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Abstract

The National Energy Research Scientific Computing Center (NERSC), as the high-performance com-
puting (HPC) facility for the Department of Energy’s Office of Science, recognizes the essential role
of quantum computing in its future mission. In this report, we analyze the NERSC workload and
identify materials science, quantum chemistry, and high-energy physics as the science domains and
application areas that stand to benefit most from quantum computers. These domains jointly make
up over 50% of the current NERSC production workload, which is illustrative of the impact quantum
computing could have on NERSC’s mission going forward. We perform an extensive literature review
and determine the quantum resources required to solve classically intractable problems within these
science domains. This review also shows that the quantum resources required have consistently de-
creased over time due to algorithmic improvements and a deeper understanding of the problems. At
the same time, public technology roadmaps from a collection of ten quantum computing companies
predict a dramatic increase in capabilities over the next five to ten years. Our analysis reveals a signif-
icant overlap emerging in this time frame between the technological capabilities and the algorithmic
requirements in these three scientific domains. We anticipate that the execution time of large-scale
quantum workflows will become a major performance parameter and propose a simple metric, the Sus-
tained Quantum System Performance (SQSP), to compare system-level performance and throughput
for a heterogeneous workload.
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Executive Summary

The National Energy Research Scientific Computing Center (NERSC) is charged with accelerating
scientific discovery at the U.S. Department of Energy (DOE) Office of Science (SC) through High
Performance Computing (HPC) and data analysis. As the DOE SC mission HPC user facility, NERSC
pushes the envelope of HPC by strategically deploying new supercomputers on approximately a five
year life cycle.

Quantum computers may fundamentally alter the HPC landscape and profoundly ad-
vance the DOE SC mission by the end of the decade. Quantum Computing (QC) is expected to (i)
lead to exponential speedups for important scientific problems that classical HPC cannot solve, (ii)
do so in an energy-efficient manner that is decoupled from Moore’s law, and (iii) offer opportunities
and challenges to develop new paradigms for HPC-QC integration. The analysis in this report shows
that at least 50% of the DOE SC production workload, which aggregates the computa-
tional needs of more than 12,000 NERSC users across the DOE landscape, is allocated to
solving problems for which exponential improvements in terms of problem complexity,
time-to-solution, and/or solution accuracy are anticipated with the advent of QC.

We focus on three major scientific domains of strategic relevance to NERSC’s mission —
materials science, quantum chemistry, and high energy physics— and collect over 140 end-to-end
resource estimates for benchmark problems from the scientific literature. We draw three main con-
clusions from this analysis. First, Hamiltonian simulation of quantum mechanical systems, also
known as real-time evolution, is the key quantum algorithmic primitive upon which many known
applications and speedups rely. Second, the end-to-end resource estimates differ significantly
by scientific domain. Condensed matter physics offers a prime candidate for early quantum advan-
tage as model problems relevant to materials science are more easily mapped to quantum computers
and thus the least quantum resources are required at a given problem scale. Problems in quantum
chemistry, including electronic structure, require an intermediate number of resources as the encoding
overhead is larger. High energy physics problems, including lattice gauge theories, show the most dra-
matic scaling due to the encoding overhead encountered in including both fermionic and gauge degrees
of freedom. Third, we show that, while asymptotically optimal algorithms exist, constant factor algo-
rithmic improvements over the past five years have reduced the quantum resources needed
to compute the ground state energy of a strongly-correlated molecule by orders of magnitude. We
expect this trend to continue going forward and advance applications in all aforementioned domains.
We show that current estimates of quantum resources required for scientific quantum advantage start
at about 50 to a 100 qubits and a million quantum gate operations and go up from there.

In addition, we analyzed and combined public technology roadmaps from ten different quantum
vendors and observe that all vendors predict an exponential increase in quantum computer
performance over the next decade by up to nine orders of magnitude. When realized, this
will unlock unprecedented capabilities that will accelerate scientific discovery at DOE SC and enable
breakthroughs that were previously out of reach.

Figure 1 summarizes the vendor roadmap milestones by showing the highest performance QC sys-
tems expected at the end of 2025, in five years and ten years from today. The anticipated technological
progress shows excellent overlap with the application requirements for known scientific quantum ad-
vantage of interest to DOE SC mission (area shown in blue), with potential for early scientific quantum
utility within the next two years (area shown in white).

Finally, we discuss execution time estimates for quantum applications at scientific advantage scale
and describe eight timescales —from less than a second up to more than a year— and their relevance

2



Approximate classical
simulation

100 101 102 103 104 105

# qubits (nQ)

100

103

106

109

1012

1015

1018

#
ga

te
s

(n
G

)

E
x
ac

t
cl

as
si

ca
l

si
m

u
la

ti
on

Intractable quantum execution time

Scientific quantum advantage

Potential for early
scientific quantum utility∼ end of 2025

in ∼5 years
in ∼10 years

Based on roadmap data as of August 01, 2025

Classically
simulable

Figure 1: Schematic overview of quantum resources in terms of quantum gate count (y-axis) and qubit
count (x-axis). The figure shows 4 different regions of quantum circuit volume. (1) quantum circuits
in the light yellow region are considered classically simulable as they are either too narrow (i.e. at
low qubit count) and can be simulated exactly, or too shallow (i.e. low quantum gate depth) and can
be simulated with approximate methods such as tensor networks. (2) The region in blue starting at
50 qubits and 1 million quantum gates is the area where we expect scientific quantum advantage of
relevance to NERSC based on the resource estimate data we collected. (3) The intermediate region
shown in white might offer early quantum advantage but we have not identified resource estimates in
this area. (4) We label quantum gate depths larger than 1014 in red to indicate that we expect this
region to be unfeasible in the next ten years based on impractical quantum execution time estimates.
The lines demarcate the highest performance quantum computers expected by the end of 2025, in five
years from today, and in ten years from today.

to end users and system administrators. Quantum computer clock speed estimates presented in the
literature range from sub-kHz up to GHz speeds and will determine the execution time. Based on the
available data, we construct a simple model, called the SQSP, to estimate the throughput
for nine possible quantum computer specifications on a prototypical workload of eight applications.
Our model shows that the number of applications that can be run in a one year window can be as low
as one and go up to tens of millions, with most scenarios predicting a throughput of hundreds
to (tens of) thousands of applications per year. Our methodology can be helpful to inform
decision-making processes for QC system procurements.
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Chapter 1

Introduction

NERSC [177], located at Lawrence Berkeley National Laboratory, is the U.S. Department of Energy
(DOE) Office of Science (SC) mission High Performance Computing (HPC) facility. An ever-growing
community, currently made up of over 12,000 scientists across the DOE research complex, makes use of
leading-edge compute resources deployed at NERSC. NERSC has an outstanding track record of suc-
cessfully bringing advanced compute technologies to a large user community by supporting pathfinding
projects such as the NERSC Science Acceleration Program (NESAP) [178], and by providing compre-
hensive training and support.

To remain at the leading-edge of computing, NERSC has strategically deployed new supercom-
puters on approximately a five year life cycle. The current Perlmutter system [179], deployed in 2021,
is the ninth generation NERSC supercomputer and the first to combine a heterogeneous architecture
offering both CPU and GPU compute nodes. Perlmutter has advanced NERSC’s ability to support
numerical modeling, simulation, and data analysis. Furthermore, Perlmutter has unlocked new capa-
bilities for Artificial Intelligence (AI) for scientific applications, a trend that NERSC expects to expand
further with its tenth generation system. The NERSC-10 system, named Doudna [180] in honor of
Dr. Jennifer Doudna, was announced in May 2025 and is expected to become available to users in the
2026 time frame. Doudna will provide at least 10× the performance of Perlmutter, and fundamentally
expand the AI and workflow-based compute capabilities at NERSC. Doudna will offer real-time data
processing to experimental facilities that rely on NERSC for their compute needs, seamlessly linking
to DOE’s experimental and observational scientific user facilities as part of the Integrated Research
Infrastructure (IRI) [113].

To ensure that NERSC continues to fulfill its central role in the DOE SC mission as we move
toward the 2030s, it is essential that NERSC understands the applicability of quantum computing
to its mission. Concurrently, a 2023 DOE workshop report [153] identifies critical research priorities
for advancing quantum technology toward practical utility in scientific applications. Drawing from a
decade of DOE investments in Quantum Computing (QC) software and hardware, the report outlines
a grand challenge to “demonstrate a rigorously quantifiable, end-to-end quantum advantage relative
to state-of-the-art classical counterparts, particularly for problems with practical or scientific signif-
icance for which asymptotic exponential quantum advantages have been established,” along with five
priority research directions (respectively in software, algorithms, benchmarking, error handling, and
networks) that require collaborative efforts among computer scientists, mathematicians, and physi-
cists to achieve advances across the full technology stack. The workshop emphasized “the need for
end-to-end demonstrations of disruptive quantum advantages for scientific applications, positioning
QC as a transformative technology that will complement and potentially revolutionize HPC capabilities
for DOE’s scientific mission areas.”

Building on this research-focused report, DOE proposed a Quantum Information Science (QIS)
Applications Roadmap [20] in 2024 that outlines a strategic vision for QC development that posi-
tions DOE at the forefront of this transformative technology. The roadmap charts a clear progression
through four distinct eras over an estimated 20 year window: from current Noisy Intermediate Scale
Quantum (NISQ) devices and small demonstrations of Quantum Error Correction (QEC) (0-5 years),
to small quantum computers with QEC (5-10 years), large quantum computers with QEC (10-20
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years), and finally very large Fault-Tolerant Quantum Computing (FTQC) (20+ years). Key tech-
nology milestones include demonstrating 1,000 physical qubits with error rates ten times below code
threshold, scaling to 10,000 physical qubits while maintaining low error rates, and developing quan-
tum interconnects for modular architectures. The roadmap highlights promising application areas
including chemistry and materials science, where quantum simulations could eliminate uncontrolled
approximations that afflict classical methods and enable revolutionary scientific discoveries. The re-
port says that within the next five years, calculations on specific molecules or materials that are
on the boundary of classical tractability might cross that threshold, potentially augmented by HPC
resources. DOE’s national laboratories and user facilities are uniquely positioned to lead this effort
through interdisciplinary collaborative research, software stack development, and the establishment
of widely accessible quantum user facilities that will accelerate the development and deployment of
quantum computers for these breakthrough scientific applications.

Consequently, NERSC sees QC as a crucial and rapidly growing pillar of its ten year strategic
plan for 2024-2034 [176]. These reports, roadmaps and strategies are motivated by the observation
that quantum computers offer a fundamentally different paradigm of computing. By leveraging the
principles of quantum mechanics, they have the potential to solve certain problems asymptotically
faster than any computer based on the principles of classical physics is expected to. An important
caveat is that proving that a quantum algorithm is faster than any classical algorithm is an extremely
challenging task. Instead, researchers typically compare quantum algorithms against the best classical
methods currently known – arguably, the strongest evidence of a exponential speedup using this
approach exists for Shor’s prime factoring algorithm [223, 225]. One significant drawback of this
approach is that if a superior classical algorithm is discovered later, claimed quantum advantages may
disappear. Key areas (besides Shor’s algorithm) for which exponential asymptotic quantum speedups
are expected to be exponential include simulation of quantum system dynamics [6, 62, 250, 257],
computing static properties of quantum systems [124], and solving linear systems of equations [104].
Other areas, such as search and optimization could see low-degree polynomial speedups on quantum
computers in certain regimes [100]. We refer to [68, 118] for an overview of known quantum algorithms
and applications.

In the context of these trends, this report examines how QC is expected to impact NERSC’s
mission and workload over the next ten years. We synthesize findings from academic literature with
the forward-looking projections of QC companies. We observe that the projections and roadmaps that
have been proposed by industry follow an accelerated trajectory compared to DOE’s roadmap [20] and
predict very large-scale systems to become available within ten years. We remark that our endeavor
necessitates various assumptions and approximations, which, compounded by the inherent uncertainty
of technological forecasting, leads to a significant degree of uncertainty in our estimates. As this field
is characterized by rapid evolution, we will continue to monitor its development, refine our analysis
and adjust our strategy accordingly. Therefore, we intend this to be a living document, and plan to
release updated versions when appropriate.

The remainder of this report is structured as follows. We begin by reviewing the workload that
NERSC users are running on the current Perlmutter system in Chapter 2 and identify the three main
scientific domains of interest for which quantum computers will deliver speedups. Chapter 3 provides
a primer on key QC concepts that are mentioned throughout the report. Chapter 4 collects and
reviews the resources required to solve more than 100 target problems across the scientific domains
of interest to NERSC that were identified in Chapter 2. We base our analysis on estimates available
in the scientific literature that go beyond the asymptotic speedups and account for the end-to-end
resource requirements. We distill these results into a single figure of merit which captures the space-
time cost of a quantum application. Next, in Chapter 5, we analyze various quantum technology
roadmaps that different vendors have put forward for the next decade. We uniformize the different
vendor milestones with respect to the previously introduced figure of merit. This allows us to bound
and compare the capabilities of forthcoming quantum computers. We also compare these bounds to
the resources required to solve applications in the various scientific domains and observe a significant
overlap emerging in the next five to ten years. We comment on the execution time as a key constraint
for large-scale quantum applications in Chapter 6 and present a simple model, called the Sustained
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Quantum System Performance (SQSP) metric, that allows us to compare system-level performance
and throughput for a heterogeneous workload. Chapter 7 concludes the report by summarizing the
main findings. A List of Acronyms and Glossary of Terms is included after the conclusion.
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Chapter 2

NERSC Workload

The workload at NERSC is inherently varied and complex with a large community of users coming
from six different program offices in the U.S. Department of Energy (DOE) Office of Science (SC),
including Advanced Scientific Computing Research (ASCR), Basic Energy Sciences (BES), Biological
and Environmental Research (BER), Fusion Energy Science (FES), High Energy Physics (HEP), and
Nuclear Physics (NP).

NERSC users develop and run a breadth of scientific computing codes at a large range of scales
and GPU-readiness levels. This means that NERSC compute resources must be versatile as well as
highly performant. The Perlmutter system provided a CPU as well as a GPU partition in an era when
multiple relevant scientific codes were still in the process of being ported to GPUs. At the same time,
NERSC provided extensive support to enable many more codes to benefit from GPU acceleration.

Figure 2.1 summarizes the resource allocation for various workloads on NERSC systems. Thanks
to NERSC’s ongoing efforts, for example through the aforementioned NERSC Science Acceleration
Program (NESAP) program, most of Perlmutter compute performance is stemming from the GPU
partition.

Density Functional Theory
30.9%

Lattice QCD

18.6%

Climate

12.8%

Fusion - PIC
9.1%

Scalable Solvers8.6%

N-Body (MD)
8.1%

Fusion - Multiphysics

4.8%

Quantum Chemistry

2.6%

Figure 2.1: Distribution of the compute cycles used at NERSC across different categories of algorithms
and application areas.

Density Functional Theory (DFT) stands as a cornerstone of computational materials science
and quantum chemistry and takes more than 30% of the yearly cycles at NERSC. It is a computa-
tional method to approximate the electronic structure of complex atomic and molecular systems, and
achieves this at reasonable computational cost [128, 191]. Its strengths lie in its efficiency, allowing
for the study of large systems, and its ability to provide valuable insights into ground-state proper-
ties. However, the accuracy of DFT is often limited by the choice of exchange-correlation functional,
which can fail to capture essential electron correlation effects required for describing van der Waals
interactions [127], electronic band gaps [169], and charge-transfer excitations [78]. These limitations
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can be partially addressed by using more sophisticated exchange-correlation functionals [193] which
incorporate exact exchange or perturbative correlation to improve accuracy, though at a significantly
higher computational cost. However, even with these enhancements, DFT remains insufficient for
solving the most challenging problems in quantum chemistry, such as strongly correlated systems or
multi-reference electronic states, where more advanced wavefunction-based methods are typically re-
quired [64]. Quantum chemistry codes that go beyond DFT make up another 2.6% of the cycles. This
is where quantum computers hold significant promise. By leveraging quantum mechanics, these ma-
chines could potentially tackle the exponentially complex many-body problem inherent in electronic
structure calculations, offering the prospect of more accurate exchange-correlation functionals and
enabling the simulation of strongly correlated materials at the precision of full configuration interac-
tion (CI), thus overcoming key weaknesses of traditional DFT while scaling exponentially better than
classical approaches.

Nuclear and high energy physics make up over 18% of the workload. Most of their computa-
tional time is dedicated to Lattice Quantum Chromodynamics (LQCD) runs. This is a computational
method for studying the strong force and its associated particles, hadrons, from first principles. Its
strength lies in its ability to non-perturbatively calculate properties of hadrons, such as their masses
and decay constants, by discretizing spacetime onto a lattice. However, LQCD is both computation-
ally demanding and constrained to imaginary time, requiring vast resources to simulate realistic quark
masses and large volumes, thereby limiting the precision and scope of calculations. The demands are
particularly severe for computing complex observables like scattering amplitudes and real-time dynam-
ics, since the computation is performed on Euclidean space, and thus cannot access these quantities
directly. Additionally, the sign problem poses a significant barrier to the applicability of LQCD to
dense systems at finite chemical potential [98, 174]. Quantum computers promise to revolutionize this
field by efficiently tackling these computational challenges. Their inherent ability to simulate quantum
systems could overcome the sign problem and enable simulations at physical quark masses and large
volumes, ultimately leading to more accurate and comprehensive understanding of strongly-interacting
matter.

In addition, there are smaller pieces of the workload, like N-body molecular dynamics and
fusion using Particle-In-Cell (PIC) methods, that also stand to benefit from quantum computers.
As such, more than half of the computational resources on Perlmutter are dedicated to solving quantum
many-body problems, highlighting the enormous potential impact and benefit quantum computers can
have on NERSC’s mission. Collectively, we refer to all DOE SC mission applications that stand to
benefit from large-scale Quantum Computing (QC) as the Quantum Relevant Workload (QRW).

We summarize this section with the following finding:

Finding 1. At least 50% of NERSC compute resources are spent on solving quantum mechanical
problems relevant to materials science, quantum chemistry, and nuclear and high energy physics,
primarily using DFT and LQCD codes. Quantum computers naturally have the potential to
accelerate scientific discovery in these areas as they do not have to rely on the same approximations
as classical algorithms to solve computational problems. We refer to these applications as the QRW.
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Chapter 3

A Primer on Quantum Computing

Quantum Computing (QC), like many scientific fields, uses its own jargon. While this enables efficient
exchange of ideas among experts, it raises the bar for non-experts to understand those same ideas. In
an effort to make this report broadly accessible, we provide a primer on the key QC concepts we refer
to in the remainder of this text. Our goal is to offer a broad, high-level perspective, not a precise or
comprehensive account. For detailed overviews, we refer the interested reader to [182, 248]. Readers
already familiar with QC may consider skipping this chapter and move directly on to Chapter 4.

3.1 On qubits, gates, and circuits

QC represents a profound shift in how information can be processed, harnessing the principles of
quantum mechanics to tackle problems beyond the reach of classical machines. At its foundation is
the qubit, the quantum analogue of the classical bit. While a classical bit exists strictly as 0 or 1, a
qubit can occupy a superposition of both states, α |0⟩+β |1⟩. When qubits become entangled, the state
of one is intrinsically correlated with the state of another, no matter the distance between them—a
property that underpins much of the power of QC.

Computation in a quantum system is achieved through quantum gates, which are reversible opera-
tions that transform qubit states. These gates are assembled into quantum circuits, sequences of gate
operations that together implement a computation. The performance and complexity of such circuits
are often described in terms of quantum circuit volume, a metric that accounts for both the number of
qubits nQ and the number of gates nG of the computation. A common characteristic of all quantum
circuits is that at the end of the quantum computation (i.e. after running a quantum circuit), some
or all of the qubits are measured and classical information is extracted in the form of a bitstring that
corresponds to the states in which the qubits were measured. This procedure is often referred to as
taking a shot of a quantum circuit. Figure 3.1 summarizes the notions of (qu)bits, quantum gates and
quantum circuits (incl. quantum measurements) using a common circuit diagram notation [182].

In practical hardware, qubits are physical devices prone to errors. Current quantum computers
have up to a few hundred physical qubits and offer imperfect control over those qubits. Consequently,
various sources of noise, including due to State Preparation and Measurement (SPAM), imperfect gate
operations and decoherence, limit the performance of quantum computers. This class of quantum
systems has previously been dubbed Noisy Intermediate Scale Quantum (NISQ) devices [199]. When
using a NISQ device, one typically maps the qubits and quantum gates directly onto error-prone
physical qubits. In the NISQ paradigm, gates that entangle two qubits, such as the CNOT gate
(see Fig. 3.1), typically incur the largest error and consequently are a dominant factor determinig
quantum circuit performance. The capabilities of NISQ hardware and applications can be extended
by leveraging Quantum Error Mitigation (QEM) techniques [47] (more details in Section 3.2) which
typically requires taking additional samples on the quantum computer (which is also known as the
sampling overhead for QEM) to improve the quality of the result. However, there are fundamental
limits on the level of improvement that is achievable and the sampling overhead typically scales
exponentially [234].

For large-scale, reliable computation, sufficiently good physical qubits can be grouped into logical
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(d) Quantum Circuit
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H
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Figure 3.1: (a) A bit can be either 0 or 1; while (b) a qubit can be in a linear combination (or
superposition) of |0⟩ and |1⟩ and its state space can be visualized by a Bloch sphere; (c) quantum
gates modify the state of one or more qubits, the top panel shows a single-qubit Hadamard gate
applied to a qubit in the |0⟩ state and transforms it to |+⟩, the bottom panel shows a two-qubit
Controlled-NOT (CNOT) gate that leaves the control qubit unchanged and applies a NOT to the
target qubit conditioned on the state of the control; and finally (d) quantum circuits are combinations
of quantum gates and measurement operations, the figure shows a two-qubit circuit that consists of a
Hadamard gate and CNOT gate and prepares a state known as a Bell state.

qubits – error-protected units formed by encoding information across many physical qubits. This
process is central to Fault-Tolerant Quantum Computing (FTQC) in which computations can pro-
ceed reliably despite the presence of noise due to an approach known as Quantum Error Correction
(QEC) [143, 240]. Fault tolerance can be implemented more easily for some gates than for others.
Clifford gates –including the Hadamard, Phase, and aforementioned CNOT gates– form a set that is
relatively straightforward to realize. Non-Clifford gates, such as the T gate or the three-qubit Toffoli
gate (a quantum analog of the classical AND gate), extend the Clifford set to achieve universal quan-
tum computation but are significantly more resource-intensive in an FTQC setting. Implementing
non-Clifford gates typically relies on the preparation of high-fidelity resource states1 also known as
magic states. Examples include |T ⟩- and |CCZ⟩-states which respectively can be used to implement
T and Toffoli gates in a fault-tolerant manner using a Clifford circuit [263]. High-fidelity magic states
are costly to prepare, requiring a procedure known as magic state distillation and generated by magic
state factories. Recent progress has significantly reduced the cost of producing magic states over a
substantial range of errors (see: magic state cultivation [89]), nonetheless it remains a major cost for
fault-tolerant quantum computation.

Analyzing (and optimizing) the end-to-end cost of running a computation on a FTQC system forms
the topic of the field known as quantum resource estimation. In light of our previous discussion, the
number of non-Clifford gates (e.g. T , Toffoli or continuous-angle rotation gates) is typically the most
important metric considered in quantum resource estimation. In Chapter 4, we collect and present
numerous resource estimates for quantum computations within the physical sciences.

3.2 Handling errors: quantum error mitigation and correction

QEM and QEC share the goal of increasing the robustness of a quantum computer to errors but
go about reaching this goal in different ways. QEM accepts the inevitability of noise and errors, and
compensates for these errors by applying a probabilistic correction to the distribution of measurements.
This comes at a cost of increasing the sampling overhead (i.e. multiplying the number of shots needed
to reach a prescribed error target). QEC, on the other hand, protects the quantum information against
the introduction of noise by detecting and correcting for errors within individual shots. This comes
at a cost of increasing the encoding overhead (i.e. multiplying the number of physical qubits used
to redundantly store the state of a single logical qubit). The distinction between QEM and QEC is
depicted graphically in Fig. 3.2

For the remainder of this section, we will introduce the principles guiding QEM and QEC protocols
by focusing respectively on Probabilistic Error Cancellation (PEC) and the surface code as prototypical

1These are called resource states as they are consumed during the computation.
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(a) Quantum Error Mitigation
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(b) Quantum Error Correction
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Figure 3.2: (a) Quantum Error Mitigation aims to improve the result be repeating and combining
multiple noisy measurement results into an improved measurement result with lower error. (b) Quan-
tum Error Correction encodes quantum information over multiple physical qubits. When an error
event occurs, as indicated by the data qubit in red, it is detected through measurement using (blue)
ancilla qubits (red plaquettes) and corrective action can be taken. The entire diagram represents a
single logical qubit encoded in a d = 5 surface code.

examples of each. For our discussion, we assume that (1) quantum gate errors are the dominant sources
of errors in the system, thus ignoring SPAM errors, and, (2) errors occur independently and as discrete
events. If we consider ϵ as the probability an error occurs each time a quantum gate is applied, then
the overall fault rate λ of a quantum circuit becomes,

λ = nGϵ, (3.1)

and therefore the quantum circuit fault rate becomes of order unity when nG ≈ ϵ−1 [47].
QEM is most often considered in the context of producing accurate expectation values ⟨O⟩ of an

observable O on a NISQ device. PEC [81, 236] is a widely adopted QEM method and here we consider
it as the prototypical QEM procedure. PEC can provide bias-free estimates of expectation values by
(1) characterizing a noise channel, Λi, associated with a quantum gate operation, (2) expanding it in
an over-complete basis of (noisy) gates that can be executed on the quantum system, and (3) quasi-
probabilistically implementing the inverse channel Λ−1

i before each quantum gate operation to cancel
out the noise. The trade off in reducing or eliminating the bias in the estimator for the observable,
ÔPEC, is that the variance of the estimator is increased compared to the noisy estimator Ônoise obtained
from computing the sample mean of the noisy quantum circuit runs. The ratio is called the sampling
overhead and it has been shown that for PEC it scales approximately as [31, 47]

CPEC ≈ e4λ = e4nG,PECϵ, (3.2)

from which it follows that the error of the PEC estimator ÔPEC compared to the exact observable
⟨O⟩ can be made arbitrarily small at a sampling overhead that scales exponentially in both the
number of quantum gate operations in the quantum circuit and the error rate per quantum gate.
Rewriting Equation (3.2) as

nG,PEC ≈ lnCPEC

4ϵ
=

lnCPEC

4
nG,noise, (3.3)

we see that the number of gates that can be run using PEC remains inversely proportional to the error
rate but PEC can improve the pre-factor, lnCPEC/4, at an exponential cost in the sampling overhead.

QEC is the hallmark of FTQC. The prevailing QEC scheme combines multiple physical qubits to
redundantly encode information in a single logical qubit. Within a logical qubit, some of the physical
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qubits are designated as ‘data’ qubits to be used to reliably store quantum information. Others are
designated as ‘ancilla’ qubits to be used for detecting error events that would distort the quantum
information. This is loosely analogous to the use of parity bits for error correcting codes (ECC) in
classical memory systems. Measurements of the ancillary qubits can be used to detect errors without
collapsing the logical wave function.

Robust and efficient encoding of information in logical qubits is essential for QEC. A [[n, k, d]]-code
encodes k logical qubits in the state of n physical qubits in such a manner that any error event that
maps a valid encoded state to another valid encoded state must act on at least d physical qubits. The
value d is known as the code distance and quantifies the robustness of the code against errors; it is
analogous to the number of bit errors that can be detected by a Hamming codes in classical ECC.
Typically, reaching larger code distances, and thus an increased resilience against errors, requires using
more physical qubits per logical qubit.

QEC cannot be effective unless the physical error rate is below the code threshold. For physical
error rates below the code threshold, logical errors can be (exponentially) suppressed by increasing
the code distance. For physical error rates above code threshold, increasing the code distance will
instead worsen the logical errors due to the increased number of error-prone operations involved.

FTQC using a QEC code typically progresses in code cycles which involve measuring a subset of
the physical qubits that make up the logical qubit(s) in order to extract the error syndrome which
can then be used to correct any logical errors and implement quantum gate operations on the logical
qubits.

The surface code [39, 72, 125] is a prototypical topological error correcting code that encodes a
logical qubit in a planar, square lattice of physical qubits that only require nearest-neighbor connec-
tivity. For a single logical qubit with code distance d, the encoding requires 2d2 − 1 physical qubits
per logical qubit, consisting of d2 data qubits and d2 − 1 ancilla qubits for error syndrome extraction
via parity check measurements. In summary, the surface code is a [[n = 2d2 − 1, k = 1, d]]-code. A
d = 5 surface code logical qubit is sketched in Fig. 3.2(b). A commonly used rule-of-thumb relating
the logical error rate ϵL to the physical device error rate ϵP for a code distance d surface code is [85]

ϵL = 0.1(100ϵP )
(d+1)/2, (3.4)

assuming the physical error rate is below the code threshold. Small examples of the surface code
have already been demonstrated experimentally by several groups [3, 132, 161, 235, 261]. The surface
code offers many advantages: it is well understood, allows for a planar topology, has a high code
threshold, and has been used to propose universal quantum computer architectures [145]. However,
it also is notoriously resource-intensive since the number of qubits scales quadratically as a function
of code distance. Naturally, more efficient encodings have been proposed in the literature. Prominent
examples include Quantum Low Density Parity Check (qLDPC) codes [42, 97, 108, 109, 138, 139, 189,
190, 241, 242]; for example, qLDPC codes based on expander graphs can in principle achieve scaling
[[n, k = Θ(n), d = Θ(n)]], which is quadratically more efficient than the surface code.

QEC can in principle be combined with QEM approaches. Indeed, it has recently been shown that
PEC can be beneficial in combination with QEC [233], and has the potential to allow for a reduction
of the code distance by five while maintaining similar error rates at the cost of a sample overhead
factor C ≤ 100 and more intensive post-processing.

3.3 Overview of quantum algorithms

On top of these hardware and architectural foundations sit the algorithms that define QC’s poten-
tial [118]. One of the most important classes of quantum algorithmic kernels for the physical sciences
is Hamiltonian simulation [83, 151], in which a quantum computer models the evolution of a quantum
system for which the total energy is described by a Hamiltonian operator. This capability is invaluable
for chemistry, materials science, and fundamental physics, where classical simulation quickly becomes
intractable. Early approaches use product formulas also known as Trotter-Suzuki decomposition [232],
which break the time evolution into a sequence of simpler steps to approximate the real-time evolution
as illustrated in Fig. 3.3(a). More recent methods, such as qubitization [155], encode the Hamiltonian
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operator into a structured form, and achieve optimal computational complexity: (1) the number of
queries to the Hamiltonian data (oracle) scales linearly in the simulation time and as log(1/ϵ) in the
spectral error; (2) the number of qubits scales as log(N)+m with N the dimension of the Hamiltonian
andm some comparatively small number of extra ancilla qubits. This is an exponential reduction in re-
sources compared to a brute-force classical implementation. Quantum Signal Processing (QSP) [154]
builds on this by enabling polynomial transformations of quantum operators through carefully or-
chestrated rotations, and the Quantum Singular Value Transformation (QSVT) [91] generalizes the
technique to manipulate arbitrary operators directly—unlocking efficient algorithms for solving linear
systems, performing principal component analysis, and other tasks relevant to scientific computing.
Collectively, these constitute a unified framework for quantum algorithm development and discovery
that is applicable to many known quantum algorithms exhibiting computational speedup [162]. Ad-
ditionally, Quantum Phase Estimation (QPE) [124] and its modern variants [74, 76, 77, 107, 144,
181, 246, 260], shown in Fig. 3.3(b), use Hamiltonian simulation to compute ground state energies
of quantum systems, a key primitive underpinning much of the expected QC speedups in quantum
chemistry and condensed matter physics (see Chapter 4).

(a) Hamiltonian Simulation via Trotterization

e−iHt =

(b) QPE via Qubitization

· · ·
...

· · ·

· · ·

|0⟩

χm QFT†|0⟩

|0⟩

W R W R R W2m−1 R

Figure 3.3: (a) When implementing Hamiltonian simulation via Trotterization, the time evolution
operator e−iHt (orange) is approximated as a product of simpler time evolutions resulting in structured
circuits with single-qubit gates (yellow) and two-qubit gates (blue) (b) Implementing Quantum Phase
Estimation to compute the ground state of a Hamiltonian H using qubitization begins with a state
preparation phase χm, followed by a sequence of (controlled) walk operators W, which encode the
spectrum of H via qubitization, and reflection oracles R, and ends with an inverse Quantum Fourier
Transform. Figure adapted from [18].

While these advanced algorithms promise significant long-term benefits, today’s quantum hardware
is still in the noisy intermediate-scale quantum (NISQ) era, where qubit counts are limited and error
rates are high. To make progress in the near term, researchers have developed variational algorithms,
which blend quantum and classical computation. In these hybrid approaches, a quantum processor
prepares a parameterized quantum state, and a classical optimizer iteratively updates the parameters
to minimize a cost function. Examples include the Variational Quantum Eigensolver (VQE) [195], used
to estimate molecular ground-state energies, and the Quantum Approximate Optimization Algorithm
(QAOA), designed for combinatorial optimization. These methods are more tolerant of noise and
shorter circuit depths, making them practical stepping stones toward the large-scale, fault-tolerant
algorithms that will eventually unlock QC’s full potential.
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Chapter 4

Resource Estimates for the Quantum
Relevant Workload

In this section, we collect and compare resource estimates from the literature for more than 140
target applications across the three scientific domains identified in the previous section that make up
the Quantum Relevant Workload (QRW). We discuss condensed matter physics and materials science
in Section 4.1, quantum chemistry in Section 4.2, and nuclear and high energy physics in Section 4.3.
Section 4.5 provides an overview of the three domains and Section 4.4 discusses the state of affairs for
certain other quantum algorithms and application areas of interest to the U.S. Department of Energy
(DOE) Office of Science (SC) mission, including linear algebra, optimization, simulating differential
equations, and quantum machine learning. For these other areas, we do not include resource estimates.

For each resource estimate, we report a commonly used space-time figure of merit [200] for the
quantum circuit consisting of the number of qubits (nQ), i.e., the space complexity, and the number of
quantum gates (nG), i.e., the time complexity. We name this quantity the P-vector (for performance)
and define it as follows,

P = (nQ, nG). (4.1)

We will often visualize the P-vector as an xy-coordinate on a 2D plot. The P-vector corresponds to
an estimate of the volume of the quantum circuit required to solve the application. Multiple factors
can influence the P-vector required to solve an application. These factors include, but are not limited
to:

1. Space versus time trade-offs. Most quantum algorithms and applications allow a trade-off be-
tween a reduction in the number of qubits for an increase in the number of quantum gates (or
vice versa). A well-known example is Hamiltonian simulation, a key quantum-algorithmic kernel
used in the majority of applications we discuss. Implementing a Hamiltonian simulation using a
Trotter decomposition typically requires significantly fewer qubits and significantly more quan-
tum gates compared to a method that combines qubitization with Quantum Signal Processing
(QSP) at a similar error level.

2. Dominant quantum gate complexity. Most resource estimates only report the leading-order of
gates that require the most resources to execute, such as T gates, Toffoli gates, or continuous-
angle rotation gates, and thus are the dominant factor determining the execution time. This
assumes a cost model that is typical for the (early) Fault-Tolerant Quantum Computing (FTQC)
rather than Noisy Intermediate Scale Quantum (NISQ) era. However, the type of quantum gate
that is most expensive might change in the future and depend on the system architecture. For
example, recent work on magic state cultivation [89] has significantly reduced the complexity
to implement a T gate [146]; over a certain parameter range, the cost of T gates is now much
closer to that of a Clifford gate like a CNOT. More breakthroughs in this area can further alter
this picture and in practice the dominant quantum gate cost might differ based on the quantum
computer hardware architecture. For our analysis, we express all resource estimates in terms
of T gates, which are the dominant resource constraint for many algorithms. In some cases,
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previously published resource estimates have been reported in terms of different gate sets. In
those instances, we convert the estimates into an equivalent T gate cost using the following
conversion rates:

• 1 Toffoli gate = 4 T gates [117],

• 1 rotation gate = 100 T gates [220].

3. Topology or connectivity. The two- and multi-qubit gates present in a quantum circuit determine
the connectivity and topology requirements on the quantum computer architecture to run the
quantum circuit without needing additional transpilation and the introduction of SWAP opera-
tions. The worst-case transpilation overhead on the number of gates to map a quantum circuit
requiring all-to-all connectivity to 2D nearest-neighbor connectivity scales as O(

√
nQ)

1. For the
remainder of this report, we do not consider the effect of topology on the P-vectors reported in
the literature.

4. Circuit versus active volume. The quantum circuit volume (and hence the P-vector) might differ
based on the quantum computer architecture. For example, active volume architectures have
been proposed for quantum computers based on photonics [147]. In this setting, qubits that are
idle at certain points in the quantum circuit do not count towards the overall quantum circuit
volume. It has been estimated that an active volume architecture can reduce the number of
gates to run Shor’s prime factoring algorithm by an order of magnitude [147] and it can also
reduce the resources required for quantum chemistry applications [46]. Other such architectural
designs that improve the P-vector might be developed in the future.

5. Critical depth and gate parallelization. It is (often implicitly) assumed throughout this report
that the number of gates reported represents the critical depth of the quantum circuit. Due to
the anticipated serial or small-batch generation of the resource states necessary for implementing
non-Clifford gates (i.e. T gates), early scalable FTQC are not expected to support significant
parallelization for non-Clifford gates. Specifically, in our discussion on execution time estimates,
we do not consider the possible impact of gate parallelization.

We conclude, based on the considerations discussed above, that the P-vector estimates should be
considered as an upper bound. Furthermore, P-vectors are also expected to reduce further by future
algorithmic advances and improved implementations. We will motivate this expectation by presenting
a case study from quantum chemistry in Section 4.2.

4.1 Condensed matter physics and materials science

Condensed matter physics and materials science pose some of the most promising problems for quan-
tum simulation. Strongly correlated electrons, emergent phases of matter, and exotic excitations
underlie phenomena such as high-temperature superconductivity, magnetism, and topological order,
areas where classical computational methods often reach their limits due to exponential scaling [10, 88,
129]. Accurate quantum simulations of these systems would not only provide insight into fundamental
physics [15, 249], but also accelerate the discovery of practical materials for energy storage [13, 208],
catalysis [52, 94], and quantum technologies [27, 164]. As a result, condensed matter and materials
science are widely viewed as domains where quantum computers could deliver some of the earliest
impacts [12, 35].

We collected resource estimates for a total of 80 applications in condensed matter physics and
materials science that span a spectrum of model complexity and are considered out of reach for classical
solvers. These include simpler spin models, such as the Kitaev and Heisenberg models that can help
scientists study new and interesting physical phenomena and prepare exotic phases of matter (e.g. spin
glasses and quantum chaos) [17, 24, 61, 84, 255]; more complicated lattice models such as the Fermi-
Hubbard (FH) model [18, 29, 48, 84, 255] that can serve as a proxy to study superconducting materials;

1Mapping to a linear topology would scale as O(nQ) but almost all fault-tolerant architectures require at least a 2D
square grid connectivity.
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and realistic models of materials that take into account the relevant electronic structure [126]. As an
example of the latter category, Refs. [71, 222] propose Quantum Phase Estimation (QPE)+qubitization
using first-quantized plane-wave basis to simulate materials for lithium-ion batteries such as Li2FeSiO4.
Subsequent work [33] shows that first quantization outperforms second quantization for materials
simulations of a Lithium-Nickel-Oxide (LNO) material. The P-vectors of the resource estimates we
collected are shown in Figure 4.1. The estimates at lower quantum gate count correspond to the
simulations of spin and FH models, while the estimates for materials simulations in first quantization
show comparatively larger P-vectors.
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Figure 4.1: Overview of various resource estimates for computational problems related to materials
science in terms of number of logical qubits (nQ) and number of gates (nG). Different marker types
indicate the different quantum algorithms being used.

We observe that resource estimates start at about 106 gates and 102 qubits and go up from there
in both quantum gate depth and qubit count. We do expect condensed matter physics and materials
science to be among the first scientific fields to benefit from quantum computers since many of these
problems are formulated in terms of spins, which map naturally to qubits, or can be encoded in qubits
with minimal resource overhead. This is the primary reason we consider them to be the earliest
candidates for scientific quantum advantage among the DOE QRW.

4.2 Quantum chemistry

The field of quantum chemistry addresses a number of important scientific and technological challenges,
from designing efficient catalysts for sustainable fuels and industrial processes to developing advanced
materials for batteries, photovoltaics, and quantum information technologies [27, 52, 208]. Quantum
chemistry stands out as a leading target for Quantum Computing (QC), as QC has the potential to
revolutionize our ability to simulate molecular behavior. Within quantum chemistry, a key distinction
often lies between static and dynamic problems. Static problems focus on characterizing a molecule in
equilibrium, providing a snapshot of its properties, for example determining the ground-state energy,
electronic structure, and other time-independent properties. In contrast, dynamic problems explore
how molecules evolve over time, such as chemical reactions, photoexcitation, charge and energy trans-
fer, and vibrational dynamics. QC holds the potential to provide accurate solutions to both static
and dynamic quantum chemistry problems, however our survey of the literature revealed that static
chemistry problems, and in particular Ground State Energy Estimation (GSEE), have been studied
in much greater detail than dynamic ones.

The field of quantum resource estimation for GSEE problems in quantum chemistry has matured
over the past five years compared to other application areas. This is reflected by the observation
that a few standardized benchmark problems have been established in the literature. This includes
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the FeMoco complex [209] and the Cytochrome P450 system [93]. These target problems have been
re-analyzed as new algorithms for GSEE have been proposed and as such form an excellent yardstick
to track progress in quantum algorithms for quantum chemistry. The reduction in resources required
for GSEE of the FeMoco complex is visualized in Figure 4.2 for both the original, smaller (54e, 54o)
active space system, using the def2-TZVP basis [209], and the larger (113e, 76o) active space sys-
tem, using the TZP-DKH basis for Fe, S, and Mo and the def2-SVP bais for the other atoms [142].
The dimension of the FCI space for the larger system is on the order of 1035 for the spin S = 3/2
ground state. The quantum resources required for running QPE on the smaller system, shown in Fig-
ure 4.2a, were originally estimated using a Trotterization method for the time evolution [209]. These
estimates correspond to the data points labeled ‘2017’ and require fewer qubits than more recent
estimates at the cost of an order of magnitude more gates. Recent approaches all use a qubitization of
the electronic structure Hamiltonian, and distinguish themselves primarily by how they factorize and
compress the two-electron integral tensor. The main approaches studied include the single factoriza-
tion method [34], the double factorization method [43], and Tensor Hypercontraction (THC) [46, 137,
212]. In addition to these factorization strategies, spectrum amplification techniques have recently
been developed to further reduce resource costs, most notably the sum-of-squares spectral amplifi-
cation (SOSSA) framework [123, 156], which builds on spectrum amplification ideas to accelerate
simulations for Hamiltonians with efficiently computable sum-of-squares representations. We observe
from Figure 4.2 that these algorithmic improvements have significantly reduced the computational
resources required to solve the GSEE problem leading to roughly a 1000× reduction in the number of
gates and a 5× reduction in qubit count. Similar observations hold for other standardized benchmark
problems such as the Cytochrome P450 system.
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Figure 4.2: Overview of resource estimates for ground state energy estimation of two versions of the
FeMoco system: (left) a (54e, 54o) active space [209] model, and (right) a (113e, 76o) active space [142]
model.

While GSEE has received the bulk of attention, there is growing interest in developing quantum
algorithms for dynamics problems, which aim to capture the time-dependent behavior of molecular
systems. Classical approaches to these problems, such as Born-Oppenheimer molecular dynamics,
Ehrenfest dynamics, and ab initio molecular dynamics based on time-dependent Density Functional
Theory (DFT), are computationally intensive and often struggle with nonadiabatic effects or strongly
correlated electrons [163, 244]. Quantum computers offer the potential to simulate such processes na-
tively by evolving quantum states under a time-dependent or time-independent molecular Hamiltonian
and by directly computing forces, energy gradients, and other observables needed for nuclear propa-
gation in molecular dynamics simulations. For example, algorithms have been developed to compute
molecular energy derivatives, including forces, more efficiently on quantum devices, achieving lower
circuit repetition costs and even Heisenberg-limited scaling in the fault-tolerant limit [184]. Variational
quantum algorithms have also been suggested for calculating forces within ab initio molecular dynam-
ics frameworks [228]. Algorithmic strategies for real-time evolution include Trotterized and qubitized
time evolution [155], variational quantum dynamics using a time-dependent Variational Quantum
Eigensolver (VQE) [256], and approaches based on linear combination of unitaries [60] and QSP [154].
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Ref. [186] reviews quantum algorithms for simulating molecular quantum dynamics, highlighting both
representations using first quantization and second quantization, and comparing variational and Trot-
ter-based real-time evolution methods as promising routes for capturing electron-nuclear dynamics. A
number of papers [56, 213] have estimated the resource requirements for quantum chemistry dynamics
problems and found a need for significantly higher gate counts than GSEE. While these studies rep-
resent important first steps in assessing the feasibility of quantum chemistry dynamics on quantum
hardware, the level of effort devoted to reducing their resource requirements remains far behind that
for ground-state estimation, where years of algorithmic refinements have dramatically lowered cost
estimates. Consequently, we do not plot resource estimates for dynamics problems. Bridging this
gap remains both a challenge and an opportunity for advancing quantum simulations of chemically
relevant processes.

In addition to time evolution, significant progress has been made in developing quantum algorithms
for excited state calculations, which, while not dynamical themselves, provide necessary inputs for sim-
ulating chemical dynamics. Access to accurate excitation energies and electronic couplings enables
the construction of potential energy surfaces, which are needed for modeling processes like photoi-
somerization and energy transfer. Techniques such as state-averaged VQE [253], equation-of-motion
approaches [187], and subspace-search methods [175, 221] have been proposed to efficiently target
excited states on quantum hardware. These developments will be useful for quantum simulations of
nonadiabatic molecular dynamics, particularly in regions near conical intersections where potential
energy surfaces of different electronic states intersect and traditional approximations fail [75].

Bosonic QC platforms, particularly those using continuous-variable (CV) encodings, have also
emerged as promising tools for simulating chemical dynamics. These platforms naturally represent
vibrational degrees of freedom using bosonic modes, enabling compact and efficient simulations of
molecular vibrations and vibronic transitions [79]. Recent theoretical work has proposed using CV-
based quantum processors for real-time wavepacket evolution and vibronic dynamics in anharmonic
molecular potentials [160], and hybrid bosonic-qubit [136, 149] schemes are being explored to model
coupled electron-vibration dynamics more efficiently. Despite these recent theoretical developments,
detailed quantitative resource estimates, such as required number of bosonic modes, effective squeezing
levels, gate counts, or coherence time budgets, are not yet available in the literature. Similarly, hard-
ware roadmaps from CV-focused vendors, such as Xanadu (photonic architectures) and Alice&Bob
(cat qubits), describe platforms capable of simulating bosonic systems but as of yet provide no appli-
cation specific resource benchmarks.

We expect resource reductions and algorithmic speedups to become pervasive across all domains
as quantum algorithms continue to develop and mature with future scientific advances. Indeed, this
is a larger trend within algorithmic development which can be seen in the field of classical algorithms
over the past decades [69, 87, 90, 159, 243, 245], and has historically been a major factor in guiding
investments at DOE SC [122].

Figure 4.3 displays all 33 target problems we identified in the literature. These include ground state
preparation and estimation problems, such as FeMoco and Cytochrome P450, as well as computational
catalysis for CO2 fixation [43] and other strongly-correlated problems [36, 80, 141]. The figure shows
that solving scientifically relevant, hard quantum chemistry problems will require the capability to run
at least 108 gates on about 103 qubits, with estimates going up to 1012 gates and beyond, depending
on the specific application and algorithm under consideration.

We summarize our findings for this section as follows:

Finding 2. Resource estimation for computing ground state energies for quantum chemistry
systems is among the most mature disciplines in quantum algorithm development. The workhorse
algorithm has become QPE+qubitization. Significant progress over the last five years in terms of
improved factorizations and compression of the two-electron integrals has reduced the resources
required to solve key benchmark problems by orders of magnitude. We expect that future im-
provements to quantum algorithms will continue to reduce the resources required for applications
from all domains in the DOE QRW.
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Figure 4.3: Overview of various resource estimates for computational problems related to quantum
chemistry in terms of number of logical qubits (nQ) and number of gates (nG). QPE+Trotter based
applications are marked by circles, and QPE+qubitization by squares.

4.3 Nuclear and high energy physics

QC holds significant potential for impact in nuclear and high energy physics. Despite the great success
of classical lattice field theory, many phenomena remain out of reach for euclidean path-integral Monte
Carlo simulations. For instance, real time dynamics and out-of-equilibrium properties can not be
currently studied with classical methods. One of the most important field theories that could take
advantage of QC is the strong force. Interactions between quarks and gluons that make up hadrons
are described by the theory of Quantum Chromodynamics (QCD). The resulting strong force is one
of the four primary computing focus areas delineated by the DOE in the quantum information science
applications roadmap [20]. Hadrons are responsible for almost all the mass of matter, but the details
of how hadrons form and more generally how nuclei form remain a mystery. This lack of knowledge has
profound implications on our understanding of the evolution of the universe, and many experimental
facilities like the Large Hadron Collider aim to help increase our knowledge for fundamental physics.
These experimental searches require a strong theoretical and computational footing for progress to be
made. As already mentioned, classical computing is limited to time-independent studies for only a
subset of the strong force phenomenology, as first principle calculations are hindered by the exponential
resource requirements [28, 119]. QC will provide scientists with access to real-time dynamics and finite
density, thus increasing the reach to all the phenomenology of the strong force. In field theories there is
an additional complication arising from the encoding of both fermionic and bosonic degrees of freedom,
which can increase the overhead and lead to non-local interactions. Other areas of interest in High
Energy Physics (HEP) that could benefit from QC are particle scattering [55] and particle dynamic
properties such as collective neutrino flavor oscillations. For a detailed summary we refer the reader
to recent review articles [73].

Here we provide a collection of applications aimed at summarizing the current state of research
in adopting QC. The Schwinger model is one of the simplest gauge theories. A topological term in
the model leads to the infamous sign problem in the classical Monte Carlo method, which means
classical computational resources needed scale exponentially. As there is no sign problem for QC,
this model is a good use case for early investigations. In [216], the authors simulate time evolution
by combining a block encoding of the Hamiltonian, after gauge fixing and mapping with the Jordan-
Wigner transform, with the Quantum Singular Value Transformation (QSVT). In [211], the authors
develop protocols for time evolution for U(1), SU(2), and SU(3) lattice gauge theories using a variety
of methods including Linear Combination of Unitaries (LCU) + qubitization / Trotterization. For
geometrically local Hamiltonians, one can take advantage of the HHKL algorithm [101] to further
reduce the cost of simulating time evolution [211]. Related results on QC for lattice gauge theories
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can also be found in [70, 120].
Other HEP applications included in this work are collective neutrino flavor oscillations, which

influence the dynamics of core-collapse supernovae and neutron star mergers, and thus terrestrial de-
tection of these events. Neutrino processes are among the most challenging aspects of current High
Performance Computing (HPC) numerical simulations of these environments, a situation complicated
by the inherent quantum many-body dynamics in the problem due to neutrino-neutrino interactions,
which demand a quantum treatment. There have been recent studies on both qubit and qutrit pro-
cessors [229] where the time evolution has been performed with first order Trotter steps. For recent
resource estimations from Los Alamos National Laboratory see [24, 102]. Here, we combine the latest
estimates for the Trotter error [229] to provide conservative bounds on the quantum resources re-
quired. The number of Trotter steps required for a given simulation time t and target overall error ϵ is

O
(
t2µN

ϵ (∆ωmax + µ)
)
, where µ is the strength of the two-body interaction and ∆ωmax is the maximal

difference between the Fourier mode frequencies. For our analysis, we estimate ∆ωmax ≈ 100µ, and
t = O(µ−1). For each Trotter step, the number of T gates is nG = 50(N +N(N − 1)/2). Using this
number of gates per Trotter step, we provide the total number of gates required for different system
sizes of interest under a total error budget of 0.01 for the full time evolution.

We conclude by providing an overview of the resource estimates for 32 data points from both
applications discussed here in Figure 4.4. Compared to Figures 4.1 and 4.3, we see observe that the
number of gates grows significantly faster as a function of qubit count (for an easier visual comparison
see Figure 4.5), which we attribute to the larger encoding overhead for applications in HEP, and to
a lesser degree to the extent to which the topic has been studied so far. Indeed, in comparison to
materials science and chemistry, QC for HEP is less developed and recent works, as outlined here,
have been focused primarily on resource estimation for simplified field theory models. We expect more
progress to come in the near future as algorithmic approaches are currently being developed to reduce
the quantum resources needed for both encoding the problems and for computing the dynamics [63,
207].
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Figure 4.4: Overview of various resource estimates for computational problems related to nuclear and
high energy physics in terms of number of logical qubits (nQ) and number of gates (nG). The inset
shows all 32 P-vectors including some at very large quantum gate and/or qubit count.

4.4 Other application areas

Beyond materials, quantum chemistry, and high energy physics, which form the core of the DOE QRW,
there are multiple other areas of computational science where quantum computers can impact the DOE
SC mission. Here we summarize the state of affairs for solving problems in linear algebra, differential
equations, optimization, and machine learning with quantum computers. We do not include resource
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estimates for these categories as they often lack standardized benchmark problems, rely on heuristics,
do not describe an application with an end-to-end speedup (including input/readout), or have only
examined speedups using oracle queries.

Linear algebra. The field of quantum linear algebra originates from the work by Harrow, Hassidim,
and Lloyd (HHL) [104] on solving linear systems of equations on quantum computers with an expo-
nential scaling improvement on the problem size at the cost of a polynomial increase in the dependence
on problem conditioning. Subsequent work further improved the dependence on the precision [57] and
problem conditioning [9, 188]. QSVT [91] has become the de facto standard for solving various kinds of
linear algebra problems, including linear systems and matrix functions. A key bottleneck is the block
encoding input model, which can be highly resource efficient for structured data [51, 231] but scales
exponentially for unstructured data [49]. Other approaches reduce the complexity of the input model
by trading off for an increased sample complexity [247]. We conclude that quantum linear algebra
kernels hold great potential, mainly due to the exponential improvement in the dependence on the
problem size, and can have considerable implications for a vast number of scientific codes. However,
end-to-end complexities and speedups have yet to be developed and will ultimately hinge on problem
characteristics (structure) and output requirements.

Simulation of differential equations. The simulation of differential equations is ubiquitous in
the physical sciences and engineering, ranging from topics like fluid dynamics and plasma physics, to
structural mechanics and computational materials science. Consequently, many applications that are
run at NERSC solve a system of differential equations in some form or another. Classical algorithms
for solving differential equations form a mature subfield of computational sciences and many codes
and solvers have been developed. At the same time, it remains challenging to accurately simulate
certain physical phenomena like turbulence, where due to the immense range of interacting lengths
and time scales present, extraordinarily fine grids and small time steps are necessary and lead to
computationally prohibitive costs.

Research into quantum algorithms for simulating differential equations has seen steady progress
since it was first proposed [140] shortly after the introduction of the celebrated HHL algorithm for
linear systems [104]. Theoretical results can be categorized in various ways, for example algorithms
for Ordinary Differential Equation (ODE) systems [133] and for Partial Differential Equation (PDE)
systems [59], or alternatively algorithms for linear differential equations [116] and for nonlinear systems
of differential equations [148].

Many approaches convert the system of differential equations to an equivalent problem for which
a quantum algorithm exists. This includes mapping the system of differential equations to a system
of linear equations [32, 58, 59, 152], to a Hamiltonian simulation problem by introducing auxiliary
variables [116, 252], or to Fourier space using the quantum Fourier transform (QFT) that leads to
simple quantum circuit designs [157]. Nonlinear problems require careful consideration as solving
them on a quantum computer is intrinsically difficult due to the linear nature of quantum mechanics
(see Ref. [238] for a review). One approach is to use linearization [148, 237] to transform a nonlinear
system to a linear one. Another method is to use a hybrid classical-quantum workflow [134, 158,
197] that translates the differential equation to a minimization problem, which can be evaluated on
a quantum computer and variationally minimized using a classical computer. Similar to the case of
quantum linear algebra, simulating differential equations on quantum computers holds great potential,
but showing evidence of end-to-end speedups remains an open problem.

Optimization and search. Quantum algorithms for combinatorial optimization have been widely
studied after the initial introduction of Grover’s search algorithm [100]. Grover’s algorithm provides
an asymptotic quadratic speedup for unstructured search problems. Recent work studying Max-k-SAT
[45] suggests that practical end-to-end quantum speedups may be challenging to achieve once constant
factors are taken into consideration. Furthermore, the overhead required for achieving fault-tolerance
using a surface code encoding may outweigh the advantages a quadratic speedup offers [19]. This
does not rule out that heuristic and approximate quantum approaches [82, 173] to optimization can
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offer substantial benefits. Moreover, recent work suggests that certain optimization problems may be
amenable to beyond-quadratic speedups, for example [218] suggests a quartic speedup for the planted
noisy k XOR problem.

Scheduling algorithms, specifically load-balancing algorithms, are a category of optimization prob-
lems of great relevance to the HPC community. Modern HPC distributed memory problems have
increased substantially in complexity, both technically and scientifically. Multi-threading, GPU per-
formance, code coupling, multi-physics, multi-scale, I/O methodologies, digital twin techniques, and
workflow applications have all increased the complexity of optimizing the use of HPC compute re-
sources for large-scale, dynamically variable simulations. As Moore’s Law reaches its end and “re-
compile and go faster” performance gains disappear, it’s critical for distributed memory HPC ap-
plications to use available resources as efficiently as possible to maintain scientific scalability with
next-generation architectures.

Classical load-balancers use approximation algorithms due to time constraints — dynamic in-situ
load-balancing cannot substantially increase the time-to-solution. So, simple load balancers typi-
cally use a broad overview of application performance and aim to do “good enough, fast enough”.
High-dimensional optimization solutions have the potential to provide more accurate descriptions of
applications, and therefore create more accurate solutions that greatly improve resource utilization.
Quantum optimization algorithms that can quickly solve a complex scheduling problem would be of
board interest to a variety of distributed memory HPC simulations.

This category of quantum algorithm research has started to be explored using quantum anneal-
ing [259] as has the similar field of task scheduling [44].

Machine learning and artificial intelligence. The integration of QC with Machine Learning
(ML) and Artificial Intelligence (AI) is poised to overcome several fundamental computational barri-
ers faced by classical methods. Quantum Processing Units (QPUs) offer the potential to address key
deficiencies in classical ML, particularly in the efficient handling of high-dimensional feature spaces,
combinatorial optimization, and probabilistic sampling. For example, quantum kernel methods can
map data into exponentially large Hilbert spaces, enabling the creation of classifiers and regressors
that are classically infeasible [219]. In the context of optimization – a central task in AI and ML –
Variational Quantum Algorithms (VQAs) leverage quantum parallelism to explore complex solution
landscapes, providing a pathway to escape local minima that often trap classical heuristics. This has
implications for the training of generative models, solving large-scale combinatorial problems, and
optimizing policies in reinforcement learning [54]. Additionally, quantum algorithms can accelerate
sampling from complex probability distributions, directly impacting the scalability of Bayesian infer-
ence and other probabilistic modeling tasks [150]. As quantum hardware matures, these algorithmic
advances could enable ML and AI models to tackle problems previously out of reach for classical
computation.

A key challenge, however, is the quantum data loading problem: encoding large classical datasets
into quantum states can require resources that scale polynomially with dataset size, potentially elim-
inating any quantum speedup. As a result, most practical approaches currently focus on hybrid
quantum-classical models, where classical computers handle data-intensive tasks and QPUs are used
for select, computationally hard subroutines [54, 219]. Another challenge lies in the large regions
in the parameter space of quantum circuits where the cost function gradient becomes exponentially
small, making optimization extremely difficult. This phenomenon is commonly referred to barren
plateaus [86, 165].

The relationship between ML and quantum computing is also reciprocal, as ML techniques are
crucial for advancing quantum hardware. Machine learning methods, especially neural networks,
are increasingly used for Quantum Error Correction (QEC), learning to decode and correct errors in
quantum systems more efficiently than traditional methods [103]. Furthermore, reinforcement learning
agents have demonstrated success in automating the calibration and control of qubits, leading to
high-fidelity quantum gate operations and improved system stability [183, 227]. This interplay is
accelerating progress toward scalable FTQC.
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4.5 Summary

We summarize the qualitative differences in P-vectors for condensed matter/materials science, quan-
tum chemistry, and HEP in Figure 4.5. We observe that in general the condensed matter problems
require comparatively the fewest number of gates for a given qubit count (which we use as a proxy
for problem size) and that they exhibit the most advantageous scaling behavior. We attribute this
to the fact that (1) these problems either map 1-to-1 to qubits or with minimal encoding overhead,
and (2) the fields of condensed matter physics and materials science have spent significant efforts to
study, develop, and optimize quantum algorithms and applications. The P-vectors of quantum chem-
istry applications fall in the intermediate region in between materials and HEP. This is due to the
greater qubit encoding overhead compared to condensed matter physics and the greater maturity of
the field compared to HEP. Finally, resource estimates for HEP require the largest P-vectors and the
poorest scaling with problem size as they have both a high encoding overhead and the applications
studied are not as mature. Based on these observations, we expect that condensed matter physics and
materials science problems will be among the first domains of interest to DOE SC mission to benefit
from quantum computers with chemistry and HEP likely following later. We summarize this with the
following finding.

Finding 3. Condensed matter and materials science applications are expected to be impacted
first as they map naturally from spin to qubit systems and require the fewest resources. Quantum
chemistry applications require an intermediate amount of resources and have seen steady algorith-
mic improvements. HEP applications require the most resources among the problems that were
considered and likely offer opportunities for significant algorithmic improvements.
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Figure 4.5: Qualitative overview of the different regions and scaling of P-vectors for applications in
condensed matter and materials science (yellow), quantum chemistry (blue), and nuclear and high
energy physics (red).

With regard to algorithms, we expect Hamiltonian simulation, either through Trotterization or
QSVT, and determination of ground state properties to dominate the span across the QRW.
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Finding 4. All known quantum applications within the physical sciences for which evidence
of exponential speedups exist fall in two categories: dynamical properties (correlation functions,
response functions, adiabatic state preparation, ...) and static properties (GSEE, excited states,
...). Consequently, the main algorithmic primitives are Hamiltonian simulation, either using Trot-
terization (minimal qubit requirements) or qubitization/QSVT (optimal quantum gate require-
ments), and QPE which relies on Hamiltonian simulation as a subroutine. For quantum chemistry
in particular, the majority of resource estimates focus on GSEE with QPE; dynamical problems
are comparatively understudied.

Our analysis has centered around the P-vector which represents the volume of a quantum circuit.
As we will discuss in Chapter 5, the P-vector determines which quantum computer can run which
application. However, depending on the nature of the end-to-end application, a different number of
circuit repetitions or shots may be required. We write the number of shots as Ns and also refer to
this quantity as the sampling complexity. The combination of the P-vector and the number of shots
Ns will determine our execution time estimate presented in Chapter 6.

Table 4.1: Three prototypical sampling complexities for different use cases considered in this report.

Application Ns

Ground state energy via QPE 10
Measuring an observable ⟨ψ|O|ψ⟩ (VQE, Trotter, ...) 103

Dynamical simulations requiring multiple configurations 105

Table 4.1 lists three different prototypical sampling complexities that we use for the remainder of
this report, and in particular in Chapter 6. For applications that use QPE to determine a ground
state energy, multiple trials may be required when the reference state is not the exact ground state.
However, we expect QPE to be used only when a good reference state is available and use Ns =
10. For applications that require measuring an observable (e.g. magnetization) ⟨ψ|O|ψ⟩, with |ψ⟩
prepared using VQE, Trotter, or some other state preparation procedure, we assume a larger Ns = 103

as many samples are required to reduce the variance of the estimator according to the standard
quantum limit. Finally, we contemplate a workflow where the quantum computer is used to support
dynamical simulations of some quantum many-body system which requires simulating many different
configurations of the many-body system. An example includes calculating the binding affinity of a
drug to a target protein which can demand millions of energy calculations using different molecular
configurations [185]. Optimistically, we assume Ns = 105 for a similar but smaller workflow.
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Chapter 5

Vendor technology roadmaps

In this section, we collect and unify the public technology roadmaps of ten vendors active in the
quantum computing space. We focus on the three technological platforms that are currently leading
development efforts: superconducting qubits, trapped ions, and neutral atoms. The different vendors
report their roadmap milestones according to different metrics, including:

• The number of qubits in the system, nQ (physical qubits and/or logical qubits);

• The error rate of the system, ϵ;

• The number of quantum gates the system can reliably execute, nG;

• The quantum circuit depth the system can reliably execute, dC .

Based on the milestone data provided, we uniformize the roadmaps against the volumetric P-vector
introduced in Equation (4.1). We use the following rules-of-thumb to convert, respectively, error rates
and quantum circuit depths to an equivalent number of gates:

nG = ϵ−1, and nG = nQ · dC/2. (5.1)

For vendors that report a maximum quantum circuit depth dC , we convert to quantum gate depth
by assuming a maximally dense quantum circuit of 3nQ/4 gates per circuit layer. We stress that our
rules-of-thumb are a first order approach to obtain estimates that can be reasonably compared to
each other. A more precise analysis would require more detailed information that is often publicly
unavailable or perhaps still unknown.

The different vendor roadmaps report the number of qubits, the first metric, at their technology
milestones either by specifying the number of physical qubits, logical qubits, or both, or remain-
ing ambiguous. The distinction between physical qubits and logical qubits becomes relevant as the
field matures from Noisy Intermediate Scale Quantum (NISQ) systems [199] to (early) Fault-Tolerant
Quantum Computing (FTQC) [224]. In a NISQ system the (noisy) physical qubits are used directly
as a platform for logical (but noisy) quantum operations, while in a FTQC many imperfect physical
qubits work together in a carefully orchestrated manner to represent fewer logical qubits with im-
proved performance. We observe that different milestones either specify that the proposed system is
a NISQ system or a (early) FTQC system, or do not specify which category the system falls into. In
the latter case, we assume that systems that can run 104 gates or fewer are NISQ systems (labeled
N ), systems that can reliably run between 104 to 106 gates are early FTQC systems (labeled EF ),
and systems that can reliably run more than 106 gates are FTQC systems (labeled F ). The number
of qubits nQ that we report in the P-vector is the number of physical qubits for NISQ systems and
the number of logical qubits for (early) FTQC systems. The P-vector then estimates an upper bound
on the performance of the technology that each vendor is developing. Any quantum application that
requires at most nQ qubits and at most nG gates will be able to run on the forthcoming system. We
denote this as Papp ≤ Pqc.

It follows from our discussion on Quantum Error Mitigation (QEM) and Quantum Error Correction
(QEC) in Section 3.2 that these protocols can improve the figures of merit and performance bounds
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if we allow to take more samples and increase the classical post processing cost. For the purposes
of our analysis, we assume that QEM can at most double the number of gates that can be executed
on a NISQ device, i.e. nG,QEM = 2nG. In the case of Probabilistic Error Cancellation (PEC), we get
from Equation (3.3) that this requires a sampling overhead of CPEC = e8 ≈ 3, 000, which is at the limit
of what we deem practical. For roadmap milestones pertaining to NISQ devices, we present two values
for the number of gates: the value based on the information provided by the vendor, and twice this
value when assuming QEM is used. The second, higher number Pqc

QEM = (nQ, 2nG) will be considered
the region of extended capabilities of the NISQ device and will be plotted as a light shaded area. We
remark that for NISQ milestones there is no leeway in the nQ parameter of the figure of merit as
every individual physical qubit is directly used for computation. For FTQC milestones, we consider
that QEC and QEM may be used in conjunction and allow for a reduction of the code distance d by
five while maintaining the same error rate at the cost of a sample overhead factor C ≤ 100 and more
intensive post-processing [233]. This leads to a figure of merit Pqc

QEM+QEC, 1 = (n̂Q, nG) with n̂Q > nQ
and the exact increase depends on the error correction code and code distance. Similarly, at fixed
code distance, one could reach error rates similar to code distance d + 5 leading to a figure of merit
Pqc
QEM+QEC, 2 = (nQ, n̂G) with n̂G > nG. We use these assumptions to estimate a region of extended

capabilities for FTQC milestones that will be plotted as a light shaded area. In this case, both nQ
(by reducing the code distance) and nG (by keeping the code distance constant but decreasing the
effective error rate) can be improved using QEC+QEM.

As vendors support different underlying physical qubits, their error correction strategies will likely
differ as well. By default, we will assume surface codes for error correction of operations and PEC for
error mitigation. Whenever more detailed information about the future architecture is available, we
aim to incorporate it in our estimates. Depending on the hardware characteristics, and the sometimes
partial information provided by vendors, we fill in the gaps based on our assumptions stated above.

5.1 Overview of individual vendor roadmaps

In this section we provide an overview of all public roadmap data we identified at the time of writing.
We categorize the vendors according to the core qubit technology of their hardware platforms:

• Section 5.1.1: superconducting circuits, which include transmon, coaxmon, and cat qubit types;

• Section 5.1.2: trapped ions;

• Section 5.1.3: neutral atoms;

• Section 5.1.4: other technologies and vendors that have not released official roadmaps.

Within each section, vendors are listed in alphabetical order. We refer to [210] for a different overview
of quantum vendor roadmaps.

As our goal is to glean the expected capabilities of near-term quantum systems that the industry
is pursuing, we strive to cover as many public roadmaps as possible across different qubit modalities,
but we do not claim that our overview is complete. Furthermore, as the field of quantum computing
is rapidly progressing, existing roadmaps are updated regularly and new roadmaps are announced
frequently. The data we collected reflects a moment in time and is subject to rapid change.

For each vendor, we provide a brief overview of the key concepts and ideas behind their technology
and approach to building a scalable quantum computer. We summarize each roadmap in a two panel
figure, focusing on recent and future milestones. On the left hand side, a table shows data provided
by the vendor in black font and inferred from our assumptions in blue font; the table columns indicate
the year for each milestone, the name of the milestone where available, the type of milestone (N for
NISQ, EF for early FTQC, or F for FTQC), the number of qubits nQ (both physical qubits and
logical qubits), and a metric that can be related to the number of gates (i.e. the error, the number of
gates, or the quantum circuit depth). On the right hand side, a scatter plot shows the P-vector for
each milestone, a dark shaded bounding box highlights the milestone with the largest P-vector, and
a light shaded area indices the region of extended performance, based on QEM for NISQ milestones
and QEC+QEM for FTQC milestones.
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5.1.1 Qubits based on superconducting circuits

Alice & Bob. Alice & Bob is a start-up based out of Paris, France that is developing quantum com-
puters based on cat qubits [168]. Cat qubits represent an innovative approach to building more stable
quantum computers by encoding information in superpositions of classical-like states of microwave
light, analogous to Schrödinger’s cat being in two states at once. The physical realization of cat states
is typically achieved within superconducting microwave resonators, which act as cavities to confine
microwave photons that make up the coherent states. Josephson junctions introduce a non-linearity
in the superconducting circuit that is required to control the state and perform quantum operations.

An advantage of cat qubits is an inherent, hardware-level protection against bit-flip errors, one
of the two main types of quantum errors; this protection becomes exponentially stronger as the size
(average photon number n̄) of the cat state increases. While this comes at the cost of a smaller
linear increase in phase-flip errors, the resulting biased noise profile – where one error type is far less
likely than the other – significantly simplifies the complex task of QEC. The QEC reduces from a
2D problem, possibly requiring a surface code to correct both bit- and phase-flips, to a (nearly) 1D
problem which can be stabilized by a [[2d − 1, 1, d]] repetition code leading to a linear reduction in
qubits compared to a surface code of similar code distance. In this case, we can estimate the logical
phase-flip error rate as [215],

ϵL = 0.056×
(
n̄0.86k1/k2

0.013

)(d+1)/2

+ (d− 1)e−2n̄, (5.2)

where k1 is the single photon loss rate, and k2 is the two-photon dissipation rate. Based on [215], we
assume that k1/k2 ≈ 10−4 and n̄ = 11, that the encoding ratio of logical qubits to physical qubits is
2d − 1, and that there is hardware-level protection against bit-flips leading to a logical bit-flip error
rate smaller than 10−9 for average photon number n̄ = 11.

Year Name Type nQ error
Phys. Log.

2024 Boson 4 N 1 0 –
2025 Helium EF 16 1 10−2

2027? Lithium EF 48 4 10−3

2029? Beryllium EF 250 5 10−4

2030 Graphene F 2,000 100 10−6
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Figure 5.1: Roadmap data for: Alice & Bob [8] – Cat qubits. Left : Table with technology milestones.
The Lithium and Beryllium systems have no target year on the roadmap and we interpolate the
dates based on the target years for the Helium and Graphene systems. Right : Plot with equivalent
technology milestones on number of qubits versus number of gates axes. The light shaded area sketches
the performance boundary using a quantum error mitigation approach on the largest-scale system.

Figure 5.1 summarizes the roadmap Alice & Bob released in December 2024 [8]. It lays out 5
technology milestones starting with the Boson 4 system released in 2024, which consists of a single cat
qubit and supports a limited (non-universal) set of single-qubit gates, and culminates in the Graphene
system in 2030 which is projected to have 100 logical qubits at an error rate of 10−6. Based on
the available data, we assume Alice & Bob to pursue an architecture inspired by a repetition code
to suppress phase flip errors as their main strategy until the logical phase-flip error rate becomes
comparable to the bit-flip error. We thus use Equation (5.2) to estimate the region of extended
performance. Around the 2030 milestone, Alice & Bob’s roadmap suggests they will start using sparse
LDPC codes to further reduce the logical error rates.
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Google Quantum AI. Google Quantum AI is building quantum processors based on superconduct-
ing transmon qubits arranged in a square grid topology where each qubit has four nearest-neighbors.
This naturally matches the connectivity requirements for a surface code [3]. Google’s current 105 qubit
system named Willow was announced in late 2024 [2], while the previous system named Sycamore
was originally announced in 2019 with 53 qubits [11] and upgraded to 70 qubits in 2023 [170]. Google
Quantum AI presents their technology roadmap [95] in terms of 6 milestones and we summarize them
in Figure 5.2. The first milestone, labeled beyond classical, was achieved in 2019 on the Sycamore
device [11]. Milestone 2, labeled Quantum Error Correction, was achieved in 2023 on the second
generation Sycamore-2 device [3]. Future milestones 3 through 6 continuously improve both the scale
and the quality of the system and Google reports the expected number of physical qubits and the
logical error rates in their roadmap. Based on this information, we estimate the code distance using
Equation (3.4), which in turns allows us to estimate the number of logical qubits. As their milestones
have no estimates on when they will become available, we allow for a 3 year period between consecutive
milestones, extrapolating from the announcement of Willow. We assume a physical error rate of 10−3

up to milestone 4, and 5× 10−4 afterwards.

Year Name Type nQ error
Phys. Log.

2019 Sycamore N 53 – –
2023 Sycamore-2 N 72 – –
2024 Willow N 105 – 3× 10−3

2027? Milestone 3 EF 103 5? 10−6

2030? Milestone 4 EF 104 50? 10−6

2033? Milestone 5 F 105 502? 10−6

2036? Milestone 6 F 106 1545? 10−13
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Figure 5.2: Roadmap data for: Google Quantum AI [95] – Superconducting qubits. Left : Table with
technology milestones. Right : Plot with equivalent technology milestones on number of qubits versus
number of gates axes. The light shaded area sketches the performance boundary using a quantum
error mitigation approach on the largest-scale system.

IBM Quantum. IBM Quantum is building superconducting transmon quantum processors with
the qubits arranged in a heavy-hex lattice in recent systems. The company has most recently updated
their roadmap [110, 111] in June 2025 and Figure 5.3 summarizes the data in our standardized format.
Up until 2028, IBM Quantum reports the number of physical qubits and gates. Starting from the
Starling system in 2029, IBM Quantum is expecting a FTQC device and the company reports the
number of logical qubits and number of gates for the FTQC systems on their roadmap.

Recent research on FTQC architectures from IBM Quantum suggests that the company is pur-
suing a QEC strategy based on Quantum Low Density Parity Check (qLDPC) codes [40, 67]. More
precisely, a modular architecture based on bivariate bicycle codes, dubbed the gross code [254] appears
to be a leading candidate for future systems on the IBM Quantum roadmap. This type of architec-
ture will require modifications to the current heavy-hex topology by the introduction of (long-range)
couplers [41]. The company has presented first experimental results that demonstrate entanglement
generation across such a coupler [106]. Based on [254], we use a 10× reduction in the ratio of physical
qubits to logical qubits over a surface code logical qubit with the same error rate as a rule of thumb.
For Starling and Blue Jay time frames, we assume a physical error rate of approximately 10−3.

IQM. IQM, founded in 2018, is a company headquartered in Finland that is developing quantum
computers based on superconducting transmon qubits. They have released a public roadmap which
includes milestones through 2033 [115]. At present, IQM develops systems in two different topologies:
a crystal topology implementing a 2D square lattice compatible with a surface code encoding and a
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Year Name Type nQ nG

Phys. Log.

2020 Falcon N 27 – –
2022 Eagle N 127 – –
2024 Heron N 133 – 5,000
2025 Nighthawk N 120 – 5,000
2026 Nighthawk N 120 – 7,500
2027 Nighthawk N 120 – 10,000
2028 Nighthawk N 120 – 15,000
2029 Starling F 8,000? 200 108

2033+ Blue Jay F 58,000? 2,000 109
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Figure 5.3: Roadmap data for: IBM Quantum [111] – Superconducting qubits. Left : Table with
technology milestones. Right : Plot with equivalent technology milestones on number of qubits versus
number of gates axes. The light shaded area sketches the performance boundary using a quantum
error mitigation approach on the largest-scale system.

star topology with one central qubit connected to all other qubits. According to their roadmap, these
two technologies will be combined into a single approach in 2027. We conservatively assume a surface
code encoding for their later milestones given the high number of physical qubits to logical qubits.
IQM’s roadmap is summarized in Figure 5.4.

Year Type nQ error
Phys. Log.

2024 N 54 – 1× 10−3

2025 N 150 – 8× 10−4

2026 N 300 – 6× 10−4

2027 EF 103 36 10−5

2028 EF 5× 103 180 10−6

2030 F 4× 104 720 10−7

2031 F 105 1,800 10−8
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Figure 5.4: Roadmap data for: IQM [115] – Superconducting qubits. Left : Table with technology
milestones. Right : Plot with equivalent technology milestones on number of qubits versus number of
gates axes. The light shaded area sketches the performance boundary using a quantum error mitigation
approach on the largest-scale system.

Oxford Quantum Circuits. Oxford Quantum Circuits is a quantum computing startup founded
in 2017 and headquartered in the United Kingdom. They are building quantum computers based
on superconducting qubits with a coaxmon chip design, a 3D architecture in which the qubit and
resonator are fabricated on opposing sides of the chip, allowing the separation of the control and
readout wiring to different sides of the chip [206]. The company released a technology roadmap in
June 2025 [65], which we summarize in Figure 5.5. Oxford Quantum Computing is actively developing
multi-mode qubits [251] and in particular dimon qubits [105], where a single dimon qubit is made up of
two Josephson junctions and allows for a dual rail encoding of the quantum information [239] which is
potentially more error resistant, in particular against erasure errors. We remark that Oxford Quantum
Circuits is one of the few companies reporting clock speeds for their future Titan, Athena, and Atlas
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systems.

Year Name Type nQ error f [MHz]
Phys. Log.

2021 Sophia N 4 – – –
2022 Lucy N 8 – – –
2024 Toshiko N 32 – 10−2 –
2025 Genesis EF 16 16 10−3 –
2028 Titan EF 2,000 200 10−6 1
2031 Athena F 75,000 5,000 10−9 3
2034 Atlas F 1,000,000 50,000 10−12 10
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Figure 5.5: Roadmap data for: Oxford Quantum Computing [65] – Superconducting qubits. Left :
Table with technology milestones. Right : Plot with equivalent technology milestones on number of
qubits versus number of gates axes. The light shaded area sketches the performance boundary using
a quantum error mitigation approach on the largest-scale system.

Rigetti Computing. Rigetti Computing is a full-stack quantum computing company founded in
2013, headquartered in Berkeley, California, and developing superconducting quantum processors
based on transmons. While Rigetti Computing has not released a multi-year technology roadmap,
their investor presentation from March 2025 [66] contained details about recent systems as well as a
system expected later in 2025. The milestones are summarized in Figure 5.6; we remark that all listed
devices are NISQ devices and we do not infer an error correction strategy.

Year Name Type nQ error
Phys. Log.

2022 Aspen-M-X N 80 – 5× 10−2

2023 Ankaa-1 N 84 – 5× 10−2

2023 Ankaa-2 N 84 – 2× 10−2

2024 Ankaa-3 N 84 – 1× 10−2

2025 – N 108 – 5× 10−3
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Figure 5.6: Roadmap data for: Rigetti Computing [66] – Superconducting qubits. Left : Table with
technology milestones. Right : Plot with equivalent technology milestones on number of qubits versus
number of gates axes. The light shaded area sketches the performance boundary using a quantum
error mitigation approach on the largest-scale system.

5.1.2 Qubits based on trapped ions

IonQ. IonQ, founded in 2015 and headquartered in College Park, Maryland, is building quantum
computers based on linear ion traps. An advantage of this approach is that two-qubit gates between
two ions are mediated through the collective motion of the chain which allows for a native all-to-all
connectivity within a trap.

In a recent press release from June 13, 2025 [114], IonQ stated updated milestones out to 2030 which
include plans for early and large-scale FTQC systems. We summarize these most recent projections
in Figure 5.7. IonQ is pursuing a modular architecture which links together multiple ion traps via
photonic interconnects. For its 2027 milestone, IonQ wants to achieve 10,000 physical qubits on
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a single chip before moving to a modular system in 2028 where two chips will be interconnected
leading to a system with 20,000 physical qubits. IonQ envisions their architecture to be compatible
with multiple error correction schemes. However, no further details are provided about their error
correction strategy but given (1) the high degree of connectivity within a trap and (2) a modest ratio
of 12.5 up to 25 physical qubits per logical qubits for their technology milestones, one could expect
an approach based on sparse LDPC codes.

Year Type nQ error
Phys. Log.

2025 N 64 – 10−4

2026 EF 256 12 10−7

2027 EF 10,000 800 10−7

2028 EF 20,000 1,600 10−7

2029 F 200,000 8,000 10−12

2030 F 2,000,000 80,000 10−12
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Figure 5.7: Roadmap data for: IonQ [114] – Trapped ions. Left : Table with technology milestones.
Right : Plot with equivalent technology milestones on number of qubits versus number of gates axes.
The light shaded area sketches the performance boundary using a quantum error mitigation approach
on the largest-scale system.

Quantinuum. Quantinuum is a quantum computing company headquartered in Cambridge, United
Kingdom and Broomfield, Colorado that was formed after the merger of Cambridge Quantum and
Honeywell Quantum Solutions. Quantinuum is building trapped ion quantum computers based
on Quantum Charge-Coupled Device (QCCD) architecture. Their H-series systems are currently
industry-leading [92] in terms of the quantum volume benchmark for NISQ systems. The company
has announced their roadmap [202] of ion trap devices up to the Apollo system in 2029 and specifies
milestones in terms of qubits and error rates. Note that Quantinuum reports the Apollo system to
have “hundreds” of logical qubits; we choose 500 as a proxy. The Quantinuum roadmap is summa-
rized in Figure 5.8. One could expect qLDPC or many-hypercube codes [96] as their strategy for error
correction due to high qubit connectivity.

Year Name Type nQ error
Phys. Log.

2025 Helios EF 96 50 1× 10−4

2027 Sol EF 192 100 1× 10−5

2029 Apollo F 5,000 500? 1× 10−10
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Figure 5.8: Roadmap data for: Quantinuum [202] – Trapped ions. Left : Table with technology
milestones. Right : Plot with equivalent technology milestones on number of qubits versus number of
gates axes. The light shaded area sketches the performance boundary using a quantum error mitigation
approach on the largest-scale system.
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5.1.3 Qubits based on neutral atoms

Infleqtion. Infleqtion[30, 112], based out of Boulder, Colorado, is building quantum computers out
of dual-species arrays of neutral atoms and reports the number of logical qubits and a combination
of error rates and quantum circuit depths on their roadmap that is summarized in Figure 5.9. Their
leading QEC strategy revolves around qLDPC codes, and they have recently introduced an open
source software library for constructing and analyzing qLDPC codes [194]. On the experimental and
architecture side, Infleqtion is exploring techniques for non-destructive readout and tightly focused
laser beams that can address single atoms to reduce quantum gate execution times by removing the
need to shuttle atoms [205].

Year Type nQ error dC
Phys. Log.

2024 N 1600 2 5× 10−3 –
2026 EF 8000 10 – 103

2028 EF 40000 100 – 106
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Figure 5.9: Roadmap data for: Infleqtion [112] – Neutral atoms. Left : Table with technology mile-
stones. Right : Plot with equivalent technology milestones on number of qubits versus number of gates
axes. The light shaded area sketches the performance boundary using a quantum error mitigation
approach on the largest-scale system.

Pasqal. Pasqal is a quantum computing startup based in France that is developing quantum com-
puters based on arrays of Rubidium atoms. The company has recently demonstrated the capability
to load large arrays of over a 1,000 atoms [196] and announced their technical roadmap in June of
2025 [192] which we summarize in Fig. 5.10. They aim to combine analog with FTQC approaches
in future hybrid systems such as Centaurus and Lyra. Although we were not able to identify spe-
cific details on this hybrid approach, recent research [166] suggest that analog mode may be used for
preparing an initial many-body state that is subsequently used by a quantum algorithm running in
digital mode. We remark that Pasqal is one of the few companies reporting clock speeds for their
future systems.

5.1.4 Vendors without public technology roadmaps

In this section we provide an overview of vendors active in the quantum computing space that have not
released a technology roadmap that allows us to infer a P-vector based on our prior assumptions. We
do not claim that our overview is exhaustive, since the quantum computing space is vast and evolves
constantly. We do remark that while we arguably covered the most mature qubit modalities in the first
part of this section (superconducting, ions, and neutral atoms), many different approaches are cur-
rently under investigation and development; some alternative technologies include photonic quantum
computers, topological quantum computing, silicon spin qubits, and color centers in diamonds.

Alpine Quantum Technologies. Alpine Quantum Technologies is a company focused on building
quantum computers based on trapped-ion technology. Alpine Quantum Technologies is based out of
Innsbruck, Austria and currently offers a 20 qubit rack-mounted system. At the time of writing, Alpine
Quantum Technologies has not released a technology roadmap that allows us to infer a P-vector.
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Year Name Type nQ error f [Hz]
Phys. Log.

2026 Orion-γ N-EF 200 2 2× 10−2 10
2027 Vela EF 1000 2 10−3 10
2028 Centaurus EF 1000 20 10−3 10
2029 Lyra F 10000 200 10−5 > 100
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Figure 5.10: Roadmap data for: Pasqal [192] – Neutral atoms. Left : Table with technology milestones.
Right : Plot with equivalent technology milestones on number of qubits versus number of gates axes.
The light shaded area sketches the performance boundary using a quantum error mitigation approach
on the largest-scale system.

Atom Computing. Atom Computing is a startup based in Berkeley, California and was founded
in 2018. The company is developing quantum computers based on atomic arrays of optically-trapped
neutral atoms. They encode the qubit state in nuclear spin states of the atom, which leads to qubits
that interact weakly with their environment and have a long coherence time [22]. Recent news stories
by the company include the announcement of the second generation system with over a 1,000 physical
qubits [14], a demonstration of universal gates on a neutral atom system [172], and an announcement
of a collaboration with Microsoft [258]. Atom Computing has not released a technology roadmap that
allows us to infer a P-vector.

Equal1. Equal1 is a quantum startup founded in 2017 in Dublin, Ireland. Their technology is
rack-mounted silicon based spin qubits [25, 26, 230]. One of their main goals is to make it easy to
integrate with High Performance Computing (HPC)-class environments. One of the key advantages of
this technology lies in the compatibility with standard semiconductor manufacturing, enabling, among
other capabilities, co-integration with control and readout electronics, thus improving scalability and
reducing interconnect complexity [131]. The company has not released a public technology roadmap.

Microsoft. Microsoft is pursuing quantum computers based on hardware-protected topological
qubits. The company recently announced the Majorana 1 chip [4, 167] and has proposed plans to
scale up quantum computational systems based on topological qubits to large-scale fault-tolerant sys-
tems [1]. At the time of writing, Microsoft has not released technology milestones that allow us to
infer a P-vector.

PsiQuantum. The mission statement of PsiQuantum is to build and deploy the first useful quantum
computers. To this end, the company is pursuing an approach based on photonics and leveraging the
semiconductor manufacturing industry [7]. PsiQuantum aims to implement their physical qubits
via a dual-rail encoding based on single photons, relying on single photon sources, single photon
detectors, and optical switches. Recent research suggests that they are pursuing an approach known
as fusion-based quantum computing which relies on entangling measurements (or fusions) on the qubits
of constant-sized resource states [23], and can be used in an active volume architecture [147] which
holds the potential to significantly reduce the P-vector for many scientifically relevant applications.
At the time of writing, PsiQuantum has not released a public technology roadmap.

Quantum Circuits Inc. Quantum Circuits Inc. was founded in 2015 out of research by Yale
University. The company is building quantum computers based on superconducting circuitry. Their
qubits use a dual-rail encoding which allows for native, high-fidelity detection of erasure errors due to
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single photon loss, a known, dominant error channel for superconducting qubits [203]. At the time of
writing, Quantum Circuits has not released a public technology roadmap.

QuEra Computing. QuEra Computing is a startup based in Boston, Massachusets that is building
neutral atom quantum computers. Their current roadmap [204] only specifies milestones in terms of
number of qubits and does not provide any information from which we can infer the number of gates
and we thus do not provide estimates for a P-vector. Their milestones include: (i) ten logical qubits on
at least 256 physical qubits in 2024, (ii) 30 logical qubits on at least 3,000 physical qubits in 2025, and
(iii) 100 logical qubits on at least 10,000 physical qubits in 2026. In light of recent publications [262],
we can expect qLDPC codes to be their target quantum error correction strategy.

Xanadu. Xanadu is a quantum computing company founded in 2016 and headquartered in Toronto,
Canada. Xanadu is building quantum computers based on photonics. Their qubits are encoded in
optical states called Gottesman-Kitaev-Preskill states which offer a universal quantum gate set based
on Gaussian operations [38]. Recent experimental results demonstrate the generation of such GKP
states [135] and a prototype of a modular, networked photonic quantum computer [5]. The company
has not released a public technology roadmap.

5.2 Overview of all vendor roadmaps

Next, we combine and consolidate the milestones from all ten vendor roadmaps in Figure 5.11. The
markers show individual milestones sorted by qubit type, the grayed-out area marks the performance
bounds of current quantum systems, and the solid lines show the expected performance bounds by
the end of the current calendar year, and in five and ten years from today. On the y-axis, we list
quantum gate depths up to 104 that are achievable by QEM methods and quantum gate depths larger
than 106 that are expected to require QEC approaches. The intermediate region [104, 106] will likely
be unreachable by QEM only, but perhaps Quantum Error Detection (QED) with post-selection can
bridge this region. Nonetheless, to achieve the most ambitious five year technology milestones, which
predict an increase in quantum gate depth by 9 orders of magnitude and in qubit count by 3 orders
of magnitude, it is indisputable that FTQC will be necessary.
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Figure 5.11: Overview of all technology milestones presented in Section 5.1. Purple circles indicate
milestones for superconducting quantum computers, green squares indicate trapped ion systems, and
red triangles correspond to neutral atom systems. The current limits on quantum computer perfor-
mance correspond to the area in gray. The dark blue line shows the expected performance by the end
of 2025, the medium blue line shows the expected performance in five years from the time of writing,
and the light blue line shows the expected performance ten years from today.
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We summarize our conclusions from evaluating the various roadmaps in the following finding:

Finding 5. The different vendor roadmaps outlining their projected technological progress
over the next five to ten years show reasonable alignment in terms of the (nQ, nG) figure-of-
merit. All vendors project substantial improvements in the figure-of-merit, often by many orders
of magnitude. We do foresee that the transition to FTQC will be necessary within the next five
years to realize this upscaling.

5.3 Vendor roadmaps versus application requirements

Finally, in Figure 5.12 we combine the results displayed in Figures 4.5 and 5.11 and plot the observed
scaling of scientific applications in materials science, chemistry, and High Energy Physics (HEP)
together with the hardware performance bounds we derived from vendor projections. Figure 5.12 is a
more detailed version of Figure 1.
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Figure 5.12: Overview of vendor milestones expected by the end of 2025, in five years from today,
and in ten years from today (without the individual milestones shown in Figure 5.11) together with
the regions of application resource requirements for high energy physics in red, quantum chemistry in
blue, and materials science in yellow shown previously in Figure 4.5. We observe a significant overlap
between the capabilities of future quantum computers listed on the vendor roadmaps and requirements
for scientific quantum advantage relevant to U.S. Department of Energy (DOE) Office of Science (SC)
mission.

As the plots show, with time progression, we can expect the hardware technology, coupled with er-
ror mitigation, to provide support for many scientific applications in the Quantum Relevant Workload
(QRW) within the next five years. This finding is summarized below.

Finding 6. Under our assumptions, vendor technology roadmaps and DOE SC application
resource requirements to support the QRW are expected to converge, meet, and overlap within the
next five to ten years.
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Chapter 6

Execution times and system
throughput

Our analysis thus far has centered around the volumetric figure of merit P introduced at the beginning
of the report. The P-vector only indicates whether a given quantum computer can run a particular
application. It does not provide an indication on the execution time of said application. Execution
times are crucial both in terms of the end user experience and to understand the value of a quantum
computer in terms of the rate at which it produces scientific results. An improved understanding of
execution times is essential to make informed procurement, planning and operational decisions when
hosting Quantum Computing (QC) systems.

In Section 6.1 we discuss the expected clock speeds for (early) Fault-Tolerant Quantum Comput-
ing (FTQC) systems based on results in the literature and describe key assumptions made. Based
on this discussion we define eight regions of feasibility for quantum application execution time. Next,
we proceed to introduce a simple model, called Sustained Quantum System Performance (SQSP), for
estimating system throughput in Section 6.2. Our model uses a benchmark set of six applications
which represent the Quantum Relevant Workload (QRW) and nine different quantum computer con-
figurations, informed by Chapters 4 and 5 respectively. This conceptual model allows us to reason
quantitatively about a range of different scenarios.

6.1 Execution times

Execution times on FTQC systems will be highly relevant, both for economical and practical consid-
erations. For example, if an application has a runtime of 1 month and the quantum system has a
production life cycle of 3 years, or 36 months, then the value of solving this application should be at
least 1/36th, or roughly 3%, of the total cost of ownership of the quantum system. On the other hand,
increasingly long execution times rapidly become impractical for end users, certainly if the quantum
computation is part of a larger computational workflow which requires multiple iterations or shots.

Accurately estimating execution times requires deep insights into the quantum computer archi-
tecture and structure of the application. The result of quantum circuit compilation, which is an
NP-complete problem [37], can strongly influence the quantum gate depth of a circuit when mapped
to hardware. Other factors that play an important role include:

• The duration for implementing each quantum gate from a universal quantum gate set (including
both the leading order type of quantum gates as well as the lower order ones). This step is
typically rate-limited by the measurement time required to extract the error syndrome;

• The speed of the Quantum Error Correction (QEC) decoder that analyzes the error syndrome
data and plans corrective actions can slow down the quantum computer [50];

• The overhead incurred by topology, routing, and qubit shuttling when mapping an application
to a quantum computer.
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Collectively, these determine the logical clock speed or frequency f of the quantum computer. As
discussed in Section 5.1, only two vendors, Oxford Quantum Computing (1–10 MHz) and Pasqal
(10–100+ Hz), provide data on the logical clock speeds as part of their technology roadmaps.

As detailed performance projections are scarce, we provide a high-level overview of execution
times. Our discussion is founded on the two data points available from vendors and supplemented
with results from the literature, a level of detail we consider adequate for the purpose of reasoning
about our findings.

We use the following ranges of clock speed for each technology type:

• Superconducting : f ∈ [100 kHz, 10 MHz]. This range is based on clock speed estimates from
Oxford Quantum Computing and [41, 53, 121, 171].

• Trapped ions: f ∈ [1 kHz, 1 MHz]. This range is based on clock speed estimates from [21, 217].

• Neutral atoms: f ∈ [10 Hz, 100 kHz]. This range is based on clock speed estimates from Pasqal
and [99, 205, 226].

• Photons: f ∈ [100 MHz, 10 GHz]. This range is based on clock speed estimates from [214].

We observe that these clock speeds span nine orders of magnitude and it is natural to assume that
execution times and throughput metrics will span a comparibly large range.

We consider the logical clock speed as the rate at which quantum gates can be executed. So an
application which requires nG quantum gates of the dominant type per run and is repeated for Ns

times incurs a total quantum gate cost Ctot = Nsng and has an estimated execution time of,

texec = Ctot/f. (6.1)

We remark that according to this model, the execution time estimate is independent of the number of
logical qubits required by an application. This assumption may approximately be satisfied if resource
states to implement a dominant gate can be generated and applied to any qubits in the circuit in a
time that does not depend on nQ. More detailed models must take into account more fine-grained
aspects of the FTQC architecture, which may vary significantly between different vendors and is left
for future analyses.

Under these assumptions, Figure 6.1 shows eight different regions of feasibility for the range of
clock speeds f starting at 1 Hz and going up to 1 THz (informed by the previous discussion) and for
a total cost Ctot up to 1020 (informed by the application requirements discussion in Chapter 4). These
color-coded regions include execution times of:

• Less than 1 second : in this case the application runs in near real-time from an end user per-
spective, it is easy to run applications in interactive mode, and it is practical to integrate the
quantum application into a larger High Performance Computing (HPC) workflow with limited
scheduling concerns.

• Less than 1 minute: in this case the time to execute the application will become noticeable for the
end user, running the application in an interactive environment starts to become cumbersome,
and scheduling concerns are relevant for integrated workflows.

• Less than 1 hour : in this case it is impractical to run the application in interactive mode and an
approach using batch jobs is desired, co-scheduling HPC resources in concert with the quantum
system will be necessary for workflow-style jobs.

• Less than 1 day : this is approaching the limit of what we deem practical for a single application
at NERSC; at this timescale scheduling might be less of a concern as multiple other jobs can be
run while the quantum system is active.

• Less than 1 week : this is at the limit of what we deem practical, this timescale should be reserved
for valuable production runs only.

37



• Less than 1 month: this timescale should be considered only in extraordinary circumstances for
important applications, for example when it resolves a scientific question of significant value ( 3%
of cost of ownership of the quantum computer); it is unlikely that this will become a relevant
use case at NERSC.

• Less than 1 year : this timescale should be considered only in the most extraordinary circum-
stances for high-impact applications where the value of the solution is on par with the total cost
of ownership of the quantum computer; it is unlikely that this will become a relevant use case
at NERSC.

• More than 1 year : we do not consider this to be a useful timescale.

The current time limit on jobs submitted to the Perlmutter system at NERSC is 48h. Due to
the different nature and speed of FTQC, it is plausible that longer running jobs will be supported on
future quantum systems (i.e. up to 1 week) for valuable production runs. We estimate that within a
1 week period an FTQC system can run an application with a total cost of about 107 for the slowest
clock speed estimates up to more than 1016 for the fastest clock speed estimates.
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Figure 6.1: Execution time as a function of logical clock speed f and total cost Ctot = Nsng. The
execution time is estimated as Ctot/f . Regions where the execution times are less than 1 second, 1
minute, 1 hour, 1 day, and 1 week are shown in gradually darker shades of green. Execution times
less than 1 month are shown in yellow, less than 1 year in orange, and more than 1 year in red. The
horizontal strips at the top of the figure show the range of clock frequencies for each technology type
as described in the main text. The strips are stacked vertically in order to visually distinguish them.

6.2 Workload and system throughput

In this section, we use data collected thus far to construct a simple quantum workload model that
we subsequently optimize for 9 different quantum system specifications. Our model is conceptual in
nature and lacks sufficient detail both on the applications and quantum system specifications to draw
precise conclusions. Nonetheless, we consider this an important stepping stone towards modeling the
value and performance of FTQC systems. System level performance models have historically been
used by NERSC as part of procurement processes for HPC systems. Examples include the Sustained
System Performance (SSP) [130] and Sustained System Improvement (SSI) [16] metrics which are
respectively absolute and relative system-level metrics for a benchmark workload relevant to NERSC.
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6.2.1 Prototypical workload

To define a quantum version of a system level performance model, we start by proposing a collection
of prototypical benchmark applications that represent the QRW. As there is no historical quantum
workload data at NERSC, we use a set of six applications based on the discussion in Chapter 4. The
six applications (A–F) are summarized in Table 6.1. The values for the number of shots Ns are based
on Table 4.1.

Table 6.1: Six quantum computing applications (A–F), determined by number of qubits nQ, number
of gates nG, number of samples/repetitions (Ns), total cost (Ctot), and prototypical use case.

App. nQ nG Ns Ctot Prototypical use case

A 200 106 101 107 Condensed matter physics (static)
B 200 106 103 109 Condensed matter physics (dynamics)
C 1,000 109 101 1010 Quantum chemistry (static)
D 1,000 109 105 1014 Quantum chemistry (dynamics)
E 2,000 1011 101 1012 Quantum chemistry (static, large system)
F 250 1012 101 1013 High energy physics (static)

Applications A and B listed in Table 6.1 are proxies for condensed matter physics and materials
science problems discussed in Section 4.1 and both have a gate depth of 106 which was the minimal
gate depth identified for this category. Application A assumes ten repetitions, which we deem a
reasonable number for a static problem such as Ground State Energy Estimation (GSEE) provided
that the reference wavefunction has sufficient overlap with the ground state. Application B on the
other hand assumes 103 repetitions which represents the sampling overhead required to measure the
observable of interest after a quantum dynamics simulation.

Applications C, D and E are all inspired by the quantum chemistry discussion in Section 4.2; C
and E both represent static problems like GSEE for respectively a smaller and larger system, they
both assume Ns = 10 but differ in gate depth between 109 and 1011. Application D on the other hand
represents some dynamics problem. As was mentioned in Section 4.2, resource data for dynamics
problems is scarce in the literature. Hence, we use the same nG as in Application C, but with
drastically increased sampling overhead of Ns = 105 to reflect the larger number of measurements
typically required for a dynamics problem.

Finally, Application F represents the High Energy Physics (HEP) applications discussed in Sec-
tion 4.3 as demonstrated by the highest gate depth of 1012 among all six problems.

Within each scientific domain, we erred on selecting applications on the cheaper side since (1)
faster execution times do lead to higher throughput and thus we expect our results to reflect an
optimistic scenario, and (2) we expect a general trend of resource reduction through algorithmic
advances. Overall, the suite of benchmark applications in Table 6.1 spans seven orders of magnitude
from 107 up to 1014 in total cost and six orders of magnitude in gate depth. We remark that, while
we list data for nQ for these benchmark applications, the execution time estimates are independent of
nQ based on our prior assumptions and modeling approach.

6.2.2 Prototypical quantum computers

Table 6.2 describes nine different possible quantum system specifications varying in maximal gate
depth ng ∈ [106, 109, 1012] (in line with the vendor roadmaps), also dubbed megaquop [198] (for
million quantum operations), gigaquop and teraquop FTQC systems, and clock speed f ∈ [1 kHz, 1
MHz, 1 GHz] (in line with Fig. 6.1). We remark that we do not list nQ for these reference systems
as the execution time estimate is independent of nQ and we make the blanket assumption that the
number of qubits is never the constraining factor that determines whether or not an application can
run.
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Table 6.2: Nine different quantum computer configurations as determined by the maximum number
of gates they can reliably run (nG) and clock frequency f .

f

nG 1 kHz 1MHz 1GHz

106 (Megaquop) 1 2 3

109 (Gigaquop) 4 5 6

1012 (Teraquop) 7 8 9

6.2.3 Execution times of benchmark workload

Figure 6.2 shows both the P = (nG, nQ) and (nG, Ctot) vectors for the six benchmark applications
introduced in Table 6.1 together with the domain-specific regions identified in Fig. 4.5. This shows
that within each domain, we selected P-vectors on the lower end of their respective range. When we
consider Ctot instead of nG, the cost increases multiplicatively by a factor of Ns but this does not affect
whether a given system is able to run an application reliably, it merely increases the total execution
time on the quantum system.
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Figure 6.2: Domain specific resource requirements introduced in Figure 4.5 together with P-vectors
for the six benchmark applications (A–F) introduced in Table 6.1 as markers with black edges. The
corresponding (nQ, Ctot)-vector for each application is plotted as an edge-less marker of the same type
connected by a vertical line to the P-vector. The solid, dashed, and dotted horizontal lines show the
largest application that can be run within a day period on respectively 1 kHz, 1 MHz, and 1 GHz
devices considered in Table 6.2

Table 6.3 summarizes the execution time estimates based on Eq. (6.1) for each combination of
application (A–F) and quantum system (1–9) introduced in the previous section. Execution time
estimates are listed in terms of the eight ranges introduced in Fig. 6.1. Applications C–F and E–F
cannot run on respectively the megaquop and gigaquop systems as their number of gates nG lies
beyond the limits of the devices.

The main conclusion we draw from Table 6.3 is that there is a clear separation into three categories
of applications that impose increasingly demanding requirements on the quantum systems:

1. Application A and B: These have the lowest total cost Ctot at respectively 107 and 109 and can run
with acceptable performance on each of the nine quantum systems considered. Naturally, faster
clock speeds lead to faster quantum calculations, but even at a frequency of 1 kHz applications
of this size become feasible.
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2. Application C and E: These have an intermediate total cost of respectively 1010 and 1012 and
require a processing speed of 1 MHz to achieve feasible execution times. Application E has a
gate depth beyond 109 and thus is only deemed feasible on systems 8 and 9.

3. Application D and F: These have the highest total cost at respectively 1014 and 1013. At this
level, only the GHz-rate systems result in a feasible execution time estimate. Application F has
a gate depth beyond 109 and thus is only deemed feasible on system 9.

Table 6.3: Execution times for quantum applications A–F on nine quantum computing systems. Colors
indicate time ranges: < 1s, < 1min, < 1h, < 1day, < 1wk, < 1mo, < 1yr, > 1yr.
Invalid combinations (i.e. when the number of gates in the application is larger than the number of
gates the system can reliably run) are marked with ×.

Quantum Applications

System Type System f A B C D E F

Megaquop
nG = 106

1 1 kHz < 1day < 1mo × × × ×

2 1 MHz < 1min < 1h × × × ×

3 1 GHz < 1s < 1min × × × ×

Gigaquop
nG = 109

4 1 kHz < 1day < 1mo < 1yr > 1yr × ×

5 1 MHz < 1min < 1h < 1day > 1yr × ×

6 1 GHz < 1s < 1min < 1min < 1wk × ×

Teraquop
nG = 1012

7 1 kHz < 1day < 1mo < 1yr > 1yr > 1yr > 1yr

8 1 MHz < 1min < 1h < 1day > 1yr < 1mo < 1yr

9 1 GHz < 1s < 1min < 1min < 1wk < 1h < 1day

6.2.4 Sustained quantum system performance

In this section, we combine the data generated in Table 6.3 into a single system level metric that we
call the SQSP metric and is an extension of the SSP metric previously introduced by NERSC [130] to
quantum systems. The SSP metric for a supercomputer is defined as the geometric mean of the flop
rate of each application in a properly defined benchmark suite on said supercomputer. In absence of
the capability to run a representative benchmark suite on a large-scale quantum computer, we use the
execution time estimates in Table 6.3 to compute the expected throughput Ti of application i over a
one year time window, i.e.,

Ti = 1yr / texec,i. (6.2)

The one year time period is chosen as it corresponds to the typical cycle at which projects are allocated
computer resources at NERSC.

We then define SQSP as the geometric mean of the throughput values of every application in a
suite of n benchmarks:

SQSP = (Πn
i=1Ti)

1/n . (6.3)

Applications that cannot run on a particular quantum system (× in Table 6.3) have infinite execution
time and zero throughput, and the SQSP for such a system will be zero. The value of SQSP metric
thus depends critically on the suite of benchmarks, and SQSP values for different suites cannot be
compared to each other.

Table 6.4 shows the results of the SQSP metric based on the data collected in Table 6.3 for the nine
quantum systems we consider. The SQSP for each system type is evaluated using a different benchmark
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suite consisting of only the subset of applications from Table 6.3 that can run on that architecture.
We do observe that the SQSP metric spans about eight orders of magnitude. We conclude from our
analysis that (1) faster FTQC devices naturally lead to high SQSP results, (2) at megaquop-scale all
systems lead to SQSP of at least O(103) megaquop-jobs/year, (3) at gigaquop-scale, the throughput
of the kHz system drops below 10 gigaquop-jobs/year, indicating that higher frequencies will be a
necessity, and (4) at teraquop-scale, clock speeds will need to reach at least MHz-range in order to
achieve meaningful throughput.

Table 6.4: SQSP for a one year window for every system defined in Table 6.2 with respect to a
benchmark suite which is a subset of the workload defined in Table 6.1.

System Type Suite System f SQSP

Megaquop
nG = 106

A–B
1 1 kHz

10−1100 101 102 103 104 105 106 107 108 109

2 1 MHz

3 1 GHz

Gigaquop
nG = 109

A–D
4 1 kHz

5 1 MHz

6 1 GHz

Teraquop
nG = 1012

A–F
7 1 kHz

8 1 MHz

9 1 GHz

The rudimentary performance model expressed by Eq. (6.1) does not account for details of the
FTQC architecture (such as qubit connectivity, parallel gate operations, or multi-qubit gates) that
have the potential to dramatically alter system performance. Practical use of SQSP would avoid this
limitation by relying on measured runtimes or more detailed device-specific models. Nevertheless,
the current analysis is capable of summarizing anticipated application-level capabilities across the QC
industry.
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Chapter 7

Conclusion

NERSC is exploring and evaluating alternative compute technologies that can deliver increased per-
formance in a more power-efficient manner in the 2030’s time-frame for the next-next HPC generation.
One key direction in this regard is represented by quantum computers that can lead to exponential
speedups for important scientific problems that classical HPC cannot solve. Based on the Quantum
Information Science (QIS) Applications Roadmap of the U.S. Department of Energy (DOE) [20], we
have focused in this report on materials science, quantum chemistry, and high energy physics, and
collected over 140 end-to-end resource estimates for benchmark problems from the scientific literature.
These domains of science cover over 50% of the DOE Office of Science (SC) production workload, which
aggregates the computational needs of more than 12,000 NERSC users across the DOE landscape.

The space of quantum hardware development has seen major improvement in recent years, espe-
cially through noise reduction and early tests of error correction [2, 3, 132, 161, 235, 261] across different
technology propositions such as neutral atoms, ions, and superconducting qubits. Given these devel-
opments, we see very ambitious roadmaps across the whole sector, as this is a high-risk high-reward
environment when considering the disruptive power of quantum computing. On the government side,
we notice a similar fast approach as can be seen from the DARPA Quantum Benchmarking Initia-
tive (QBI), which targets Fault-Tolerant Quantum Computing (FTQC) in under 10 years [201]. This
bullish approach will require risk mitigation as the technology is not yet mature and recent successes,
while very promising, have been in the realm of experimental laboratories and the production chain
is currently under development. The market is exploring many hardware technologies with supercon-
ducting, neutral atoms, and ions currently taking the lead. Alternative technologies like photonics,
spin qubits, topological qubits, etc are also currently under exploration by various vendors. At the
present, it remains too early to assess which approach will stand the test of time, and the coming years
will be crucial in technology development and the transition from laboratory to production scale.

We have superimposed the resources needed for the scientific applications collected from the liter-
ature with the vendors roadmaps and see convergence in the near future, particularity so considering
algorithmic developments. Indeed, on the algorithmic front, we notice resource requirements being
greatly reduced with every development (see FeMoco in quantum chemistry). The combination of
these two trends promises early fault tolerant quantum relevant workloads in the next five to ten
years. Additionally, there is a high likelihood that new and heuristic impactful applications will be
developed as better quantum systems become available to researchers.

Whether this utility will cover a reasonable fraction of High Performance Computing (HPC) work-
loads (e.g. around 50%), or become a dedicated resource for certain workloads, remains to be seen,
and further algorithmic development and hardware validation are needed in this direction. To get
an initial estimate of timing and throughput, we selected a few applications from condensed matter,
chemistry, and HEP and computed their runtime for quantum hardware clock speeds between 1 KHz
and 1 GHz. We proposed the Sustained Quantum System Performance (SQSP) as a metric to com-
pare system-level throughput for a quantum system. Perhaps not surprisingly, the number of tasks
completed varies wildly between different hardware specifications. This is an indication of the need
for careful selection of applications for early FTQC, where resources are expected to be limited.

In addition, the classical resources needed for error correction and hybrid algorithms with both
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quantum and classical resources in the loop, might require tight coupling with low latencies between
HPC and Quantum Computing (QC) [50]. This inevitably adds another layer of complication to the
proposed vendor roadmaps. A tight collaboration between the public and private sector is key in
overcoming these challenges and unlocking the quantum computing potential.
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Glossary of Terms

Code Distance A measure of a quantum error correction code’s robustness, defined as the minimum
number of physical qubit errors required to cause a logical error. A code with distance d can
detect up to d − 1 errors and correct up to ⌊(d − 1)/2⌋ errors. Higher code distances provide
stronger error protection but require more physical qubits per logical qubit. 12, 26–28

Code Threshold The critical physical error rate below which quantum error correction becomes
beneficial, allowing logical error rates to decrease exponentially as more resources are added.
Above this threshold, adding more error correction actually increases the logical error rate. For
surface codes, the threshold is approximately 1% error rate per operation. 5, 12

Controlled-NOT An controlled-NOT gate (also known as a controlled-X gate) is a two-qubit en-
tangling gate. It applies a NOT (or Pauli-X) operation on the target qubit when the control
qubit is in the |1⟩-state. Its action is summarized as |a⟩ |b⟩ 7→ |a⟩ |b⊕ a⟩. 9, 10, 46

Error Syndrome The pattern of measurement outcomes from ancilla qubits that indicates which
errors have occurred in a quantum system without directly measuring the data qubits. Syndrome
extraction allows errors to be identified and corrected without collapsing the quantum state,
forming the basis of quantum error correction protocols. 12, 36

Fault-Tolerant Quantum Computing A quantum computing paradigm where logical operations
can be performed reliably despite the presence of errors in physical components. This requires
quantum error correction codes, fault-tolerant gate implementations, and error rates below the
code threshold to ensure that errors do not propagate faster than they can be corrected. 5,
10–12, 14, 15, 22, 25, 26, 28, 30, 32, 34–39, 42, 43, 46

First Quantization A formulation of quantum mechanics where particles are treated as quantum
mechanical objects with wavefunctions, while fields remain classical. In this approach, the
Schrödinger equation describes the evolution of N -particle wavefunctions in configuration space,
with the wavefunction amplitude giving the probability of finding particles at specific positions.
While conceptually straightforward, first quantization becomes computationally challenging for
many-body systems due to the exponential growth of the configuration space with particle
number. 16, 18

Ground State Energy Estimation A fundamental quantum computing application that deter-
mines the lowest energy eigenvalue of a quantum system’s Hamiltonian. This problem is central
to quantum chemistry and materials science, as ground state energies determine molecular prop-
erties and reaction rates. Quantum algorithms like variational quantum eigensolver (VQE) and
quantum phase estimation can solve this problem with potential advantages over classical meth-
ods. 16–18, 24, 39, 46

Linear Combination of Unitaries An important algorithm in developing block encoding for ar-
bitrary operators by first decomposing them in terms of unitary operators, such as the Pauli
basis. In a second stage, the applications of prepare, select, and unprepare primitives allows for
the construction of the block encoding of the target operator. This algorithm can serve as the
preparatory step before QSVT algorithm is applied. 19, 46
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Logical Qubit An encoded qubit protected by quantum error correction, formed from multiple phys-
ical qubits working together to store quantum information redundantly. Logical qubits can
maintain coherence far longer than individual physical qubits by detecting and correcting errors,
enabling reliable quantum computation at the cost of increased resource requirements. 9, 12,
16, 19, 20, 25–29, 31, 32, 34, 37

Noisy Intermediate Scale Quantum Noisy Intermediate-Scale Quantum devices, referring to
current-generation quantum computers with 50-1000 qubits that lack full error correction.
NISQ devices can potentially demonstrate quantum advantage for specific problems but are
limited by noise, short coherence times, and restricted circuit depths, requiring specialized
algorithms and error mitigation techniques. 4, 9, 11, 14, 25, 26, 30, 31, 46

Physical Qubit The fundamental hardware unit of quantum information in a quantum computer,
such as a superconducting circuit, trapped ion, or quantum dot. Physical qubits are subject to
decoherence and operational errors, typically maintaining quantum states for microseconds to
seconds depending on the platform, necessitating error correction for practical quantum com-
puting. 5, 9, 10, 12, 25–31, 33, 34

Probabilistic Error Cancellation A quantum error mitigation technique that reduces the effect
of noise by running multiple circuit variants with inserted recovery operations. The results are
combined with appropriate weights to cancel out error contributions statistically. While this
method can significantly improve accuracy, it incurs an exponential sampling overhead that
limits its applicability to moderate circuit depths. 10, 11, 26, 46

Quantum Circuit A sequence of quantum gates applied to qubits, representing a quantum algorithm
or computation. Circuits are typically expressed as directed acyclic graphs where nodes represent
gates and edges indicate qubit connections. Circuit depth, width, and gate count are key metrics
that determine resource requirements and feasibility on a quantum computer. 3, 9, 11, 14, 15,
21, 24–26, 32, 36

Quantum Error Correction The process of protecting quantum information from decoherence and
operational errors by encoding logical qubits into entangled states of multiple physical qubits.
Error correction codes detect and correct errors without directly measuring the protected in-
formation, enabling fault-tolerant quantum computation when error rates fall below the code
threshold. 4, 10–12, 22, 25–28, 32, 34, 36, 47

Quantum Error Detection The process of identifying when errors have occurred in a quantum
system without necessarily correcting them. Error detection requires fewer resources than full
error correction and can be used to post-select successful runs or trigger re-computation. This
approach is particularly useful for quantum communication and certain NISQ applications where
modest error rates are acceptable. 34, 47

Quantum Error Mitigation Techniques to reduce the impact of errors in NISQ devices without
the full overhead of quantum error correction. Methods include zero-noise extrapolation, proba-
bilistic error cancellation, and symmetry verification. While these approaches cannot eliminate
errors entirely, they can significantly improve computation accuracy at the cost of increased
sampling or classical post-processing. 9–12, 25, 26, 34, 47

Quantum Gate A reversible operation on one or more qubits that forms the basic building block
of quantum circuits. Common gates include single-qubit rotations (X, Y, Z, Hadamard) and
two-qubit entangling gates (CNOT, CZ). Gate fidelity, duration, and connectivity constraints
determine the practical implementation of quantum algorithms on physical hardware. 2, 3, 9,
11, 12, 14, 16, 20, 22, 24, 25, 32, 34, 36, 37

Quantum Information Science The interdisciplinary field studying how quantum mechanical sys-
tems can be used to store, process, and transmit information. QIS encompasses quantum com-
puting, quantum communication, quantum cryptography, and quantum sensing, exploring both
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fundamental limits of information processing and practical applications. The field combines
physics, computer science, mathematics, and engineering to develop quantum technologies that
can surpass classical limitations in computation, communication security, and measurement pre-
cision. 4, 43, 47

Quantum Low Density Parity Check A class of quantum error correction codes characterized by
sparse parity check matrices, where each qubit participates in only a few syndrome measure-
ments. These codes can achieve better encoding rates than surface codes while maintaining
good error correction properties, though they typically require non-local connectivity that poses
implementation challenges on current hardware. 12, 28, 31, 32, 34, 47

Quantum Phase Estimation A fundamental quantum algorithm that extracts eigenvalue informa-
tion from unitary operators by encoding phase differences into measurable probability ampli-
tudes. This algorithm underlies many quantum applications including Shor’s factoring algorithm
and quantum chemistry simulations, offering exponential speedup for certain problems but re-
quiring deep circuits. 13, 16–19, 24, 47

Quantum Signal Processing A framework for designing quantum algorithms by constructing poly-
nomial transformations through sequences of rotation gates and signal operators. QSP provides
optimal quantum algorithms for a wide range of problems by encoding desired polynomial func-
tions into alternating sequences of signal operators and signal processing operators. This tech-
nique forms the foundation for quantum singular value transformation and achieves optimal
query complexity for tasks including Hamiltonian simulation, matrix inversion, and amplitude
amplification. 13, 14, 17, 47

Quantum Singular Value Transformation A unified framework for quantum algorithms that
transforms singular values of block-encoded matrices through polynomial approximations. This
technique generalizes many quantum algorithms including phase estimation, amplitude ampli-
fication, and Hamiltonian simulation, providing optimal query complexity for a broad class of
matrix transformation problems. 13, 19, 21, 23, 24, 47

Qubit The fundamental unit of quantum information, analogous to a classical bit but capable of
existing in superposition states |0⟩, |1⟩, or any linear combination α |0⟩ + β |1⟩. Qubits enable
quantum parallelism and entanglement, the key resources for quantum computational advantage,
but require careful isolation from environmental noise to maintain coherence. 2, 3, 9, 14, 16,
17, 20, 23, 24, 34, 37

Qubitization A quantum algorithm technique that encodes the eigenvalues of a Hamiltonian into the
phases of a unitary operator, enabling efficient quantum simulation and eigenvalue estimation.
This method block-encodes the Hamiltonian into a larger unitary matrix, allowing quantum
phase estimation to extract eigenvalues with optimal query complexity. Qubitization often pro-
vides better scaling than Trotterization for Hamiltonian simulation problems. 12, 14, 16–19,
24

Qutrit A three-level quantum system that extends the qubit concept to a superposition of three
basis states |0⟩, |1⟩, |2⟩. Qutrits can provide advantages in certain quantum algorithms and error
correction schemes by offering higher information density and more efficient gate decompositions,
though they are generally more challenging to control and maintain than qubits. 20

Second Quantization A formulation of quantum mechanics using creation and annihilation oper-
ators to describe many-body quantum systems in terms of occupation numbers rather than
individual particle coordinates. This approach naturally handles variable particle numbers and
identical particle statistics (bosons/fermions), making it essential for quantum chemistry and
condensed matter physics. Second quantization provides the foundation for efficient quantum
simulation algorithms, as fermionic or bosonic operators can be mapped to qubit operations
through transformations like Jordan-Wigner or Bravyi-Kitaev. 16, 18
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Shot A single execution of a quantum circuit on a quantum computer, producing one measurement
outcome from the probabilistic quantum state. Since quantum measurements are inherently
probabilistic, multiple shots are typically required to estimate expectation values or probability
distributions. The number of shots needed scales with desired statistical accuracy, with standard

error decreasing as O(N
−1/2
s ) for Ns shots. 9, 10, 24, 36

Surface Code The leading quantum error correction code for near-term implementation, arranging
physical qubits on a 2D lattice where data and measurement qubits alternate in a checkerboard
pattern. Surface codes require only nearest-neighbor interactions, tolerate error rates up to
∼ 1%, and scale favorably, making them the primary choice for many quantum computing
architectures despite their high qubit overhead. 12, 21, 26–29

Trotter A method for simulating quantum time evolution by decomposing the exponential of a sum of
non-commuting operators into a product of simpler exponentials. While conceptually simple and
widely used, Trotterization typically requires more gates than advanced methods like qubitization
for achieving the same accuracy, though it has the advantage of requiring fewer ancilla qubits,
making it more suitable for near-term quantum devices with limited qubit counts. 14, 17–20,
23, 24
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