

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

On the CFL limit for stability of the Hamilton–Jacobi–Bellman equation

M Schneider, J Pratt, A Perloff

September 2025

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Lawrence Livermore
National Laboratory

On the CFL limit for stability of the Hamilton–Jacobi–Bellman equation

J. Pratt , M. Schneider , A. Perloff
Astronomy and Astrophysics Analytics Group, Physics Division

Livermore, California August 18, 2025

Contents

1	Introduction to explicit time integration of the Schrödinger equation	1
2	Explicit schemes and the concept of numerical stability	2
3	The influence of the magnitude of the potential	3
4	Summary	4
5	References	5

The objective of this technical report is to describe the Courant–Friedrichs–Levy (CFL) limit for stability, as it applies to the solution of the Hamilton–Jacobi–Bellman equation with explicit finite difference methods. Recently Schneider et al. [2022] demonstrated that the Hamilton–Jacobi–Bellman equation for optimal control can be recast in the form of a Schrödinger equation.¹ Finite difference methods for solving Schrödinger-type equations are often either of the Crank–Nicolson type (implicit second order) or the Euler type (explicit first order) [Wu, 1996]. Another consideration is that conservative numerical methods – methods that preserve mass or energy – are frequently desirable for solving the nonlinear Schrödinger equation. The Crank–Nicolson method is a commonly used example of a method that preserves conservation laws [Antoine et al., 2013, Bao and Cai, 2013, Gong et al., 2017, Wang and Wang, 2018, Henning and Wärnegård, 2021]. As an implicit method, the Crank–Nicolson method is also unconditionally stable; in contrast, most of the conventional explicit schemes, including Euler-type schemes, are unconditionally unstable for Schrödinger-type equations [Chan et al., 1986]

This work is pedagogical in nature. We survey the literature on numerically solving Schrödinger-type equations, and explore stability limits of unstable. We begin with a description of an Euler-type explicit integration scheme where the stability of the numerical scheme is limited.

1 | Introduction to explicit time integration of the Schrödinger equation

Let us consider the solution of the one-dimensional Schrödinger equation, namely

$$i\hbar \frac{\partial}{\partial t} \psi(t, x) = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V \right] \psi(t, x). \quad (1.1)$$

A first-order Euler method can be used to discretize the time derivative in this equation, in the following way

$$\frac{\partial}{\partial t} \psi(t, x) = \frac{\Delta \psi}{\Delta t} = \frac{\psi_{i+1,j} - \psi_{i,j}}{t_{i+1} - t_i} + \mathcal{O} \left((t_{i+1} - t_i) \frac{\partial^2}{\partial t^2} \psi(t, x) \right). \quad (1.2)$$

Here $i = 0, 1, 2, 3, \dots, N$ is a discretization of time. This is described as a first-order method because the error is proportional to the time-step $\Delta t = t_{i+1} - t_i$ to the power of one.

A second-order central scheme is often used to discretize the second order spatial derivative. We derive that by beginning with a first-order Euler step

$$\frac{\partial}{\partial x} \psi(t, x) = \frac{\psi_{i,j+1} - \psi_{i,j}}{x_{j+1} - x_j}. \quad (1.3)$$

Here $j = 0, 1, 2, 3, \dots, M$ is a discretization of the spatial coordinate. We then apply this to obtain the second derivative

$$\frac{\partial^2}{\partial x^2} \psi(t, x) = \left(\frac{\psi_{i,j+1} - \psi_{i,j}}{x_{j+1} - x_j} - \frac{\psi_{i,j} - \psi_{i,j-1}}{x_j - x_{j-1}} \right) \frac{1}{x_{j+1} - x_j}. \quad (1.4)$$

¹A large body of literature has been devoted to the well-posedness of the Schrödinger equation in various formulations. Here we assert that the simple one-dimensional example problem we examine is well-posed without further examination.

If the spacing in x is regular, *i.e.* $x_{j+1} - x_j = x_j - x_{j-1} = \Delta x$, we can combine these neatly so that

$$\frac{\partial^2}{\partial x^2} \psi(t, x) = \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j-1}}{\Delta x^2} + \mathcal{O}\left(\Delta x^2 \frac{\partial^4}{\partial x^4} \psi(t, x)\right). \quad (1.5)$$

This is described as a second-order method because the error is proportional to the grid size $\Delta x = x_{j+1} - x_j$ to the power of two. This numerical scheme involves values of ψ at three spacial points and two time points, which is displayed on a plot in Figure 1.1. This is typically described as the *stencil*. The usual way to confirm the order of a method is to run several simulations with different Δx and Δt , then compare the solutions using a function $\text{Err} = |\psi_{\text{smallest}} - \psi_n|$. Here ψ_{smallest} represents the solution with the smallest grid spacing, and thus smallest error, and ψ_n represents another grid. Plots can then be made of Err vs. Δx and vs. Δt .

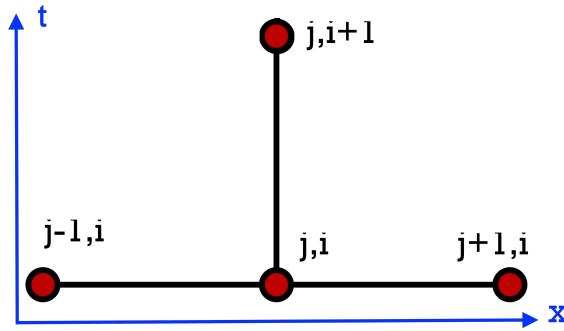


Figure 1.1: Stencil for this 4-point discretization scheme.

2 | Explicit schemes and the concept of numerical stability

The one-dimensional Schrödinger equation in eq. (1.1) can be expressed

$$\frac{\psi_{i+1,j} - \psi_{i,j}}{\Delta t} = F(\psi)_i. \quad (2.1)$$

This allows for the convenient re-arranging of terms

$$\psi_{i+1,j} = \psi_{i,j} + \Delta t F(\psi)_i. \quad (2.2)$$

The right hand side of this equation is entirely at time point i ; thus eq. (2.2) is a formula that provides the value of ψ at the future step $i + 1$ based only on data available at the current step i . Such schemes are known as explicit numerical schemes, as opposed to an implicit numerical scheme. Explicit integration methods can become unstable when the grid resolution (smaller Δx) cannot “keep up” to resolve the movement of the resolved quantity ψ ; the grid spacing then needs to be made finer as ψ moves more rapidly. The movement of ψ through a grid characterized by Δx thus sets an upper limit on the time steps Δt

$$\Delta t_{\max} = C_{\text{CFL}} \frac{\Delta x}{u_{\text{effective}}}. \quad (2.3)$$

This is typically referred to as the CFL condition, and the non-dimensional constant C_{CFL} is called the CFL number or the Courant number [e.g. [Moura and Kubrusly, 2012](#)]. When the CFL condition is violated, the numerical integration will typically yield NaNs. In practice Δt is often chosen to be 5–10 times less than Δt_{\max} because this provides a lower error, with a comfortable margin for the stability of the solution. This formula contains a term $u_{\text{effective}}$, an effective velocity that tracks the movement of ψ through the grid. This is the most intuitive way to think of the CFL number: as a ratio between the physical velocity and the velocity that can be resolved by the grid. Re-arranging terms, the effective velocity is expressed

$$u_{\text{effective}} = C_{\text{CFL}} \frac{\Delta x}{\Delta t}. \quad (2.4)$$

For the Schrödinger equation [Shen et al., 2013, Bambusi et al., 2013, Huang et al., 2015, Rydin et al., 2021, Ryu et al., 2016, Tan and Heh, 2024], two different possibilities for the Schrödinger CFL number have been published

$$C_{\text{CFL},1} = \frac{\hbar}{m} \frac{\Delta t}{\Delta x^2} \quad \text{and} \quad C_{\text{CFL},2} = \sqrt{\frac{\hbar}{m} \frac{\Delta t}{\Delta x^2}}. \quad (2.5)$$

These differ by the use of the square-root; formally what matters is the point where $C_{\text{CFL}} = 1 = \sqrt{1}$, so it may be that this difference was not seen as important. However, comparing these to our typical expression of the CFL number above, these two formulations imply two different effective velocities

$$u_{\text{effective},1} = \frac{\hbar}{m} \frac{\Delta t}{\Delta x^2} \frac{\Delta x}{\Delta t} = \frac{\hbar}{m} \frac{1}{\Delta x}. \quad (2.6)$$

or

$$u_{\text{effective},2} = \sqrt{\frac{\hbar}{m} \frac{\Delta t}{\Delta x^2}} \frac{\Delta x}{\Delta t} = \sqrt{\frac{\hbar}{m} \frac{1}{\Delta t}}. \quad (2.7)$$

The question of which effective velocity is correct will dictate how close to the CFL number one wishes to run. This could be determined in an experimental fashion, by examining the error of solutions for a range of time steps and grid spacings.

3 | The influence of the magnitude of the potential

In a situation where the potential V in the Schrödinger eq. (1.1) is much larger than the Laplacian term, it will dominate the effective velocity and the limit of numerical stability. Consider the CFL number definition

$$C_{\text{CFL},1} = \frac{\hbar}{m} \frac{\Delta t}{\Delta x^2} \leq 1. \quad (3.1)$$

The formulation of this corresponds to a balance between the time derivative and Laplacian terms in eq. (1.1), namely

$$\frac{\hbar}{\Delta t} \geq \frac{\hbar^2}{m} \frac{1}{\Delta x^2}. \quad (3.2)$$

Such a balance neglects the impact of the potential V on the stability. As a pedagogical aid, in the case where V dominates, we argue dimensionally that one would need to find some constant c related to the potential V , such that

$$\frac{\hbar}{\Delta t} \geq \frac{c}{\Delta x^2}. \quad (3.3)$$

The constant \hbar has units of Joules-seconds. The constant c should have units of Joules-times-meters-squared. One possible way to treat this would be to use a global length scale of the system L so that

$$c = V_{\text{max}} L^2. \quad (3.4)$$

For a two-dimensional square grid, for example, L^2 could be $L_x L_y$. This would result in a CFL stability requirement of

$$C_{\text{CFL},3a} = \frac{c}{\hbar} \frac{\Delta t}{\Delta x^2} = \frac{V_{\text{max}} L_x L_y}{\hbar} \frac{\Delta t}{\Delta x^2} \quad (3.5)$$

$$= \frac{V_{\text{max}} \Delta t L_x L_y}{\hbar \Delta x^2} \leq 1. \quad (3.6)$$

Another alternative would be to use a local length scale like the grid spacing as the important length scale

$$c = V_{\text{max}} \Delta x^2, \quad (3.7)$$

which would reduce more cleanly to

$$C_{\text{CFL},3b} = \frac{V_{\max} \Delta t}{\hbar} \leq 1. \quad (3.8)$$

Recently [Tan and Heh \[2024\]](#) has addressed the question of how to deal with the CFL number in the presence of additional potentials, both vector and scalar. They perform the Von Neumann stability analysis of the problem, which is a rigorous mathematical approach. Their result for the CFL number in eq. (51) of their work, recast in our notation, is

$$C_{\text{CFL},4} = \frac{\Delta t}{2\hbar} \max(|H_{k,\max}|, |H_{k,\min}|). \quad (3.9)$$

Here the absolute values deal with the case where a potential function is large in magnitude but negative. Neglecting the additional vector potential that [Tan and Heh \[2024\]](#) also treat and expressing their electric potential in terms of the Schrödinger potential, these additional functions are defined in their eqs. (39) and (40)

$$H_{k,\max} = \frac{\hbar^2}{m} \frac{2}{\Delta x^2} + V_{\max}, \quad (3.10)$$

$$H_{k,\min} = V_{\min}. \quad (3.11)$$

Here we note that, in the case of vanishing potential V , $C_{\text{CFL},1}$ from eq. (2.5) is recovered.

The case that we encounter often in our work is one where $V_{\min} = 0$ but $V_{\max} \gg \frac{\hbar^2}{m} \frac{2}{\Delta x^2}$. In this case, the result of [Tan and Heh \[2024\]](#) implies that

$$C_{\text{CFL},4} \rightarrow \frac{\Delta t}{\hbar} V_{\max}. \quad (3.12)$$

This result is identical to our second dimensional guess in eq. (3.8), which used the grid spacing to obtain the correct dimensions of the CFL number. An effective velocity in the case where $V_{\min} = 0$ would then be

$$u_{\text{effective},4} = \frac{\Delta t}{2\hbar} \left(\frac{\hbar^2}{m} \frac{2}{\Delta x^2} + V_{\max} \right) \frac{\Delta x}{\Delta t}, \quad (3.13)$$

$$= \frac{\Delta t}{\hbar} \frac{\hbar^2}{m} \frac{1}{\Delta x^2} \frac{\Delta x}{\Delta t} + \frac{\Delta t}{2\hbar} V_{\max} \frac{\Delta x}{\Delta t}, \quad (3.14)$$

$$= \frac{\hbar}{m} \frac{1}{\Delta x} + V_{\max} \frac{\Delta x}{2\hbar}. \quad (3.15)$$

The form of this effective velocity nicely clarifies that for larger V_{\max} , a smaller Δx is needed to maintain a given resolution of $u_{\text{effective},4}$. It also demonstrates that, for a fixed Δx , the effective velocity becomes larger as V_{\max} is increased. In that case the time step of the calculation will need to be reduced to maintain the CFL number.

4 | Summary

While Euler type finite difference methods and explicit Runge-Kutta schemes can be and sometimes are applied to for the solution of the Schrödinger equation [e.g. [Caplan and Carretero-González, 2013](#)], those methods can have undesirable outcomes as far as stability and conservation of mass or energy. Some works have taken care to reformulate those methods to improve their solution of the Schrödinger equation [\[Cui et al., 2021\]](#). Implicit methods, including the standard workhorse methods of Crank-Nicholson, Leapfrog schemes, or the use of staggered grids are also commonly used to mitigate these problems.

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant no. PHY-1907876. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-TR-2008697.

5 | References

- Michael D Schneider, Caleb Miller, George F Chapline, Jane Pratt, and Dan Merl. Optimal control from inverse scattering via single-sided focusing. *arXiv preprint arXiv:2212.00249*, 2022.
- Lixin Wu. Dufort–Frankel-type methods for linear and nonlinear Schrödinger equations. *SIAM journal on numerical analysis*, 33(4):1526–1533, 1996.
- Xavier Antoine, Weizhu Bao, and Christophe Besse. Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. *Computer Physics Communications*, 184(12):2621–2633, 2013.
- Weizhu Bao and Yongyong Cai. Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. *Mathematics of Computation*, 82(281):99–128, 2013.
- Yuezheng Gong, Qi Wang, Yushun Wang, and Jiaxiang Cai. A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. *Journal of Computational Physics*, 328:354–370, 2017.
- Jialing Wang and Yushun Wang. Numerical analysis of a new conservative scheme for the coupled nonlinear Schrödinger equations. *International Journal of Computer Mathematics*, 95(8):1583–1608, 2018.
- Patrick Henning and Johan Wärnegård. A note on optimal H1-error estimates for Crank–Nicolson approximations to the nonlinear Schrödinger equation. *BIT Numerical Mathematics*, 61(1):37–59, 2021.
- Tony F Chan, Ding Lee, and Longjun Shen. Stable explicit schemes for equations of the Schrödinger type. *SIAM journal on numerical analysis*, 23(2):274–281, 1986.
- Carlos A de Moura and Carlos S Kubrusly. *The Courant–Friedrichs–Lewy (CFL) condition: 80 years after its discovery*. Birkhäuser Basel, 2012.
- Jing Shen, EI Wei, Zhixiang Huang, Mingsheng Chen, and Xianliang Wu. High-order symplectic FDTD scheme for solving a time-dependent Schrödinger equation. *Computer Physics Communications*, 184(3):480–492, 2013.
- Dario Bambusi, Erwan Faou, and Benoît Grébert. Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation. *Numerische Mathematik*, 123(3):461–492, 2013.
- Zhixiang Huang, Jie Xu, Bingbing Sun, Bo Wu, and Xianliang Wu. A new solution of Schrödinger equation based on symplectic algorithm. *Computers & Mathematics with Applications*, 69(11):1303–1312, 2015.
- Ylva Ljungberg Rydin, Ken Mattsson, Jonatan Werper, and Erik Sjöqvist. High-order finite difference method for the Schrödinger equation on deforming domains. *Journal of Computational Physics*, 443:110530, 2021.
- Christopher Jayun Ryu, Aiyin Y Liu, EI Wei, and Weng Cho Chew. Finite-difference time-domain simulation of the Maxwell–Schrödinger system. *IEEE Journal on Multiscale and Multiphysics Computational Techniques*, 1:40–47, 2016.
- Eng Leong Tan and Ding Yu Heh. Critical-point-based stability analyses of Finite-Difference Time-Domain methods for Schrödinger equation incorporating vector and scalar potentials. *IEEE Journal on Multiscale and Multiphysics Computational Techniques*, 2024.
- Ronald M Caplan and Ricardo Carretero-González. Numerical stability of explicit Runge–Kutta finite-difference schemes for the nonlinear Schrödinger equation. *Applied Numerical Mathematics*, 71:24–40, 2013.
- Jin Cui, Zhuangzhi Xu, Yushun Wang, and Chaolong Jiang. Mass-and energy-preserving exponential Runge–Kutta methods for the nonlinear Schrödinger equation. *Applied Mathematics Letters*, 112:106770, 2021.