nevada, U.S. *48th Workshop on Geothermal Reservoir Engineering*. Stanford  
3180 Geothermal Workshop, Stanford University, Stanford, California, USA.  
3181 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Feigl.pdf>

3182 ABSTRACT: The WHOLESCALE acronym stands for Water & Hole Observations  
3183 Leverage Effective Stress Calculations and Lessen Expenses. The goal of the  
3184 WHOLESCALE project is to simulate the spatial distribution and temporal evolution of stress  
3185 in the geothermal system at San Emidio in Nevada, United States. To reach this goal, the  
3186 WHOLESCALE team is developing a methodology that will incorporate and interpret data  
3187 from four methods of measurement into a multi-physics model that couples thermal,  
3188 hydrological, and mechanical (T-H-M) processes over spatial scales ranging from the  
3189 diameter of a borehole ( $\sim 0.1$  m) to the extent of the entire field ( $\sim 10$  km) and temporal scales  
3190 ranging from the duration of a microseismic event ( $\sim 1$  second) to the typical lifetime of a  
3191 producing field (3 decades). The study site at San Emidio includes a volume with length of  $\sim 6$   
3192 km, width  $\sim 5$  km, and depth  $\sim 2$  km.

3193 The WHOLESCALE team is taking advantage of the perturbations created by changes in  
3194 pumping operations during planned shutdowns in 2016, 2021, and 2022 to infer temporal  
3195 changes in the state of stress in the geothermal system. This rheological experiment is based  
3196 on the key idea that increasing pore-fluid pressure reduces the effective normal stress acting  
3197 across preexisting faults. The WHOLESCALE team conducted a field experiment in 2022 to  
3198 collect data from seismology, drilling, geology, geodesy, and hydrology. In this paper, we  
3199 provide a snapshot of work in progress. The work presented herein has been funded in part by  
3200 the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy,  
3201 under Award Number DE-EE0009032.

3202 14) Sone, H., Mudatsir, O., Jin, Z., Folsom, M., Ramirez, G., & Feigl, K. L. (2023, February 6).  
3203 WHOLESCALE - Characterization of Conductive Fractured Zones Based on Borehole Data  
3204 at San Emidio Geothermal Field, Nevada. *48th Workshop on Geothermal Reservoir*  
3205 *Engineering*. Stanford Geothermal Workshop, Stanford University, Stanford, California,  
3206 USA. <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Sone.pdf>

3207 ABSTRACT: Successful heat production from the San Emidio Geothermal Field, Nevada,  
3208 highlights the existence of conductive pathways for subsurface fluid flow between the  
3209 injection and production wells. These zones of high permeability rock mass are mainly  
3210 identified from drilling records, for instance as drilling intervals where drilling breaks and lost  
3211 circulation zones occur. Interpolation between the high permeability zones identified in each  
3212 well allow us to estimate the approximate location and orientation of the first order planar  
3213 structure (i.e., fault zone) that constitute the conductive pathway in the subsurface. However,  
3214 the detailed structural nature of these permeable zone (e.g., fracture distribution, fracture  
3215 orientation, gouge fill, thickness/opening) are still unknown. Such information is essential for  
3216 conducting geomechanical analysis to predict the mechanical response of the permeable zone  
3217 to injection and production activities. We integrate lithological, structural, petrophysical  
3218 information from mud, image, and sonic logs to characterize the permeable zones at reservoir  
3219 depth. Lithological boundaries identified in mud logs are used to infer fault planes necessary  
3220 to match known permeable zones and offsets in lithology. Resistivity image logs reveal the  
3221 abundant presence of natural fractures, potential fault zones ( greater than 10 feet) hosting  
3222 numerous open fractures and conductive rock mass, as well as some potential drilling-induced  
3223 tensile fractures. Sonic log data also shows low-velocity zones correlated with the potential  
3224 fault zones identified from the image logs. Sonic reflections also reveal the existence and  
3225 clustering of reflective fracture planes in the vicinity of the borehole. Density profiles of  
3226 cuttings reveal a gentle increase in density with depth, with local perturbations caused by  
3227 anomalous presence of volcanic sediments. In this paper, we provide a snapshot of work in  
3228 progress focused towards the geological characterizing of the permeable zones in the  
3229 reservoir. The work presented herein has been funded in part by the Office of Energy  
3230 Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award  
3231 Number DE-EE0009032.

3232 15) Luo, X., Cunningham, E., Sherman, C., Kreemer, C., Batzli, S. A., Hampton, J., Sone, H.,  
3233 Cardiff, M. A., Lord, N. E., Thurber, C. H., Wang, H. F., & Feigl, K. L. (2023, December 15).  
3234 *Measuring and Modeling Deformation in the San Emidio Geothermal Field, Nevada, U.S.*  
3235 2019 – 2022 [Poster]. American Geophysical Union 2023, San Francisco, California, USA.  
3236 <https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1281625>

3237 ABSTRACT: The WHOLESCALE acronym stands for Water & Hole Observations Leverage  
3238 Effective Stress Calculations and Lessen Expenses. The goal of the WHOLESCALE project  
3239 is to simulate the spatial distribution and temporal evolution of stress in the geothermal  
3240 system at San Emidio in Nevada, United States. To reach this goal, the WHOLESCALE team  
3241 is developing a methodology that will incorporate and interpret data from four methods of  
3242 measurement into a multi-physics model that couples thermal, hydrological, and mechanical  
3243 (T-H-M) processes. The San Emidio geothermal area is located ~100 km north of Reno  
3244 Nevada in the northwestern Basin and Range province. The San Emidio geothermal system  
3245 occupies a right step in a North-striking, West-dipping, normal-fault zone (e.g., Hao Guo et  
3246 al., submitted to JGR, and references therein). In January 2021, two continuously operating  
3247 GPS stations, SEMS and SEMN, were installed on monuments attached to idle wellheads  
3248 within the geothermal field at San Emidio. A third GPS station, named GARL, is located  
3249 outside the geothermal area and used as a reference. We are analyzing the GPS data to  
3250 calculate daily measurements of (relative) position as time series. GPS station SEMN is  
3251 subsiding relative to GARL with a mean rate of the order of several millimeters per year. We  
3252 are also analyzing Interferometric Synthetic Aperture Radar (InSAR) data to measure ground  
3253 deformation from two satellite missions: TerraSAR-X images acquired since 2019 and  
3254 SENTINEL-1 images acquired since late 2014. To interpolate and interpret these rich data  
3255 sets, we are performing numerical modeling using the Finite Element Method to solve the  
3256 coupled differential equations governing the physics of a fractured, poroelastic medium under  
3257 stress. The model includes a volume with length of ~10 km, width ~10 km, and depth ~3 km.  
3258 We acknowledge image data acquired by the TerraSAR-X and TanDEM-X satellite missions  
3259 operated by the German Space Agency (DLR). These data sets were used under the terms and  
3260 conditions of Research Project RES1236. Image data sets were also acquired by the  
3261 SENTINEL-1 satellite mission operated by the European Space Agency (ESA). The work  
3262 presented herein has been funded in part by the Office of Energy Efficiency and Renewable  
3263 Energy (EERE), U.S. Department of Energy, under Award Numbers DE-EE0007698 and DE-  
3264 EE0009032.

3265 16) Cardiff, M. A., Sherman, C., Guo, H., Luo, X., Akerley, J., Sone, H., Thurber, C. H., Wang,  
3266 H. F., & Feigl, K. L. (2023, December 15). *Monitoring and Modeling of Pumping-induced*  
3267 *Pressure Changes at a Natural Geothermal Reservoir Complex: The WHOLESCALE Project*  
3268 *at San Emidio, NV*. American Geophysical Union 2023, San Francisco, California, USA.  
3269 <https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1359142> ABSTRACT: Injection and  
3270 extraction of fluids from geothermal reservoirs alters the natural flow of fluids and heat, and  
3271 similarly produces pore pressure changes that propagate within the reservoir's current  
3272 permeability structure. In some scenarios, fluid pore pressure changes may be substantial  
3273 enough to induce seismicity with concomitant alteration to the permeability structure. The San  
3274 Emidio geothermal field, located ~100 km north of Reno, NV consists of a network of  
3275 pumping and re-injection wells located within a right-stepping extensional zone associated  
3276 with a broader regional westward-dipping Basin and Range structural setting. As part of the  
3277 WHOLESCALE project, pumping and pressure change data from this site was provided by  
3278 ORMAT Technologies, Inc. encompassing a set of targeted tests carried out in 2016 and  
3279 2017. Additionally, ORMAT has shared long-term operational data from the site at daily  
3280 temporal resolution with the project team, which provides an opportunity to perform long-  
3281 term modeling of stress changes at San Emidio. To characterize the San Emidio site  
3282 hydrologically, we use an existing conceptual model of the San Emidio site – consisting of  
3283 mapped reservoir units and fault structures – and employ inverse modeling to assess  
3284 permeability within each of these features, using the targeted test data as inputs and a finite-  
3285 element based model for simulating pressure changes. Employing the method of multiple  
3286 working hypotheses, we assess the ability of different permeability models to fit existing  
3287 monitoring data. The models employed range from relatively homogeneous reservoirs to  
3288 fault-block-dominated and fault-dominated flow. Following inverse modeling, we evaluate  
3289 the changes to reservoir pore pressures (and thus, effective stress) over longer time periods,  
3290 including changes to reservoir operations such as site shutdowns. This work was funded in  
3291 part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of  
3292 Energy, under Award Numbers DE-EE0007698 and DE-EE0009032.

3293 17) Luo, X., C. Sherman, K. L. Feigl, J. Murphy, J. Akerley, H. Sone, M. A. Cardiff, J. Hampton,  
3294 H. Guo, N. E. Lord, P. E. Sobol, C. H. Thurber, and H. F. Wang (2024), WHOLESCALE  
3295 Modeling of Hydro-Mechanical Processes at San Emidio, Nevada, U.S. on Time Scales of  
3296 Days, paper presented at PROCEEDINGS, 49th Workshop on Geothermal Reservoir  
3297 Engineering, Stanford, California Feb. 6-  
3298 8,2024.<https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2024/Luo.pdf>

3299 ABSTRACT: The WHOLESCALE acronym stands for Water & Hole Observations Leverage  
3300 Effective Stress Calculations and Lessen Expenses. The goal of the WHOLESCALE project  
3301 is to simulate the spatial distribution and temporal evolution of stress in the geothermal  
3302 system at San Emidio in Nevada, United States. The WHOLESCALE team is taking  
3303 advantage of the perturbations created by changes in pumping operations during planned  
3304 shutdowns in 2016, 2021, and 2022 to infer temporal changes in the state of stress in the  
3305 geothermal system. This rheological experiment is based on the key idea that increasing pore-  
3306 fluid pressure reduces the effective normal stress acting across preexisting faults. We are  
3307 developing a fully coupled, hydro-mechanical (“H-M”) numerical model to describe seismic  
3308 observations during the shutdowns using the open-source GEOS code developed at Lawrence  
3309 Livermore National Laboratory. To construct the model configuration and set values for the  
3310 material properties, we build on a 3-dimensional geologic and structural model of the  
3311 reservoir that was updated in 2022 from earlier studies. To constrain the modeled values of  
3312 permeability, we build on a sensitivity analysis of 3-dimensional hydrologic models of the  
3313 San Emidio reservoir during transient events such as plant flow tests and temporary, planned  
3314 shutdowns. To specify the initial conditions and boundary conditions for the mechanical  
3315 simulation, we use several indicators of stress. The fluid-flow boundary conditions for the  
3316 models are driven by flow rates recorded at production and injection wells. In refining the  
3317 models, we consider two different time scales. In this paper, we focus on short time scales on  
3318 the order of minutes to days. In a companion paper (Feigl et al., this meeting), we consider  
3319 long time scales of the order of years. To validate the modeling, we consider microseismic  
3320 events recorded over ten days in December 2016 by a seismic array deployed before, during,  
3321 and after a planned shutdown in December 2016. In this paper, we provide a snapshot of work  
3322 in progress.

3323 18) Feigl, K. L., X. Luo, C. Sherman, C. Kreemer, S. A. Batzli, M. A. Cardiff, and H. F. Wang  
3324 (2024), WHOLESCALE modeling of thermo-hydro-mechanical processes at San Emidio,  
3325 Nevada, U.S. on time scales of years, paper presented at PROCEEDINGS, 49th Workshop on  
3326 Geothermal Reservoir Engineering, Stanford University, California, February 12-14, 2024.  
3327 <https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2024/Feigl.pdf>

3328 ABSTRACT: The WHOLESCALE acronym stands for Water & Hole Observations Leverage  
3329 Effective Stress Calculations and Lessen Expenses. The goal of the WHOLESCALE project  
3330 is to simulate the spatial distribution and temporal evolution of stress in the geothermal  
3331 system at San Emidio in Nevada, United States. To reach this goal, the WHOLESCALE team  
3332 is developing a fully coupled, thermo-hydro-mechanical (“T-H-M”) numerical model to  
3333 describe geodetic observations during the shutdowns using the open-source GEOS code  
3334 developed at Lawrence Livermore National Laboratory (Settgast et al., 2018). In refining the  
3335 models, we consider two different time scales. In this paper, we focus on long time scales of  
3336 the order of years. In a companion paper (Luo et al., 2024), we consider short time scales on  
3337 the order of minutes to days. To calibrate the model, we consider two types of geodetic data:  
3338 GPS (Global Positioning System) and InSAR (Interferometric Synthetic Aperture Radar). The  
3339 GPS data set consists of daily time series of displacement in three dimensions. These have  
3340 been estimated from data collected from two continuously operating stations, SEMS and  
3341 SEMN, installed on monuments attached to idle wellheads within the geothermal field at San  
3342 Emidio as well as from a third GPS station, named GARL, located outside the geothermal  
3343 area in the mountain range to the northeast of the power plant. The shape of the modeled  
3344 displacement field agrees approximately with that observed by InSAR near the producing  
3345 wells at the center of the geothermal field. The modeled rate of vertical displacement,  
3346 however, agrees with that estimated from GPS and InSAR data only to within a factor of four.

3347 19) Thurber, C. H., Cunningham, E., Guo, H., Roecker, S. W., Lord, N. E., & Feigl, K. L. (2024,  
3348 April 29). *Detailed Analysis of Microseismic Activity Associated with Shutdowns of the San*  
3349 *Emidio Geothermal Plant, Nevada*. Seismological Society of America (SSA) Annual Meeting  
3350 2024, Anchorage Alaska.

3351 <https://meetings.seismosoc.org/wp-content/uploads/2024/02/SSA-Program-2024-Rev-I.pdf>  
3352 ABSTRACT: We are analyzing dense seismic array data encompassing shutdowns of the San  
3353 Emidio geothermal plant in Nevada in 2016 and 2022. In 2016, an array of ~1,300 vertical-  
3354 component seismographs operated by Microseismic Inc. recorded for about a week. In 2022,  
3355 an array of 450 three-component seismographs was deployed as part of the WHOLESCALE  
3356 project, covering most of the northern ~2/3 of the 2016 array footprint at twice the instrument  
3357 spacing, and recorded for about a month. The data are being analyzed with two workflows to  
3358 detect and locate the microseismic events. The first generates a microseismic event catalog  
3359 directly from the raw continuous seismic data. The second produces high-precision event  
3360 locations via a sequence of repicking arrivals, waveform cross-correlation, and double-  
3361 difference relocation. Analysis of the 2022 data set reveals intense seismic activity  
3362 commencing soon after shutdown and returning to the previous background rate shortly after  
3363 restart. The events fall into several main clusters that include some linear features.  
3364 Preliminary results for the 2016 data set show a similar pattern of heightened activity during  
3365 the shutdown, revealing an order of magnitude more events than a previous catalog estimated  
3366 using a back-projection approach. The work presented herein has been funded in part by the  
3367 Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy,  
3368 under Award Numbers DE-EE0007698 and DE-EE0009032. The seismic instruments  
3369 deployed in 2022 were provided by the Incorporated Research Institutions for Seismology  
3370 (now the EarthScope Consortium) through the PASSCAL Instrument Center at New Mexico  
3371 Tech. Data collected will be available through the EarthScope Data Management Center. The  
3372 facilities of the EarthScope Consortium are supported by the National Science Foundation’s  
3373 Seismological Facility for the Advancement of Geoscience (SAGE) Award under Cooperative  
3374 Support Agreement EAR-1724509.

3375 20) Wang, H. F., Sone, H., Cardiff, M., Guo, H., Thurber, C., Luo, X., & Feigl, K. L. (2024, June  
3376 23). *Poroelastic Stress Cycling and Microseismic Activity at the San Emidio Geothermal*  
3377 *Field, NV (USA)*. 58th US Rock Mechanics/Geomechanics Symposium, Golden, Colorado,  
3378 USA. <https://doi.org/10.56952/ARMA-2024-0813>

3379 ABSTRACT: Guo et al. (2023) presented a hypothetical scenario of Thermal-Hydrologic-  
3380 Mechanical (T-H-M) processes that included a microearthquake cycle associated with annual  
3381 plant shutdowns at the San Emidio Geothermal Field in northwestern Nevada (USA). Their  
3382 scenario focused on the relative magnitudes of fluid pressure,  $P_p$ , and critical pore fluid  
3383 pressure,  $P_{crit}$ , which is the magnitude of pore pressure above which Coulomb failure triggers  
3384 seismicity. The scenario was based on three sets of observations and inferences associated  
3385 with the 20-hour shutdown in December 2016 during which all pumping operations stopped:  
3386 1) Simulation of fluid-pressure changes, 2) Observation of microseismic events before,  
3387 during, and after the shutdown, and 3) Stress inversion of focal mechanisms. We examine the  
3388 T-H-M coupling between stress, pore fluid pressure, and temperature in terms of the critical  
3389 value  $P_{crit}$  using first-order estimates for failure on small slip patches in a normal-fault zone.

3390 *b. Website(s)*

3391 Nothing to report.

3392 *c. Technologies or techniques*

3393 Nothing to report.

3394 *d. Inventions, patent applications, and/or licenses*

3395 Nothing to report.

3396 *e. Other products*

3397 Nothing to report.

3398 *f. What was the impact on the development of human resources?*

3399 During project performance period, the individuals listed in Table 1 benefited from  
3400 collaborating with other members of the team. In particular, five postdoctoral research associates  
3401 gained training and experience, thus enhancing their professional development:

3402  
3403 Ben Heath, Ph.D. - <https://orcid.org/0000-0002-9460-3042>

3404 Now Duty Scientist at National Tsunami Warning Center

3405 Erin Cunningham, Ph.D. - <https://orcid.org/0000-0002-9680-6812>

3406 Now Geophysicist at Oak Ridge National Laboratory

3407 Hao Guo, Ph.D. - <https://orcid.org/0000-0001-8287-3689>

3408 Now Assistant Scientist, Dept. of Geoscience, U. Wisconsin-Madison

3409 Sui "Jay" Tung, Ph.D. - <https://orcid.org/0000-0002-4708-2133>

3410 Now Assistant Professor at Texas Tech

3411 Xi Luo, Ph.D. - <https://orcid.org/0009-0004-6401-9971>

3412 Pursuing second M.S. in Data Science

3414

### SECTION XIII. FIELD PHOTOS



3415

*Figure 84. Experimental geothermal injection at San Emidio well 58B-33 flowing at 250 gallons/minute during rig development (Matt Folsom 2020/12/22).*

3416



<sup>3417</sup>  
<sup>3418</sup>  
<sup>3419</sup> *Figure 85. Cliff Reed driving a lifter used to install a GPS station on an idle well head in the southern part of the geothermal field at San Emidio in January 2021 (photo Kurt Feigl).*



3420  
3421

*Figure 86. Erin Cunningham staking the location of a seismic station with real-time kinematic GPS in March 2022 (photo Neal Lord).*



3422  
3423

*Figure 87. Ben Jahnke mending a fence between seismic stations during the “planting” stage of the WHOLESCALE deployment in March 2022.*



3424  
3425  
3426  
3427

*Figure 88. Planting a seismograph, just before filling in the hole to improve coupling between the sensor and the earth, removing the stake to reduce wind noise, and dusting off the top of the instrument to improve the reception of GPS signals. From left to right, Anya Wolterman, DJ Bustos, Ben Jahnke, and Samantha Kleich.*



3428

*Figure 89. Joe Pavone with his 4WD toolbox.*

#### 3429 SECTION XIV. ACKNOWLEDGEMENTS

3430 The WHOLESCALE team thanks the following individuals at Ormat Technologies, Inc:  
3431 Curtis Peach, Cliff Reed, Joe Pavone, Manolo Di Donato, Leeta Miller, Alan Pinuelas-Molina,  
3432 David Schwab, Lupé Gonsalez Ortiz, Zack Young, and Robin Zuza.

3433 We thank the individuals who contributed to the field work: DJ Bustos (PASSCAL), Alan  
3434 Horton (PASSCAL), Zirou Jin (UW-Madison), Nina Miller (UNR), and Bret Pecoraro (UNR).

3435 We thank Steven Roecker for helping us with running the REST software workflow.

3436 For the 2022 seismic survey, seismic instruments were provided by the EarthScope Primary  
3437 Instrument Center (EPIC, formerly the IRIS PASSCAL Instrument Center) at [3437 New Mexico Tech](#).  
3438 Data collected during this experiment are available through the IRIS Data Management Center.  
3439 “The facilities of the EarthScope Consortium are supported by the National Science Foundation  
3440 under Cooperative Agreement EAR-0552316 and by the Department of Energy National Nuclear  
3441 Security Administration.<sup>18</sup>

3442 The work presented herein has been funded by the Office of Energy Efficiency and  
3443 Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0009032.

3444 “Some of the results for this study were generated using Sequent software. Sequent is the  
3445 Bentley Systems subsurface company.”

3446 This study includes SAR images acquired by TerraSAR-X and TanDEM-X satellite missions  
3447 operated by the German Space Agency (DLR). These data were used under the terms and  
3448 conditions of Research Project RES1236.

3449 Access to data from the SENTINEL-1 satellite mission operated by the European Space  
3450 Agency was provided free of charge as described by the Updated ESA Earth Observation Data  
3451 Policy (Simplified version)<sup>19</sup>.

3452 “NASA’s provision of the complete [ESA](#) Sentinel-1 synthetic aperture radar (SAR) data  
3453 archive through the [ASF DAAC](#) is by agreement between the U.S. State Department and the  
3454 European Commission ([EC](#)). As part of the Earth-observation [Copernicus](#) program, the Sentinel  
3455 mission will provide scientists with accurate, timely, and easily accessible information to help  
3456 shape the future of our planet. Content on ASF’s Sentinel web pages is adapted from the [ESA](#)  
3457 [Sentinel-1 website](#)”<sup>20</sup>

3458 Passive seismic data collections were completed at San Emidio in late 2016 by Microseismic  
3459 Inc. as part of DOE project number DE-EE0007698 as described on the metadata available in the  
3460 GDR<sup>21</sup>.

3461 Parts of this work were performed under the auspices of the U.S. Department of Energy by  
3462 Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

18 <https://www.passcal.nmt.edu/content/general-information/policy/instrument-use-agreement>

19 <https://earth.esa.int/eogateway/documents/d/earth-online/esa-eo-data-policy>

20 <https://ASF.alaska.edu/datasets/daac/sentinel-1/>

21 <https://gdr.openei.org/submissions/1386>

**SECTION XV. BIBLIOGRAPHY**

3466 Agram, P. S., and M. Simons (2015), A noise model for InSAR time-series, *Journal of*  
3467 *Geophysical Research: Solid Earth*, 2014JB011271.  
3468 <http://dx.doi.org/10.1002/2014JB011271>

3469 Akerley, J., I. Warren, E. Gasperikova, and S. Pullammanappallil (2023), A Novel  
3470 Approach to Map Permeability Using Passive Seismic Emission Tomography, United  
3471 States. <https://www.osti.gov/biblio/1986084>

3472 Ansari, H., F. D. Zan, and R. Bamler (2017), Sequential Estimator: Toward Efficient  
3473 InSAR Time Series Analysis, *IEEE Transactions on Geoscience and Remote Sensing*,  
3474 55, 5637-5652.

3475 Aster, R. C., B. Borchers, and C. H. Thurber (2005), Parameter estimation and inverse  
3476 problems, xii, 301 p. pp., Elsevier Academic Press, Amsterdam ; Boston.

3477 Bekaert, D. P., M. Karim, J. P. Linick, H. Hua, S. Sangha, M. Lucas, . . . S. E. Owen  
3478 (2019), Development of open-access Standardized InSAR Displacement Products by the  
3479 Advanced Rapid Imaging and Analysis (ARIA) Project for Natural Hazards, paper  
3480 presented at AGU Fall Meeting Abstracts.

3481 Berrada Baby, H., P. Golé, and J. Lavergnat (1988), A model for the tropospheric excess  
3482 path length of radio waves from surface meteorological measurements, *Radio Science*,  
3483 23, 1023-1038. <https://doi.org/10.1029/RS023i006p01023>

3484 Bhandari, A. R., P. B. Flemings, P. J. Polito, M. B. Cronin, and S. L. Bryant (2015),  
3485 Anisotropy and Stress Dependence of Permeability in the Barnett Shale, *Transport in*  
3486 *Porous Media*, 108, 393-411. <https://doi.org/10.1007/s11242-015-0482-0>

3487 Blacker, T. D., S. J. Owen, M. L. Staten, W. R. Quadros, B. Hanks, B. W. Clark, . . . S.  
3488 Showman (2016), CUBIT geometry and mesh generation toolkit 15.1 user  
3489 documentation, United States. <https://www.osti.gov/biblio/1430472>

3490 Blewitt, G., C. Kreemer, W. C. Hammond, and J. Gazeaux (2016), MIDAS robust trend  
3491 estimator for accurate GPS station velocities without step detection, *Journal of*  
3492 *Geophysical Research: Solid Earth*, 121, 2054-2068.  
3493 <https://doi.org/10.1002/2015JB012552>

3494 Blewitt, G., W. C. Hammond, and C. Kreemer (2018), Harnessing the GPS Data Explosion  
3495 for Interdisciplinary Science, *Eos*, 99. <https://doi.org/10.1029/2018EO104623>

3496 Byerlee, J. (1978), Friction of rocks, *Pure Appl. Geophys.*, 116, 615-626.

3497 Cardiff, M. A., C. Sherman, H. Guo, X. Luo, J. Akerley, H. Sone, . . . K. L. Feigl (2023b of  
3498 Conference), Monitoring and Modeling of Pumping-induced Pressure Changes at a  
3499 Natural Geothermal Reservoir Complex: The WHOLESCALE Project at San Emidio,  
3500 NV, abstract presented at AGU.

3501

3502 Cardiff, M., Akerley, J., & Feigl, K. L. (2016). WHOLESCALE: Mass Flux Rates for Wells  
3503 at San Emidio in December 2016 (p. 2 files) [dataset]. DOE Geothermal Data  
3504 Repository; University of Wisconsin-Madison. <https://doi.org/10.15121/2006850>

3505 Cardiff, M., Akerley, J., & Feigl, K. L. (2023). WHOLESCALE: Coordinates of wells at  
3506 San Emidio, Nevada (p. 1 files) [dataset]. DOE Geothermal Data Repository; University  
3507 of Wisconsin - Madison. <https://doi.org/10.15121/2006837>

3508 Cardiff, M., C. Sherman, H. Guo, E. Cunningham, M. Folsom, I. Warren, . . . K. L. Feigl  
3509 (2023a), WHOLESCALE - Calibration and Simulation of hydro-mechanical Behavior  
3510 at San Emidio, Nevada During Operational Changes, paper presented at Stanford  
3511 Geothermal Workshop, Stanford, California.  
3512 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Cardiff.pdf>

3513 Cardiff, M., C. Sherman, H. Guo, E. Cunningham, M. Folsom, I. Warren, H. Sone, C.  
3514 Thurber, H. F. Wang, and K. L. Feigl (2023), WHOLESCALE - Calibration and  
3515 Simulation of hydro-mechanical Behavior at San Emidio, Nevada During Operational  
3516 Changes, paper presented at Stanford Geothermal Workshop, Stanford, California.  
3517 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Cardiff.pdf>

3518 Chamberlin, T. C. (1890), The Method of Multiple Working Hypotheses, *Science*, 15, 92-  
3519 96. <http://www.jstor.org.ezproxy.library.wisc.edu/stable/1764336>

3520 Chen, C., and A. A. Holland (2016), PhasePAPy: A Robust Pure Python Package for  
3521 Automatic Identification of Seismic Phases, *Seismological Research Letters*, 87, 1384-  
3522 1396. <https://doi.org/10.1785/0220160019>

3523 Comte, D., M. Farías, D. Calle-Gardella, A. Navarro-Aranguiz, S. Roecker, and A.  
3524 Rietbrock (2023), Anomalous intraslab structure revealed by the analysis of aftershocks  
3525 of the Mw 6.7 Coquimbo-La Serena earthquake of 20 January 2019, *Tectonophysics*,  
3526 846, 229660. <https://www.sciencedirect.com/science/article/pii/S0040195122004541>

3527 Davatzes, N., and S. Hickman (2009), Fractures, stress and fluid flow prior to stimulation of  
3528 well 27-15, Desert Peak, Nevada, EGS Project, paper presented at Proceedings.

3529 Duncan, P. M., and L. Eisner (2010), Reservoir characterization using surface microseismic  
3530 monitoring, *GEOPHYSICS*, 75, 75A139-175A146. <https://doi.org/10.1190/1.3467760>

3531 Efron, B., and G. Gong (1983), A Leisurely Look at the Bootstrap, the Jackknife, and  
3532 Cross-Validation, *The American Statistician*, 37, 36-48.  
3533 <https://www.tandfonline.com/doi/abs/10.1080/00031305.1983.10483087>

3534 Efron, B., and R. Tibshirani (1986), Bootstrap methods for standard errors, confidence  
3535 intervals, and other measures of statistical accuracy, *Statistical Science*, 1, 54-77.

3536 Eneva, M., G. Falorni, W. Teplow, J. Morgan, G. Rhodes, and D. Adams (2011), Surface  
3537 Deformation at the San Emidio Geothermal Field, Nevada, from Satellite Radar  
3538 Interferometry, *GRC Transactions*, 35.

3539 Faulds, J. E. (2014), 3D Model of the San Emidio Geothermal Area [data set], Geothermal  
3540 Data Repository. <https://gdr.openei.org/submissions/365>.

3541 Faulkner, D. R., A. C. Lewis, and E. H. Rutter (2003), On the internal structure and  
3542 mechanics of large strike-slip fault zones: field observations of the Carboneras fault in  
3543 southeastern Spain, *Tectonophysics*, 367, 235-251.  
3544 <https://www.sciencedirect.com/science/article/pii/S0040195103001343>

3545 Feigl, K. L., E. C. Reinisch, S. A. Batzli, H. Sone, M. A. Cardiff, J. C. Hampton, N. E.  
3546 Lord, C. H. Thurber, H. F. Wang, and C. Sherman (2020), Spatio-Temporal Analysis of  
3547 Deformation at San Emidio Geothermal Field, Nevada, USA between 1992 and 2010,  
3548 paper presented at Proceedings 45th Workshop on Geothermal Reservoir Engineering  
3549 Stanford University, Stanford, California, February 10-12, 2020.  
3550 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2020/Feigl.pdf>

3551 Feigl, K. L., E. C. Reinisch, S. Batzli, and N. Bearson (2018), UW Madison HTCondor  
3552 InSAR Workflow (software repository). [https://github.com/creinisch/bin\\_htcondor](https://github.com/creinisch/bin_htcondor)

3553 Feigl, K. L., H. Guo, E. Cunningham, J. Hampton, M. Folsom, J. Akerley, M. Cusini, C.  
3554 Sherman, I. Warren, C. Kreemer, H. Sone, M. A. Cardiff, N. E. Lord, P. E. Sobol, S. A.  
3555 Batzli, C. H. Thurber, and H. F. Wang (2023), The 2022 WHOLESCALE deployment  
3556 at San Emidio, Nevada, U.S., paper presented at 48th Workshop on Geothermal  
3557 Reservoir Engineering, Stanford University, Stanford, California, February 6-8, 2023  
3558 SGP-TR-224.  
3559 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Feigl.pdf>

3560 Feigl, K. L., S. Tung, H. Guo, E. Cunningham, J. Hampton, S. J. Kleich, B. Jahnke, B.  
3561 Heath, C. Roland, M. Folsom, J. Akerley, M. Cusini, C. Sherman, I. Warren, C.  
3562 Kreemer, H. Sone, M. A. Cardiff, N. E. Lord, C. H. Thurber, and H. F. Wang (2022b),  
3563 Overview and Preliminary Results from the WHOLESCALE project at San Emidio,  
3564 Nevada, U.S., paper presented at 47th Workshop on Geothermal Reservoir Engineering,  
3565 Stanford, California.  
3566 <https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2022/Feigl.pdf>

3567 Feigl, K. L., X. Luo, C. Sherman, C. Kreemer, S. A. Batzli, M. A. Cardiff, and H. F. Wang  
3568 (2024), WHOLESCALE modeling of thermo-hydro-mechanical processes at San  
3569 Emidio, Nevada, U.S. on time scales of years, paper presented at PROCEEDINGS, 49th  
3570 Workshop on Geothermal Reservoir Engineering, Stanford University, California,  
3571 February 12-14, 2024.  
3572 <https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2024/Feigl.pdf>

3573 Feigl, K., C. Thurber, and N. Lord (2022a), WHOLESCALE survey at San Emidio,  
3574 Nevada, USA [Data set]. <https://doi.org/10.7914/m5qt-mh37>

3575 Folsom, M., Libbey, R., Feucht, D., I., Warren., & Garanzini, S. (2020). Geophysical  
3576 Observations and Integrated Conceptual Models of the San Emidio Geothermal Field,  
3577 Nevada. Workshop on Geothermal Reservoir Engineering, Stanford, California, USA.  
3578 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2020/Folsom.pdf>

3579 Folsom, M., R. Libbey, D. Feucht, I. Warren, and S. Garanzini (2021), Geophysical  
3580 observations and integrated conceptual models of the San Emidio Geothermal Field,  
3581 Nevada, paper presented at Nevada Petroleum & Geothermal Society, February 4th,  
3582 2021.

3583 Folsom, M., R. Libbey, D. Feucht, W. I., and S. Garanzini (2020), Geophysical  
3584 Observations and Integrated Conceptual Models of the San Emidio Geothermal Field,  
3585 Nevada., paper presented at Workshop on Geothermal Reservoir Engineering, Stanford,  
3586 California, USA.  
3587 <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2020/Folsom.pdf>

3588 Gabriel, A. K., R. M. Goldstein, and H. A. Zebker (1989), Mapping small elevation changes  
3589 over large areas: differential radar interferometry, *J. Geophys. Res.*, 94, 9183-9191.

3590 Gonzalez, L. F., A. C. Aguiar, and M. Karplus (2022), Data mining microseismicity  
3591 associated to the Blue Mountain geothermal site, Lawrence Livermore National  
3592 Lab.(LLNL), Livermore, CA (United States).  
3593 <https://www.osti.gov/servlets/purl/1844493>

3594 Guo, H., & Thurber, C. (2021). Double-difference seismic attenuation tomography method  
3595 and its application to the Geysers geothermal field, California. *Geophysical Journal  
3596 International*, 225(2), 926–949. <https://doi.org/10.1093/gji/ggab017>

3597 Guo, H., and H. Zhang (2017), Development of double-pair double difference earthquake  
3598 location algorithm for improving earthquake locations, *Geophysical Journal  
3599 International*, 208, 333-348. <https://doi.org/10.1093/gji/ggw397>

3600 Guo, H., C. H. Thurber, B. A. Heath, M. Cardiff, N. Lord, I. Warren, and K. L. Feigl  
3601 (2022), Seismic analysis of reservoir conditions for inducing seismicity at the San  
3602 Emidio geothermal field, Nevada, U.S.A., abstract presented at Annual Meeting  
3603 Seismological Society of America, Bellevue, WA, USA, 19-23 April 2022.

3604 Guo, H., C. Thurber, I. Warren, B. A. Heath, M. Folsom, H. Sone, N. Lord, J. Akerley, and  
3605 K. L. Feigl (2023), Enhanced Microseismicity During Production Pumping Cessation at  
3606 the San Emidio Geothermal Field (Nevada, USA) in December 2016, *Journal of  
3607 Geophysical Research: Solid Earth*, 128, e2023JB027008.  
3608 <https://doi.org/10.1029/2023JB027008>

3609       Guo, H., H. Zhang, R. M. Nadeau, and Z. Peng (2017), High-resolution deep tectonic  
3610       tremor locations beneath the San Andreas Fault near Cholame, California, using the  
3611       double-pair double-difference location method, *Journal of Geophysical Research: Solid*  
3612       *Earth*, 122, 3062-3075. <https://doi.org/10.1002/2016JB013919>

3613       Guo, H., McGuire, J. J., & Zhang, H. (2021). Correlation of porosity variations and  
3614       rheological transitions on the southern Cascadia megathrust. *Nature Geoscience*, 14(5),  
3615       341–348. <https://doi.org/10.1038/s41561-021-00740-1>

3616       Guo, H., Zhang, H., & Froment, B. (2018). Structural control on earthquake behaviors  
3617       revealed by high-resolution  $Vp/Vs$  imaging along the Gofar transform fault, East Pacific  
3618       Rise. *Earth and Planetary Science Letters*, 499, 243–255.  
3619       <https://doi.org/10.1016/j.epsl.2018.07.037>

3620       Guo, H., C. Thurber, E. Cunningham, M. Cardiff, N. Lord, P. Sobol, H. Wang, and K. L.  
3621       Feigl (submitted 2024/08/22 to *Geophys. Res. Lett.*), Microseismicity Modulation Due  
3622       to Changes in Geothermal Productionat San Emidio, Nevada, USA.

3623       Hampton, J., S. J. Kleich, M. Folsom, C. Sherman, K. L. Feigl, and WHOLESCALE\_Team  
3624       (2022 of Conference), Laboratory poroelastic measurements of geothermal rocks,  
3625       abstract presented at 56th US Rock Mechanics/Geomechanic Symposium.

3626       Hardebeck, J. L., and A. J. Michael (2006), Damped regional-scale stress inversions:  
3627       Methodology and examples for southern California and the Coalinga aftershock  
3628       sequence, *Journal of Geophysical Research: Solid Earth*, 111.  
3629       <https://doi.org/10.1029/2005JB004144>

3630       Hardebeck, J. L., and P. M. Shearer (2002), A New Method for Determining First-Motion  
3631       Focal Mechanisms, *Bulletin of the Seismological Society of America*, 92, 2264-2276.  
3632       <http://www.bssaonline.org/content/92/6/2264.abstract>

3633       Heidbach, O., M. Rajabi, K. Reiter, M. Ziegler, and W. team (2016), World stress map  
3634       database release 2016, in GFZ Data Services. <http://www.world-stress-map.org>

3635       Hettema, M. H. H., Schutjens, P. M. T. M., Verboom, B. J. M., & Gussinklo, H. J. (2000).  
3636       Production-Induced Compaction of a Sandstone Reservoir: The Strong Influence of  
3637       Stress Path. *SPE Reservoir Evaluation & Engineering*, 3(04), 342–347.  
3638       <https://doi.org/10.2118/65410-PA>

3639       Hickman, S. H., and N. C. Davatzes (2010), In-Situ Stress and Fracture Characterization for  
3640       Planning of an EGS Stimulation in the Desert Peak Geothermal Field, Nevada, paper  
3641       presented at Thirty-Fifth Workshop on Geothermal Reservoir Engineering SGP-TR-  
3642       188, Stanford University, February 1-3, 2010.  
3643       <https://digitalcommons.unl.edu/usgsstaffpub/418/>

3644 Hickman, S., and M. Zoback (1998), Tectonic controls on fracture permeability in a  
3645 geothermal reservoir at Dixie Valley, Nevada, Medium: ED; Size: 12 p.  
3646 <http://www.osti.gov/energycitations/servlets/purl/656552-pqPyck/webviewable/>

3647 Jaeger, J. C., and N. G. W. Cook (1979), Fundamentals of Rock Mechanics, 3rd edition ed.,  
3648 593 pp., Chapman and Hall, London.

3649 Jahnke, B. (2022), Geomechanical Analysis of the Geothermal Reservoir at San Emidio,  
3650 Nevada and Fracture Toughness Anisotropy of EGS Collab Testbed Rocks, M.S. thesis,  
3651 University of Wisconsin-Madison (H. Sone, advisor).

3652 Jahnke, B., H. Guo, B. Heath, E. Cunningham, C. Sherman, H. Sone, I. Warren, C.  
3653 Kreemer, C. H. Thurber, K. F. Feigl, and WHOLESCALE\_Team (2022), Spatial-  
3654 Temporal Stress Heterogeneity in the Geothermal Reservoir at San Emidio, Nevada,  
3655 U.S., paper presented at 45th Workshop on Geothermal Reservoir Engineering,  
3656 February 7-9, 2022, Stanford University, Stanford, California.,  
3657 <https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2022/Jahnke.pdf>

3658 Jahnke, B., H. Sone, H. Guo, C. Sherman, I. Warren, C. Kreemer, C. H. Thurber, and K. L.  
3659 Feigl (2023), Geomechanical analysis of the geothermal reservoir at San Emidio,  
3660 Nevada, Geothermics, 110, 102683. <https://doi.org/10.1016/j.geothermics.2023.102683>

3661 Jeremic, A., M. Thornton, and P. Duncan (2016 of Conference), Ambient passive seismic  
3662 imaging with noise analysis, abstract presented at 2016 SEG International Exposition  
3663 and Annual Meeting.

3664 Jolivet, R., M. Simons, P. S. Agram, Z. Duputel, and Z. K. Shen (2015), Aseismic slip and  
3665 seismogenic coupling along the central San Andreas Fault, Geophysical Research  
3666 Letters, 42, 297-306. <http://dx.doi.org/10.1002/2014GL062222>

3667 Kilb, D., and J. L. Hardebeck (2006), Fault Parameter Constraints Using Relocated  
3668 Earthquakes: A Validation of First-Motion Focal-Mechanism Data, Bulletin of the  
3669 Seismological Society of America, 96, 1140-1158. <https://doi.org/10.1785/0120040239>

3670 Kleich, S. J. (2022a), Mechanical and Poroelastic Properties of Lithologic Units Within the  
3671 San Emidio Geothermal System, Nevada, United States, M.S. thesis, University of  
3672 Wisconsin-Madison (J. Hampton, advisor).

3673 Kleich, S. J. F., Hampton, Jesse, Feigl, Kurt L. WHOLESCALE\_Team (2022b), Lab-scale  
3674 structural analysis and poroelastic measurements of rocks from the San Emidio  
3675 Geothermal Field, Nevada, U.S, paper presented at 47th Workshop on Geothermal  
3676 Reservoir Engineering, Stanford, California.  
3677 <https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2022/Kleich.pdf>

3678 Kleich, S. J., M. Folsom, C. Sherman, K. L. Feigl, and J. C. Hampton (2022c),  
3679 Measurements of elastic moduli and stress dependence of geothermal rocks, paper  
3680 presented at 56th US Rock Mechanics/Geomechanics Symposium, Santa Fe, New  
3681 Mexico, USA, 26-29 June 2022. <https://santafe2022.armarocks.org/>

3682 Kleich, S., S. Bradshaw, J. Hampton, and K. Feigl (2022a), WHOLESCALE Catalog of  
3683 Rock Samples at San Emidio Nevada collected in January 2021 Version 2.0 [data set].  
3684 <https://gdr.openei.org/submissions/1396>.

3685 Kreemer, C., G. Blewitt, and E. C. Klein (2014), A geodetic plate motion and Global Strain  
3686 Rate Model, *Geochemistry, Geophysics, Geosystems*, 15, 3849-3889.  
3687 <http://dx.doi.org/10.1002/2014GC005407>

3688 Kreemer, C., G. Blewitt, and P. Davis (2020), Geodetic evidence for a buoyant mantle  
3689 plume beneath the Eifel volcanic area, NW Europe, *Geophysical Journal International*,  
3690 222., 1316-1332. <https://doi.org/10.1093/gji/ggaa227>

3691 Krieger, G., A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink (2007),  
3692 TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry, *IEEE*  
3693 *Trans. Geoscience Remote Sensing*, 45, 3317-3341.  
3694 <http://dx.doi.org/10.1109/tgrs.2007.900693>

3695 Kumar, R., N. Bennett, A. Donald, G. Martinez, and E. Velez (2019), 3D Borehole Sonic  
3696 Imaging for Input to Structural Modeling-A Quantitative Approach, paper presented at  
3697 Society of Petroleum Engineers SPE Middle East Oil and Gas Show and Conference,  
3698 Manama, Bahrain, 18-21 March 2019. [http://onepetro.org/SPEMEOS/proceedings-  
3699 pdf/19MEOS/4-19MEOS/D041S042R001/1144769/spe-194810-ms.pdf/1](http://onepetro.org/SPEMEOS/proceedings-pdf/19MEOS/4-19MEOS/D041S042R001/1144769/spe-194810-ms.pdf/1)

3700 Kusumawati, D., D. P. Sahara, S. Widiyantoro, A. D. Nugraha, M. Muzli, I. Imran, N. T.  
3701 Puspito, and Z. Zulfakriza (2021), Fault Instability and Its Relation to Static Coulomb  
3702 Failure Stress Change in the 2016 Mw 6.5 Pidie Jaya Earthquake, Aceh, Indonesia,  
3703 *Frontiers in Earth Science*, 8.

3704 Kuttruff, H. (1991), Basic Concepts of Acoustics, in *Ultrasonics: Fundamentals and*  
3705 *Applications*, edited by H. Kuttruff, pp. 11-47, Springer Netherlands, Dordrecht.  
3706 [https://doi.org/10.1007/978-94-011-3846-8\\_2](https://doi.org/10.1007/978-94-011-3846-8_2)

3707 Liu, F., P. Fu, R. J. Mellors, M. A. Plummer, S. T. Ali, E. C. Reinisch, Q. Liu, and K. L.  
3708 Feigl (2018), Inferring Geothermal Reservoir Processes at the Raft River Geothermal  
3709 Field, Idaho, USA, Through Modeling InSAR-Measured Surface Deformation, *Journal*  
3710 *of Geophysical Research: Solid Earth*, 123, 3645-3666.  
3711 <http://dx.doi.org/10.1029/2017JB015223>

3712 Lord, N. E., P. Sobol, H. Guo, C. H. Thurber, I. Warren, D. J. Bustos, S. L. Bradshaw, and  
3713 K. L. Feigl (2022), WHOLESCALE: Seismic Waveform Data from San Emidio,  
3714 Nevada 2022, University of Wisconsin - Madison.  
3715 <https://gdr.openei.org/submissions/1610>

3716 Lord, N., B. Heath, E. Cunningham, C. Thurber, S. Bradshaw, and K. Feigl (2021a),  
3717 WHOLESCALE: Seismic Survey Metadata from San Emidio Nevada 2021, Department  
3718 of Geoscience - University of Wisconsin-Madison. <https://doi.org/10.15121/2349481>

3719 Lord, N., B. Heath, E. Cunningham, C. Thurber, S. Bradshaw, and K. L. Feigl (2021b),  
3720 WHOLESCALE: Seismic Survey Data from San Emidio Nevada 2021, University of  
3721 Wisconsin - Madison. <https://doi.org/10.15121/2349480>

3722 Lord, N., B. Heath, H. Guo, I. Warren, S. Bradshaw, C. Thurber, J. Akerley, and K. Feigl  
3723 (2016a), Seismic Survey 2016 Data at San Emidio Nevada, University of Wisconsin -  
3724 Madison. <https://doi.org/10.15121/2008357>

3725 Lord, N., B. Heath, H. Guo, I. Warren, S. Bradshaw, C. Thurber, J. Akerley, and K. Feigl  
3726 (2016b), Seismic Survey 2016 Metadata at San Emidio, Nevada, University of  
3727 Wisconsin. <https://doi.org/10.15121/1872549>

3728 Lord, N., Heath, B., Cunningham, E., Thurber, C., Bradshaw, S., & Feigl, K. (2021).  
3729 WHOLESCALE Seismic Survey 2021 Metadata at San Emidio, Nevada [dataset].  
3730 Department of Geoscience - University of Wisconsin-Madison; Geothermal Data  
3731 Repository. <https://gdr.openei.org/submissions/>

3732 Lord, N., Heath, B., Guo, H., Warren, I., Bradshaw, S., Thurber, C., Akerley, J., & Feigl, K.  
3733 (2016). Seismic Survey 2016 Data at San Emidio Nevada (p. 3 files) [dataset]. DOE  
3734 Geothermal Data Repository; University of Wisconsin-Madison.  
3735 <https://doi.org/10.15121/2008357>

3736 Luo, X., C. Sherman, K. L. Feigl, J. Murphy, J. Akerley, H. Sone, M. A. Cardiff, J.  
3737 Hampton, H. Guo, N. E. Lord, P. E. Sobol, C. H. Thurber, and H. F. Wang (2024),  
3738 WHOLESCALE Modeling of Hydro-Mechanical Processes at San Emidio, Nevada,  
3739 U.S. on Time Scales of Days, paper presented at PROCEEDINGS, 49th Workshop on  
3740 Geothermal Reservoir Engineering, Stanford, California February 6-8, 2024.  
3741 <https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2024/Luo.pdf>

3742 Martinez-Garzon, P., Kwiatek, G., Ickrath, M., & Bohnhoff, M. (2014). MSATSI: A  
3743 MATLAB Package for Stress Inversion Combining Solid Classic Methodology, a New  
3744 Simplified User-Handling, and a Visualization Tool. *Seismological Research Letters*,  
3745 85(4), 896–904. <https://doi.org/10.1785/0220130189>

3746 Martínez-Garzón, P., G. Kwiatek, H. Sone, M. Bohnhoff, G. Dresen, and C. Hartline  
3747 (2014b), Spatiotemporal changes, faulting regimes, and source parameters of induced  
3748 seismicity: A case study from The Geysers geothermal field, *Journal of Geophysical*  
3749 *Research: Solid Earth*, 119, 8378-8396.

3750 Martínez-Garzón, P., G. Kwiatek, M. Ickrath, and M. Bohnhoff (2014a), MSATSI: A  
3751 MATLAB Package for Stress Inversion Combining Solid Classic Methodology, a New  
3752 Simplified User-Handling, and a Visualization Tool, *Seismological Research Letters*,  
3753 85, 896-904. <https://doi.org/10.1785/0220130189>

3754 Massonnet, D., and K. L. Feigl (1998), Radar interferometry and its application to changes  
3755 in the Earth's surface, *Reviews of Geophysics*, 36, 441-500.  
3756 <https://doi.org/10.1029/97RG03139>

3757 Matlick, J. S. (1995), San Emidio Geothermal System, Empire, Nevada: GRC Field Trip ~  
3758 October 1995, Mesquite Group, Inc., Fullerton, California.  
3759 [https://data.nbmng.unr.edu/public/Geothermal/GreyLiterature/Matlick\\_SanEmidioGeoSy](https://data.nbmng.unr.edu/public/Geothermal/GreyLiterature/Matlick_SanEmidioGeoSy)  
3760 stem\_1995.pdf

3761 Moeck, I. (2011), Stress Inversion and 2D fault stress modeling San Emidio: Project Report  
3762 to PI Teplow, 19 page pp.

3763 Oppenheimer, D. H., P. A. Reasenberg, and R. W. Simpson (1988), Fault plane solutions  
3764 for the 1984 Morgan Hill, California, Earthquake Sequence: Evidence for the state of  
3765 stress on the Calaveras Fault, *Journal of Geophysical Research: Solid Earth*, 93, 9007-  
3766 9026. <https://doi.org/10.1029/JB093iB08p09007>

3767 Pan, Z., Y. Ma, L. D. Connell, D. I. Down, and M. Camilleri (2015), Measuring anisotropic  
3768 permeability using a cubic shale sample in a triaxial cell, *Journal of Natural Gas Science*  
3769 and Engineering, 26, 336-344.  
3770 <https://www.sciencedirect.com/science/article/pii/S1875510015002723>

3771 Pitz, W., and D. Miller (2010), The TerraSAR-X Satellite, *Geoscience and Remote Sensing,*  
3772 *IEEE Transactions on*, 48, 615-622. <http://dx.doi.org/10.1109/TGRS.2009.2037432>

3773 Pulliam, R. J., F. Sepulveda, J. S. Thangraj, D. Quiros, J. Queen, M. Queen, and J. Iovenitti  
3774 (2019), Development of a Novel, Near Real Time Approach To Geothermal Seismic  
3775 Exploration And Monitoring Via Ambient Seismic Noise Interferometry, *Medium: ED*  
3776 pp, Baylor Univ., Waco, TX (United States).  
3777 <https://www.osti.gov/servlets/purl/1648329>

3778 Reinisch, E. C. (2018b), UW Madison HTCondor InSAR Workflow (Source Code).  
3779 [https://github.com/creinisch/bin\\_htcondor.git](https://github.com/creinisch/bin_htcondor.git)

3780 Reinisch, E. C., M. Cardiff, and K. L. Feigl (2016), Graph theory for analyzing pair-wise  
3781 data: application to geophysical model parameters estimated from interferometric  
3782 synthetic aperture radar data at Okmok volcano, Alaska, *Journal of Geodesy*, 1-16.  
3783 <http://dx.doi.org/10.1007/s00190-016-0934-5>

3784 Reinisch, E. C., M. Cardiff, J. Akerley, I. Warren, and K. L. Feigl (2019), Spatio-Temporal  
3785 Analysis of Deformation at San Emidio Geothermal Field, Nevada, USA Between 1992  
3786 and 2010, *Remote Sensing*, 11, 1935. <http://dx.doi.org/10.3390/rs11161935>

3787 Rhodes, G. T. (2011), Structural controls of the San Emidio Geothermal System, M.S.  
3788 thesis, vi, 73 leaves pp, University of Nevada Reno advisor).

3789 Rhodes, G. T., J. E. Faulds, and A. R. Ramelli (2011), Preliminary Geologic Map of the  
3790 Northern Lake Range, San Emidio Geothermal Area, Washoe County, Nevada, Nevada  
3791 Bureau of Mines and Geology.  
3792 <http://data.nbmng.unr.edu/public/freedownloads/of/of2011-11.zip>

3793 Rhodes, G. T., J. E. Faulds, and W. Teplow (2010), Structural Controls of the San Emidio  
3794 Desert Geothermal Field, Northwestern Nevada, paper presented at Geothermal  
3795 Resource Council Transactions.

3796 Salvi, S., S. Stramondo, G. J. Funning, A. Ferretti, F. Sarti, and A. Mouratidis (2012), The  
3797 Sentinel-1 mission for the improvement of the scientific understanding and the  
3798 operational monitoring of the seismic cycle, *Remote Sensing of Environment*, 120, 164-  
3799 174. <http://dx.doi.org/10.1016/j.rse.2011.09.029>

3800 Sandwell, D., R. Mellors, X. Tong, M. Wei, and P. Wessel (2011), Open radar  
3801 interferometry software for mapping surface deformation, *Eos, Transactions American  
3802 Geophysical Union*, 92, 234-234. <http://topex.ucsd.edu/gmtsar>

3803 Sandwell, D., R. Mellors, X. Tong, X. Xu, M. Wei, and P. Wessel (2016), GMTSAR: An  
3804 InSAR Processing System Based on Generic Mapping Tools. , UC San Diego: Scripps  
3805 Institution of Oceanography. [http://topex.ucsd.edu/gmtsar/tar/GMTSAR\\_2ND\\_TEX.pdf](http://topex.ucsd.edu/gmtsar/tar/GMTSAR_2ND_TEX.pdf)

3806 Settgast, R. R., J. A. White, B. C. Corbett, A. Vargas, C. Sherman, P. Fu, and C.  
3807 Annavarapu (2018), GEOSX Simulation Framework: General multi-physics simulation  
3808 framework targeting exascale computing platforms, Medium: X; OS: Any pp.,  
3809 Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States).  
3810 <https://www.osti.gov/biblio/1422506>

3811 Sherman, C. S., Morris, J. P., Fu, P., & Settgast, R. R. (2019). Recovering the Microseismic  
3812 Response from a Geomechanical Simulation. *Geophysics*, 84(4), Article 4.

3813 Sherman, C. S., Templeton, D. C., Morris, J. P., & Matzel, E. (2016). Modeling Induced  
3814 Microseismicity in an Enhanced Geothermal System. In *Proceedings of the 50th US  
3815 Rock Mechanics/Geomechanics Symposium*. American Rock Mechanics Association.

3816 Siler, D. L., J. E. Faulds, B. Mayhew, and D. D. McNamara (2016), Analysis of the  
3817 favorability for geothermal fluid flow in 3D: astor Pass geothermal prospect, Great  
3818 Basin, northwestern Nevada, USA, *Geothermics*, 60.  
3819 <http://dx.doi.org/10.1016/j.geothermics.2015.11.002>

3820 Sone, H., Z. Jin, O. Mudatsir, I. Warren, M. Folsom, and K. L. Feigl (2023),  
3821 WHOLESCALE - Characterization of Conductive Fractured Zones Based on Borehole  
3822 Data at San Emidio Geothermal Field, Nevada, paper presented at Stanford Geothermal  
3823 Workshop. <https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Sone.pdf>

3824 Templeton, D. C., E. Matzel, and T. Cladouhos (2017), Evolution of microseismicity at the  
3825 Blue Mountain geothermal site, Lawrence Livermore National Lab.(LLNL), Livermore,  
3826 CA (United States). <https://www.osti.gov/servlets/purl/1399704>

3827 Teplow, W. J., and I. Warren (2015), Finding Large Aperture Fractures in Geothermal  
3828 Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey,  
3829 PSInSAR and Kinematic Structural Analysis, Medium: ED; Size: 52 p. pp, US  
3830 Geothermal, Inc., Boise, ID (United States). <https://doi.org/10.2172/1213113>

3831 Thurber, C. H., H. Guo, E. Cunningham, S. W. Roecker, J. Hampton, N. E. Lord, and K. L.  
3832 Feigl (2024 of Conference), Detailed Analysis of Microseismic Activity Associated  
3833 with Shutdowns of the San Emidio Geothermal Plant, Nevada, abstract presented at  
3834 Seismological Society of America, Anchorage, Alaska April 29 to May 3, 2024.  
3835 [https://meetings.seismosoc.org/wp-content/uploads/2024/02/SSA-Program-2024-Rev-I\\_Technical-Program.pdf](https://meetings.seismosoc.org/wp-content/uploads/2024/02/SSA-Program-2024-Rev-I_Technical-Program.pdf)

3836 Toshia, T., M. Sugihara, and Y. Nishi (1998), Revised hypocenter solutions for  
3837 microearthquakes in the Kakkonda geothermal field, Japan, *Geothermics*, 27, 553-571.  
3838 <https://www.sciencedirect.com/science/article/pii/S0375650598000339>

3839 UNR (2014), Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area  
3840 [data set]. <https://gdr.openei.org/submissions/371>

3841 Vavryčuk, V. (2014), Iterative joint inversion for stress and fault orientations from focal  
3842 mechanisms, *Geophysical Journal International*, 199, 69-77.

3843 Waldhauser, F., W. L. Ellsworth, and D. Oppenheimer (2004), Persistence of the Parkfield  
3844 seismicity patterns through the 2004 mainshock, paper presented at AGU Fall Meeting  
3845 Abstracts, December 1, 2004.

3846 Wang, H. F., H. Sone, M. Cardiff, H. Guo, C. Thurber, X. Luo, and K. L. Feigl (2024),  
3847 Poroelastic Stress Cycling and Microseismic Activity at the San Emidio Geothermal  
3848 Field, NV (USA), paper presented at 58th US Rock Mechanics/Geomechanics  
3849 Symposium, Golden, Colorado, USA., June 23, 2024.  
3850 <https://golden2024.armarocks.org/>

3852 Warren, I. (2010), Three-Component Long Offset Surface Seismic Survey Data Used to  
3853 Find Large Aperture Fractures in Geothermal Resources - San Emidio Geothermal  
3854 Resource Area, U.S. Geothermal Inc. <https://doi.org/10.15121/1422726>

3855 Warren, I., E. Gasperikova, and S. Pullammanappallil (2019a), Final Phase 1 Report DE-  
3856 EE0007698: A Novel Approach to Map Permeability Using Passive Seismic Emission  
3857 Tomography. <https://subterrseis.com/wp-content/uploads/2019/10/Doc1.pdf>

3858 Warren, I., E. Gasperikova, S. Pullammanappallil, S. Sennert, and M. Grealy (2018),  
3859 Mapping Geothermal Permeability Using Passive Seismic Emission Tomography  
3860 Constrained by Cooperative Inversion of Active Seismic and Electromagnetic Data,  
3861 paper presented at Proceedings, 43rd Workshop on Geothermal Reservoir Engineering  
3862 Stanford University, Stanford, California, 2018 SGP-TR-213, February 12-14, 2018.  
3863 <https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2018/Warren.pdf>

3864 Warren, I., E. Gasperikova, S. Pullammanappallil, S. Sennert, and M. Grealy (2019b), A  
3865 Novel Approach to Map Permeability Using Passive Seismic Emission Tomography,  
3866 paper presented at World Geothermal Conference.

3867 Warren, I., M. Folsom, J. Akerley, and K. Feigl (2016a), Passive Seismic Emission  
3868 Tomography Results at San Emidio Nevada, Ormat Technologies, Inc.  
3869 <https://doi.org/10.15121/1924268>

3870 Winn, C. L., P. Dobson, C. Ulrich, T. Kneafsey, T. S. Lowry, Z. Cesa, R. Zuza, J. Akerley,  
3871 B. Delwiche, and A. Samuel (2021), When Where and Why: The Geologic Context of  
3872 Lost Circulation While Drilling in a Crystalline Geothermal Reservoir, paper presented  
3873 at PROCEEDINGS, 46th Workshop on Geothermal Reservoir Engineering, Stanford  
3874 University, Stanford, California, February 15-17, 2021.  
3875 <https://www.osti.gov/servlets/purl/1847220>

3876 Xu, X., and D. T. Sandwell (2020), Toward Absolute Phase Change Recovery With InSAR:  
3877 Correcting for Earth Tides and Phase Unwrapping Ambiguities, IEEE Transactions on  
3878 Geoscience and Remote Sensing, 58, 726-733.  
3879 <https://ieeexplore.ieee.org/document/8850313/>

3880 Yarce, J., A. F. Sheehan, and S. Roecker (2023), Temporal Relationship of Slow Slip  
3881 Events and Microearthquake Seismicity: Insights From Earthquake Automatic  
3882 Detections in the Northern Hikurangi Margin, Aotearoa New Zealand, Geochemistry,  
3883 Geophysics, Geosystems, 24, e2022GC010537. <https://doi.org/10.1029/2022GC010537>

3884 Yunjun, Z., H. Fattahi, and F. Amelung (2019), Small baseline InSAR time series analysis:  
3885 Unwrapping error correction and noise reduction, Computers & Geosciences, 133.

3886 Zan, F. D., M. Zonno, and P. López-Dekker (2015), Phase Inconsistencies and Multiple  
3887 Scattering in SAR Interferometry, IEEE Transactions on Geoscience and Remote  
3888 Sensing, 53, 6608-6616.

3889       Zheng, Y., H. Fattah, P. Agram, M. Simons, and P. Rosen (2022), On Closure Phase and  
3890       Systematic Bias in Multilooked SAR Interferometry, IEEE Transactions on Geoscience  
3891       and Remote Sensing, 60, 1-11. <http://doi.org/10.1109/tgrs.2022.3167648>.

3892

3893

3894

**LAST PAGE**

3895      This page is intentionally blank. Thanks for reading this far!

3896