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Centrifugal-mirror confinement with strong

azimuthal magnetic field

T. Stoltzfus-Dueck1 and F. I. Parra1

1Princeton Plasma Physics Laboratory, Princeton, NJ 08540

E-mail: tstoltzf@pppl.gov

Abstract. One practical challenge for the centrifugal-mirror confinement
concept is the large radial voltage necessary to drive supersonic azimuthal
rotation. In principle, the addition of a strong azimuthal field could reduce
the required voltage, since the simple azimuthal ExB drift would be replaced
by more rapid azimuthal trapped-particle precession. Also, if the mirror ratio
is large enough, newly ionized ions are accelerated to the necessary parallel
velocities in their first bounce orbit, both confining and significantly heating
them. Unfortunately, MHD analysis shows that the centrifugal-force-confining
plasma current is purely azimuthal. This implies that only the axial magnetic field
contributes to the confining magnetic pressure, severely limiting the usefulness of
the azimuthal magnetic field in a beta-limited plasma scenario.

Keywords: centrifugal mirror, trapped-particle precession, MHD equilibrium, Grad-
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Centrifugal-mirror confinement with strong azimuthal magnetic field 2

1. Introduction

Centrifugal confinement systems have long been known
to offer some significant potential advantages as a
fusion device [1–3]. They do not require a plasma
current to generate the confining magnetic field,
thus avoiding the risk of disruptions due to current-
driven instabilities. They can retain the geometrical
simplicity of magnetic mirrors, while using supersonic
rotation to close the loss cone and confine essentially
all ions in the parallel direction [4, 5]. Further, both
theoretical [6, 7] and experimental [8] investigations
have suggested that their strong E×B shear effectively
stabilizes MHD instabilities, so they might achieve
confinement so good that it is limited by classical
transport [4]. In addition, the radial electric field
results in immediate heating of newly-ionized ions, via
the polarization shift as they accelerate azimuthally to
the E × B speed [9].

One technical challenge for this approach is the
large electric potential difference that must be applied
to maintain the strong azimuthal E × B rotation. As
a simple estimate, equate the bulk azimuthal rotation
uϕ = Mivti with the E × B speed vE = |vE | for
vE = E × B/B2, with ion thermal speed vti

.
=

(Ti/mi)
1/2 and Mach number Mi

.
= uϕ/vti. The

necessary potential φ can be estimated as Zieφ/Ti ∼
Mi(R0/ρi) for characteristic device radius R0 and ion
gyroradius ρi

.
= vti/Ωi, gyrofrequency Ωi

.
= ZieB/mi,

and charge state Zi. [For example parameters, see
Appendix A.1.] As a further constraint, the magnetic
field must be strong enough to confine the plasma in
the radial direction, which leads to a limit uϕ . vA

for Alfvén speed vA = B/
√
µ0ρm with plasma mass

density ρm, observed to be a hard limit in experiment
[10]. Taken together, these imply the requirement
Zieφ/Ti & M2

i (R0/λi) for λi = mi/(Zie
√
µ0ρm) the

ion skin depth. For a practical fusion reactor, it would
clearly be desirable to ease these requirements for the
applied voltage. To do this, we need to find a way to
maintain the centrifugally-confining azimuthal velocity
uϕ while reducing the electric field strength E.

One possible approach could be the addition of
an azimuthal magnetic field. In contrast to previous
applications, in which a weak azimuthal field was used
to introduce stabilizing magnetic shear [3, 11], here we
propose an azimuthal field that is significantly stronger
than the axial field. Why would we do this? To
see, let’s adopt a simple cylindrical coordinate system

v‖b̂

v
E

vE + v‖b̂ = vϕϕ̂

ϕ̂

ẑ

R̂

Figure 1. For axially trapped particles, the z components of vE
and v‖b̂ must cancel, in the average. When the magnetic field
is mostly azimuthal, this leads to an azimuthal rotation that is
much larger than vE itself.

R,ϕ, z, with R̂ × ϕ̂ = ẑ for ẑ aligned with the trap’s
axis of symmetry, then consider the sketch in Fig. 1. In
the average, an axially trapped particle must obviously
have a vanishing velocity in the ẑ (axial) direction,

i.e ẑ · (v‖b̂ + vE) = 0 with parallel velocity v‖ and

magnetic direction b̂. The azimuthal components of
v‖b̂ and vE then turn out to be additive. If the
magnetic field is mostly azimuthal, then v‖ is quite a
bit larger than vE , leading to a much larger azimuthal
rotation for a given electric field, as desired (Sec. 2.2).
In addition, we will find that newly ionized ions would
still be confined and significantly heated in their first
bounce orbit, assuming one does not make the axial
field too small (Sec. 2.3). Further, since the azimuthal
magnetic field only varies as 1/R, while the axial field
strength goes as 1/R2 (along a flux surface), one could
more easily achieve a large ratio of the confinement-
region radius over the endcap radius, which enhances
centrifugal confinement (Sec. 2.2).

Unfortunately, as we will show in Sec. 3, the
equilibrium plasma current in this configuration would
also be aligned purely azimuthally. Effectively, this
implies that only the axial magnetic field contributes
to the magnetic pressure that confines the plasma
radially against the centrifugal force. Because of this,
an azimuthal field may reduce the ion gyroradius in
this configuration, but it will be unable to increase
the allowable plasma pressure in a beta-limited case,
severely restricting the set of scenarios in which an
azimuthal field could be used to reduce the voltage
required for centrifugal confinement.

We will derive the single-particle behavior in Sec. 2
and the MHD equilibrium properties in Sec. 3, then
review our conclusions in Sec. 4. For reference, some
frequently used symbols are identified in Table. 1.
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Centrifugal-mirror confinement with strong azimuthal magnetic field 3

Symbol Definition

ρϕ,z gyroradius, with vϕ and Bz (Sec. 2.1).
ωϕ bulk rotation angular frequency, before (5)
ṽ‖ v‖ in rotating frame, (10)
ψ flux function, see (1) and (2)

Table 1. Definitions of some commonly used symbols.

2. Single-particle confinement

From a single-particle point of view, the addition
of a toroidal field has a lot of apparent advantages
for a centrifugal plasma trap, as we derive in this
section: The particle orbits, governed by constants
of the motion (Sec. 2.1), allow one to retain good
centrifugal confinement at smaller applied voltage
(Sec. 2.2). If the axial magnetic field is not too
small, then newly-ionized ions are confined and are
substantially heated during their first bounce orbit
(Sec. 2.3). The physics underlying the corresponding
parallel acceleration may be inferred from the detailed
lab-frame energy balance (Sec. 2.4). The single-
particle confinement properties compare favorably to
the reference case of a centrifugal trap with purely axial
magnetic field (Sec. 2.5). Unfortunately, as we will
see in Sec. 3, MHD equilibrium constraints effectively
prevent us from gaining these advantages, at least for
a beta-limited mirror plasma.

2.1. Single-particle motion

Let’s consider particle motion in a system with time-
independent, axisymmetric fields B and E = −∇φ.
Although the problem can be elegantly addressed in a
rotating frame [1], we will use the lab frame for physical
transparency.

In our simple-cylindrical coordinates (R,ϕ, z), the
magnetic field may be written as

B = I∇ϕ+ ∇ψ × ∇ϕ, (1)

for axisymmetric functions I(R, z) and

ψ(R, z)
.
=

∫ R

0

dR′ R′Bz. (2)

Single-particle motion under the resulting Lorentz
force exactly conserves an energy H and canonical
angular momentum Pϕ given by

H = Zseφ+
1

2
msv

2 ≈ Zseφ+
1

2
ms(v

2
‖ + v2

E) + µB,(3)

Pϕ = Zseψ +msRvϕ ≈ Zseψ +msR(bϕv‖ + vEϕ), (4)

with bϕ
.
= b̂ · ϕ̂ = I/BR and vEϕ

.
= vE · ϕ̂. The

exact forms are given in terms of total particle velocity
v, with vϕ = ϕ̂ · v. For the approximate forms, and
through the rest of Sec. 2, we assume the Larmor
radius is small relative to system length scales. (To

relax that approximation, one may use higher-order
approximate forms for the invariants [12], or simply
integrate the particle motion numerically [13].) Since
we allow strong electric field vE & vti, the adiabatically
conserved magnetic moment µ must be defined such
that µB is the perpendicular kinetic energy in the
E × B-drifting frame [14].

Although we allow a supersonic azimuthal rota-
tion, meaning vϕ up to an order-unity multiple of vti,
we will still assume that the corresponding gyrora-
dius is small, even evaluated with only the axial field,
ρϕ,z/ℓ ≪ 1 for ρϕ,z

.
= msvϕ/ZseBz and characteristic

system length ℓ. This implies that any given particle’s
radial position never strays far from ψ ≈ ψ0

.
= Pϕ/Zse:

set (∆R)o∂Rψ ≈ ψ1
.
= ψ − ψ0 = −msRvϕ/Zse to

see that (∆R)o ≈ −ρϕ,z. We can therefore approx-
imately evaluate most functions at ψ = ψ0. How-
ever, we must retain the corrections to Zseφ in H :
we will see that vϕ ∼ (∂Rφ)/Bz , which means that
Zseφ(ψ) − Zseφ(ψ0) ∼ Zseρϕ,z∂Rφ ∼ msv

2
ϕ is compa-

rable with the leading-order kinetic energy.
The small-gyroradius approximation also implies

that the potential is approximately a flux function:
Due to electrons’ small mass, the centrifugal force is
negligible for them, so their parallel flux is governed
by a balance between their parallel pressure gradient
and the parallel electric force. This constrains the
parallel potential variation φ

∼
to take a value of order

the electron temperature φ
∼

∼ Te/e [15]. This is much
smaller than typical values of the total potential φ,
with φ

∼
/φ ∼ Te/eℓ∂Rφ ∼ (ZiTe/Ti)(v

2
ti/v

2
ϕ)(ρϕ,z/ℓ).

For simplicity, we will neglect φ
∼

altogether in the
main text, and, through the rest of Sec. 2, we
will focus solely on the confinement of ionic species.
For a derivation including φ

∼
and parallel electron

confinement, see Appendix A.

2.2. Single-particle orbits

In this section, we will evaluate the classes of ion orbits
that are confined, for the geometry and orderings laid
out in Sec. 2.1.

Recalling our simplifying assumption that the
potential is a flux function φ = φ(ψ), we may define
a flux-function angular frequency ωϕ

.
= ∂ψφ. Also

using (1), we can evaluate

B2 = (I2 + |∇ψ|2)/R2, (5)

vEϕ = vE · ϕ̂ = (1 − b2
ϕ)ωϕR, (6)

v2
E = vE · vE = (1 − b2

ϕ)ω2
ϕR

2. (7)

One may then straightforwardly obtain the
approximate axial (R, z) orbits, using the invariants
µ, H , Pϕ and the small-gyroradius ordering. First,
expand ψ = ψ0 + ψ1 with ψ0 = Pϕ/Zse and ψ1 ≈
−msR(bϕv‖ + vEϕ)/Zse. In H , we may then evaluate
all spatial functions at ψ0, except the potential, which
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Centrifugal-mirror confinement with strong azimuthal magnetic field 4

requires the first-order correction Zseφ(ψ) ≈ Zseφ0 +
Zseωϕψ1, with φ0

.
= φ(ψ0). We can then expand the

Hamiltonian, with all spatial functions evaluated at
ψ = ψ0:

H−Zseφ0 ≈ 1

2
ms

(

v‖ − bϕωϕR
)2− 1

2
msω

2
ϕR

2+µB.(8)

The last two terms here provide the centrifugal and
mirror confinement. To interpret the first term on the
right-hand side (RHS), consult Fig. 1 and note that

bϕωϕRb̂ + vE = ωϕRϕ̂ (9)

to see that

ṽ‖
.
= v‖ − bϕωϕR (10)

is the parallel velocity in the frame rigidly rotating
azimuthally with angular frequency ωϕ = −ER/BzR.
The axial (in the R, z plane) velocity of a particle is

straightforwardly found from v‖b̂ + vE −ωϕRϕ̂ = ṽ‖b̂,
so the turning points occur when ṽ‖ = 0. If we evaluate
(H − Zseφ0) in terms of its value at an initial axial
position z = zI , which we will label with a subscript I,
then a particle’s ṽ‖ is given as a function of z (at fixed
ψ0) as

1

2
msṽ

2
‖ ≈ 1

2
msṽ

2
‖I − 1

2
msω

2
ϕ(R2

I −R2)−µ(B−BI).(11)

A particle is therefore confined as long as ṽ2
‖I <

ω2
ϕ(R2

I −R2
min) + 2µ(Bmax −BI)/ms.

To see the effect of nonzero Bϕ = B · ϕ̂ on the
required voltage, let’s focus on the centrifugal potential
term, which is generally the larger term for supersonic
rotation ωϕR > vti. The radial potential gradient is
∂Rφ = ωϕ∂Rψ = ωϕRBz. One can therefore reduce
the applied voltage at fixed centrifugal confinement,
as long Bz is reduced by the same factor as (∂Rφ).
This can be done at fixed total magnetic field strength,
if one increases B2

ϕ to cancel the reduction in B2
z .

Physically, this follows because the trapped particles
must rotate azimuthally with the precession speed,
which is larger than vE when Bϕ 6= 0, as is sketched in
Fig. 1. This possible reduction in applied voltage is the
principal motivation to add a strong azimuthal field to
a centrifugal mirror machine. Unfortunately, though,
we will see in Sec. 3 that the radial plasma pressure
confinement is only due to the magnetic pressure from
B2
z , rather than the total field strength B2. So, for

a mirror at MHD-equilibrium beta limits, one would
be unable to reduce Bz at all, no matter how much
Bϕ was added. In this case, the applied voltage could
also not be reduced at all, and would need to stay at
its original value. (See a specific numerical example in
Appendix A.1)

2.3. Newly-ionized particles

In Sec. 2.2, we saw that the trap geometry from Sec. 2.1
confines particles that are rotating azimuthally with
an angular velocity around ωϕ. Much of that angular
velocity may come from parallel motion, in principle
allowing one to reduce the applied voltage. But will
newly ionized ions be accelerated to the necessary
range of azimuthal velocities? In this section, we
will find that classical and neoclassical polarization do
indeed confine and accelerate newly ionized particles,
when the geometry satisfies certain conditions. The
derivation also clarifies several distinct length and time
scales that are important for the confinement.

In the E × B-drifting frame, the electric
force −Zse∇φ = −Zseωϕ∇ψ is canceled by the
magnetic force of the frame drift ZsevE × B =
Zseωϕ∇ψ. In our small-gyroradius limit, the particle
trajectory then evolves under the simple magnetic
force for nearly-constant magnetic field. In the
drifting frame, it undergoes a simple circular gyro-
orbit with gyrofrequency Ωs = ZseB/ms and
gyroradius v⊥ms/ZseB for v⊥

.
= (2µB/ms)

1/2,
the shortest confinement-related time and length
scales. At first glance, a newly ionized particle
looks different—initially approximately stationary, it
is accelerated in the direction of the electric force
until the magnetic force bends its trajectory enough to
overpower the electric force and return it to its starting
radius, where it is momentarily stationary. However,
this cycloid path is in fact just a special case of the
simple gyro-orbit, with v⊥ = vE and with gyrocenter
shifted vEms/ZseB down ∇φ from the ionization
location. Within the first gyro-period, the new
particle is therefore drifting with gyro-center velocity
vE and magnetic moment satisfying µB ≈ 1

2msv
2
E [9].

However, this acceleration is purely perpendicular, and
leaves the lab-frame parallel velocity v‖ near zero.

Is this new ion also confined in the parallel
direction? This orbit is a special case of the orbits
from Sec. 2.2, with initial values µB ≈ 1

2msv
2
E and

with ṽ‖ ≈ 0 − bϕωϕR. Recalling (11), and assuming
the minimum of R and maximum of B occur in the
same place, the new ion will be confined if 1

2msṽ
2
‖I <

1
2msω

2
ϕ(R2

I −R2
min) +µ(Bmax −BI). Recalling (7) and

canceling a common factor of 1
2msω

2
ϕR

2
I , this criterion

will be met when

(1 − b2
ϕ)I >

R2
min

R2
I

BI
Bmax

. (12)

Noting that (1 − b2
ϕ)I ≥ B2

z,I/B
2
I and that we expect

at least BI/Bmax . Rmin/RI ,
2 equation (12) will be

2 MHD equilibrium requires that I is a function of ψ alone,
see (34). Assume B2

R ≪ B2
z and Bz(R, z) ≈ Bz(z). Eq. (2)

reduces to ψ(R, z) ≈ Bz(z)R2/2. Then, defining a function R(z)
such that ψ(R(z), z) = ψ0, we may evaluate Bz(z) = 2ψ0/R2(z)
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Centrifugal-mirror confinement with strong azimuthal magnetic field 5

satisfied if B2
z,I/B

2
I > (R3

min/R
3
I). New particles will

therefore generally be confined as long as (Bz/B) in the
bulk of the trap is no smaller than (Rmin/RI)

3/2, which
represents a non-trivial but manageable constraint on
our choice of trap magnetic geometry.

The rotating-frame parallel kinetic energy of new,
confined ions is then around 1

2msṽ
2
‖ ∼ 1

2msb
2
ϕω

2
ϕR

2.
If the azimuthal field is stronger than the axial field,
then this initial parallel in-frame kinetic energy is
larger than the perpendicular in-frame kinetic energy
µB ∼ 1

2msv
2
E ∼ 1

2ms(1 − b2
ϕ)ω2

ϕR
2. Also assuming

supersonic rotation, we have ṽ2
‖ ∼ ω2

ϕR
2 ∼ M2

i v
2
ti

for Mi greater than unity, so we expect collisions to
generally scatter these new ions to smaller ṽ2

‖ , thus
deeper parallel confinement.

The parallel heating of the new ions may be seen
as a form of neoclassical polarization: To first order,
the particle is located at ψ = ψ0 − msR(bϕṽ‖ +
ωϕR)/Zse. At any given point in z on a specific
particle’s bounce orbit, the sign of ṽ‖ will take both
positive and negative signs, depending on the direction
of axial motion of the particle. The introduction of an
azimuthal field has thus brought in a finite drift-orbit
width ∓msbϕṽ‖/ZseBz, of order ρϕ,z. For mostly-
azimuthal magnetic field (Bz < B) and v⊥ ∼ ṽ‖,
this is larger than the true gyroradius, analogously
to banana orbits in tokamaks. The frequency scale
for this confinement is ∼ bzṽ‖/ℓ, the inverse of the
bounce time, with characteristic system length ℓ. This
is slower than the gyrofrequency by a factor of the
gyroradius over the scale length. In the presence of
collisions, this finite orbit width will enable neoclassical
transport (cf. Appendix A.5). Returning to the case
of our newly ionized particle, the orbit begins with
v‖ = 0, thus ṽ‖ = −bϕωϕR and radial position
ψ = ψ0 − ms(1 − b2

ϕ)ωϕR
2/Zse. When it returns to

its starting point it must have ṽ‖ = +bϕωϕR, thus
radial position ψ = ψ0 − ms(1 + b2

ϕ)ωϕR
2/Zse and

lab-frame parallel velocity v‖ = 2bϕωϕR. The gain
in parallel kinetic energy, from 0 to 2msb

2
ϕω

2
ϕR

2, came
from the lost potential energy Zse(∂ψφ)(ψreturn−ψI) =
−2msb

2
ϕω

2
ϕR

2. In the next section, we will take a closer
look at the detailed transfer mechanisms.

2.4. Lab-frame energy balance

The parameter bounds for confined orbits are most
succinctly calculated in terms of the invariants, as in
Secs. 2.2 and 2.3. In this subsection, we will look at
the same problem using the guiding-center equations.
This will not extend or change our previous results,
but it may help to clarify the underlying physical
mechanisms.

and, using (1), Bϕ(R(z), z) = I(ψ0)/R, so

B2
I

B2
max

≈
I2(ψ0)/R2

I+4ψ2
0
/R4

I

I2(ψ0)/R2
min

+4ψ2
0
/R4

min

=
R2

min

R2
I

I2(ψ0)+4ψ2
0
/R2

I

I2(ψ0)+4ψ2
0
/R2

min

≤
R2

min

R2
I

.

We will use single-particle guiding-center equa-
tions that allow strong E × B flows vE ∼ vti [14].
The approximate guiding-center velocity is

vgc = v‖b̂ + vE + v⊥1, (13)

in which

v⊥1
.
= Ω−1

s b̂ × (v‖dt0b̂ + dt0vE +m−1
s µ∇B) (14)

for dt0
.
= (v‖b̂ + vE) · ∇. The first-order drift v⊥1

captures the strong-E × B versions of the curvature
drift b̂×(v‖dt0b̂)/Ωs, polarization drift b̂×(dt0vE)/Ωs,

and grad-B drift b̂ × (µ∇B)/msΩs. Each term in v⊥1

is smaller than the leading-order velocity (v‖b̂ + vE)
by one order in gyroradius over scale length. We need
only evaluate evolution of v‖ to its leading order:

msdtv‖ = −Zse∇‖φ− µ∇‖B +msvE · dt0b̂, (15)

with ∇‖
.
= b̂ · ∇.

Equations (13)–(15) approximately conserve the
energy given by (3), with individual terms evolving as

dt
1

2
msv

2
‖ = −v‖(Zse∇‖φ+ µ∇‖B) +msvE ·v‖dt0b̂,(16)

dtµB = (v‖b̂ + vE) · µ∇B, (17)

dt
1

2
msv

2
E = msvE · dt0vE , (18)

dtZseφ=v‖Zse∇‖φ−vE ·[ms(v‖dt0b̂+dt0vE)+µ∇B].(19)

These equations are only accurate to the order of
msv

3
ts/ℓ, so the right-hand sides of (16)–(18) are only

evaluated to their leading order.3 For (19), we had to
keep the correction due to v⊥1, for which we rearranged
the triple product as

v⊥1·∇Zseφ = − b̂

Ωs
×∇(Zseφ)·(v‖dt0b̂+dt0vE+

µ∇B
ms

).(20)

Let’s now consider the parallel confinement of an
ion, particularly the special case of a newly ionized
ion, looking through (15) term by term, and comparing
with the example orbit sketched in Fig. 2. First, since
we assume φ = φ(ψ), we have ∇‖φ = 0. Next, we have
the standard parallel magnetic mirror force −µ∇‖B,
which always pushes towards regions of weak B, thus
confines the ion towards the midplane and away from
the endcaps. For a newly ionized ion, which had
v‖ = 0 at the midplane, this force is transferring energy
to the ion’s parallel motion msv

2
‖/2 over the entirety

of the first half bounce orbit (midplane to endcap
and back to midplane). This seems counterintuitive,
because the energy comes from the perpendicular
kinetic energy (µB), which is also growing in the first
quarter orbit (midplane to endcap). The resolution
is that the particle is concurrently ∇B-drifting down
∇Zseφ, which is transferring energy from Zseφ into µB
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Centrifugal-mirror confinement with strong azimuthal magnetic field 6

ψ=ψ0

ψ=0

R

·ϕ z

Bϕ

· Bz

Eψ

×××ωϕ

RI,zI

Rret,zret

Figure 2. Initial half-bounce orbit of a newly ionized ion,
projected onto R, z plane. (In this case, the azimuthal motion
is always in the −ϕ̂ direction, around the axis of symmetry,
ψ = 0.) The ion is ionized on the ψ0 magnetic surface, but
due to the initial polarization, the gyro-center starts at (RI , zI).
The ion’s total kinetic energy 1

2
ms(v2

‖
+ v2

E) + µB comes from

the potential energy lost by the radial shift from ψ0 to its
current radial position (ψ0 + ψ1), the thin-line orbit that is
sketched. At (RI , zI), v2

‖
= 0 and µB = 1

2
msv2

E . Over

the first quarter orbit (dash-dotted blue), the ion moves from
(RI , zI ) out to the bounce point near the positive-z endcap,
then in the second quarter orbit (dotted red) it returns to the
midplane but at greater R = Rret. Over this whole time, ṽ‖

is becoming increasingly negative, corresponding to an increase
in 1

2
msv2

‖
, with the net increase in total kinetic energy coming

from potential energy Zseφ released by the first-order drifts v⊥1

down ∇φ.

via the vE · µ∇B term, and |vE · µ∇B| > |v‖b̂ · µ∇B|
for the first quarter orbit.

Centrifugal confinement is in fact electrostatic
confinement mediated by the last term of (15), but it
takes a little algebra to see this: Equations (1) and (5)
jointly imply

b̂

B
×∇ψ =

1

B2
[I(I∇ϕ−B)+|∇ψ|2∇ϕ] = R(ϕ̂−bϕb̂),(21)

an identity commonly used in neoclassical theory [16].
In our axisymmetric geometry with φ = φ(ψ), we find
that4

vE =
b̂

B
× ∇φ =

b̂

B
× ωϕ∇ψ = ωϕR(ϕ̂ − bϕb̂), (22)

dt0
.
= (v‖b̂ + vE) · ∇ = (ωϕRϕ̂ + ṽ‖b̂) · ∇, (23)

dt0b̂ = [(ωϕRϕ̂ + ṽ‖b̂) · ∇]b̂ = ωϕẑ × b̂ + ṽ‖(b̂ · ∇)b̂,(24)

vE ·dt0b̂ = ωϕRϕ̂·dt0b̂ = ∇‖(ω2
ϕR

2/2)+ṽ‖ωϕ∇‖(bϕR).(25)

For centrifugally confined particles, we expect |ṽ‖| <
ωϕR, so the first term on the RHS of (25) is the

3 Consistent with the analysis at the end of Sec. 2.1, we assume
that ∇‖φ ∼ Te/ℓe is one order smaller than its nominal order.
4 Use the facts that |b̂|2 = 1, b̂ · dt0b̂ = dt0|b̂|2/2 = 0, and

Rϕ̂ · [(b̂ · ∇)b̂] = (b̂ · ∇)(bϕR).

larger.5 This term accelerates a particle’s parallel
velocity towards large radius, thus acts to confine a
particle from the endcaps back towards the central
region. In the case of the newly ionized particle,
this corresponds to an energy transfer into 1

2msv
2
‖.

Recalling the derivation of (19), this energy comes from
potential energy freed by the generalized curvature
drift,

Ω−1
s b̂ × v‖dt0b̂ = Ω−1

s v‖[ωϕẑ + ṽ‖(∇ × b̂)]⊥, (26)

where the subscript ⊥ indicates the perpendicular
projection, e.g. ẑ⊥ = ẑ − (b̂ · ẑ)b̂.

2.5. Purely axial field

For comparison purposes, we consider a centrifugal
mirror with no azimuthal field. Mathematically, this
is just a special case of the analysis we have already
done—the equations of the previous sections continue
to hold here, simply taking the special case I = 0, thus
also bϕ = 0 and ṽ‖ = v‖. However, this special case
serves as a useful point of reference, connecting with
current and past experiments including Ixion, a small,
pulsed device that generated a cool but supersonically-
rotating and axially-confined plasma back in the 1960s
[2], and the larger Maryland Centrifugal eXperiment
(MCX/CMFX)[3], which demonstrated momentum
confinement times longer than an MHD-instability
growth time [8] and strong pressure gradients in the
parallel direction [5].

The key physical difference is a clear separation of
the azimuthal rotation, which consists to leading order
only of the E × B drift vE = ωϕRϕ̂, from the parallel

flow, v‖b̂ ⊥ ϕ̂. When we consider orbit confinement,
as in Sec. 2.2, this means that the parallel velocity is
the same in the rotating frame and in the lab frame,
ṽ‖ = v‖. The criterion for orbit confinement remains
that from (11), but it may here be applied directly to
the lab-frame parallel velocity, so a particle is confined
when v2

‖I < ω2
ϕ(R2

I −R2) + 2µ(B −BI)/ms. Unlike in
Sec. 2.3, here newly ionized ions are trivially confined,
since their simple gyromotion is still immediately
accelerated to µB = msv

2
E/2, but their near-zero lab-

frame parallel velocity v‖ = 0 now implies an equally
small rotating-frame parallel velocity ṽ‖ = 0. Put
another way, this special case trivially satisfies the
magnetic-geometry requirement given by (12).

5 For a newly ionized particle, the two terms may be comparable
in size, but the net effect is still definitely confining. To see
this, note first that vz ≈ (v‖b̂ + vE) · ẑ = ṽ‖bz , then evaluate
the leading order msdtṽ‖ = msdtv‖ −msωϕdt(bϕR), with dtv‖

from (15) and (25), and using axisymmetry and (23) to evaluate
the leading order dt(bϕR) = ṽ‖∇‖(bϕR), thus

msdtṽ‖ = −Zse∇‖φ− µ∇‖B +ms∇‖(ω2
ϕR

2/2).

The first term on the RHS is zero for φ = φ(ψ), and the other two
definitely push away from the endcaps and towards the midplane.
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Centrifugal-mirror confinement with strong azimuthal magnetic field 7

The detailed physical mechanisms of confinement
are also basically unchanged. Consider the equations
of Sec. 2.4, which continue to apply here, in the special
case I = 0 thus bϕ = 0 and ṽ‖ = v‖. Parallel
confinement is enforced by the terms on the RHS
of (15). Since we still assume φ = φ(ψ), the first term
∝ ∇‖φ is zero. The magnetic mirror term −µ∇‖B
again acts as a confining force, pushing the particle
towards weak B, thus towards the device midplane
z = 0. However, in this special case the energy
balance is simpler: Since vE ‖ ϕ̂ ⊥ ∇B, equation (17)
simplifies to dtµB = v‖µ∇‖B, so energy is taken from
1
2msv

2
‖ to µB for outgoing particles (increasing B),

and from µB to 1
2msv

2
‖ for incoming particles. This

energy transfer is confining in this case, because the
axial motion is now purely parallel, thus the turning
points occur when v‖ = 0.

Centrifugal confinement again follows from the
last term of (15), and remains an electrostatic
effect, though somewhat simplified: With bϕ = 0,

equation (25) simplifies to vE · dt0b̂ = ∇‖(ω2
ϕR

2/2), so
the centrifugal confinement force is no longer modified
by any ṽ‖ dependence. Physically, the strong-E ×
B curvature drift from (26) has a corresponding
simplification. The second term of the drift may now
be written as Ω−1

s v2
‖(∇× b̂), and it is purely azimuthal.

This part of the drift is therefore orthogonal to Zse∇φ,
so it cannot transfer energy between 1

2msv
2
‖ and the

potential. The first term is now entirely due to the
(vE · ∇)b̂ portion of dt0b̂, and it is actually mostly
radial, since in our simplified magnetic geometry

Ω−1
s v‖ωϕẑ⊥ = Ω−1

s v‖ωϕ(−bzbRR̂ + b2
Rẑ) (27)

and we expect bR ≪ bz ≈ 1 for a typical elongated
device. The potential energy gain due to this drift,
Ω−1
s v‖ωϕẑ⊥ · Zse∇φ = −msv‖b̂ · ∇(ω2

ϕR
2/2), indeed

comes from 1
2msv

2
‖ via the vE ·dt0b̂ term, thus slowing

an outgoing particle (motion towards small R) and
accelerating an incoming particle.

Previous work has pointed out that a centrifugal
mirror with purely axial field should not exhibit
neoclassical transport [3, 9]. This may appear
inconsistent with the clear role of a radial drift-orbit
excursion (ψ1 6= 0) in the centrifugal confinement.
However, the magnetic geometry of this section should
in fact be free of neoclassical transport, at least in the
conventional sense. The basic reason is that the orbit
excursion, although finite, is velocity-independent.
Collisions alter a particle’s velocity at a fixed point
in space. However, in this Bϕ = 0 case, a collision-
induced velocity shift does not cause a change in the
spatial trajectory of the particle, except possibly its
(insignificant) azimuthal position.

However, this arrangement is the most demanding
one when it comes to the applied-voltage requirements.

As in the finite-Bϕ case, one here has ∂Rφ = ωϕ∂Rψ =
ωϕRBz. With Bϕ = 0, and assuming a reasonably
elongated trap, we have B ≈ Bz, which means that
we are unable to reduce Bz without also reducing the
confining magnetic field.

3. MHD equilibrium

In Section 2, we found that the applied voltage
needed for centrifugal confinement could be reduced,
if you were able to reduce the axial magnetic
field. Unfortunately, in this geometry, only the axial
magnetic field is able to confine the plasma pressure.
In this section, we will derive a modest generalization
of the Grad-Shafranov equation (Sec. 3.1), find the
resulting constraints on the effect of Bϕ (Sec. 3.2), and
tie these conclusions to their physical origins in single-
particle motion (Sec. 3.3)

3.1. Centrifugal-mirror equilibrium equations

For this derivation, we will use the ideal MHD
equations [17], with mass density ρm, mass-flow
velocity u, plasma pressure p, and current density j.6

We assume that the fields and plasma are axisymmetric
and time-independent, implying E = −∇φ and B

given by (1). Since we use the ideal Ohm’s Law

E + u × B = 0, we have b̂ · ∇φ = 0.7 Together with
axisymmetry ∂ϕφ = 0, this implies that the potential
is a flux function φ = φ(ψ), thus we may again define
the flux-function angular frequency ωϕ(ψ) = ∂ψφ.
Recalling (22), the perpendicular components of the
ideal Ohm’s Law then imply

u − u‖b̂ =
b̂

B
× (u × B) = vE = ωϕR(ϕ̂ − bϕb̂), (28)

for u‖
.
= u·b̂. With ũ‖

.
= u‖−bϕωϕR, the mass-density

flux is

ρmu = ρm(ωϕRϕ̂ + ũ‖b̂), (29)

so mass conservation implies

0 = ∇ · (ρmu) = ∇ · (ρmũ‖b̂) = B · ∇(ρmũ‖/B). (30)

We are only interested in configurations that confine
the plasma in the parallel direction, which means that
ρmũ‖ must go to zero in the endcaps, thus by (30) we
must have ũ‖ = 0 everywhere, so u = ωϕRϕ̂.

We are now ready to consider force balance,8

ρm(u · ∇)u = j × B − ∇p. (31)

6 The generalized Hall-MHD formulation has interesting impli-
cations for centrifugal mirrors [18], but does not significantly
alter the results of this section.
7 See a treatment including the parallel electric field in
Appendix A.
8 Here we assume an isotropic plasma pressure, which should
approximately hold for a magnetized, supersonically rotating
mirror: Recall from Sec. 2.1 that ions stay close to a reference
magnetic surface ψ = ψ0. From (11), and here using subscript I
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Centrifugal-mirror confinement with strong azimuthal magnetic field 8

First evaluate Ampère’s Law for B from (1), yielding

µ0j = ∇ × B = ∇I × ∇ϕ− (∆∗ψ)∇ϕ (32)

for ∆∗ψ
.
= ∂2

Rψ − R−1∂Rψ + ∂2
zψ [17]. The inertial

term is

ρm(u · ∇)u = ρmωϕ∂ϕ(ωϕRϕ̂) = −ρmω
2
ϕ∇(R2/2).(33)

The azimuthal component (µ0Rϕ̂·) of (31) reduces to

0 = µ0Rϕ̂ · j × B = B · ∇I, (34)

so I is a flux function I(ψ). The parallel component of
force balance,

∇‖p = ρmω
2
ϕ∇‖(R2/2) = ρm∇‖(ω2

ϕR
2/2), (35)

determines the pressure up to an arbitrary flux
function, physically capturing the parallel centrifugal
confinement. The detailed solution depends on the
equation of state, which relates p and ρm. For
example, an (ad hoc) isothermal relation p = c2

sρm

for flux-function sound speed cs = cs(ψ) would lead
to p(ψ,R) = pI(ψ) exp(ω2

ϕ(R2 − R2
I)/2c

2
s ). However,

we will not make this assumption, since our results
do not depend on any specific form for the parallel
variation of p. Finally, we will calculate the radial-
confinement component [|∇ψ|−2(∇ψ)·] of (31), which
gives us a generalized Grad-Shafranov equation

(∆∗ψ) = −I ′I − µ0R
2[∂ψp− ρmω

2
ϕ∂ψ(R2/2)], (36)

where I ′(ψ) is the derivative of I(ψ) with respect to ψ
and where ∂ψ

.
= |∇ψ|−2(∇ψ) · ∇.

3.2. Constraints on rotating equilibria

The basic MHD equilibrium force balance directly
implies that the azimuthal rotation is limited by the
Alfvén speed, as observed in experiment [10]. To see
this simply, we can write the R̂ component of (31) in
the form9

∂RB
2
z+R−2∂RI

2−2Bz∂zBR = 2µ0(ρmω
2
ϕR−∂Rp).(37)

For supersonic flows, we expect ρmω
2
ϕR > |∂Rp|, and

for an elongated trap we expect |∂zBR| < |∂RBz|.
Neglecting the ∂Rp and ∂zBR terms altogether, for
simplicity, we consider first the case of a centrifugal
mirror with only axial field, so I2 = 0. We can

to indicate the value at the outermost R for the ψ = ψ0 surface,
we conclude that ions’ motion (at roughly constant ψ) is limited
by ω2

ϕ(R2
I−R2) . ṽ2

‖I
, thus (RI−R)/RI . ṽ2

‖I
/ω2
ϕRI(RI+R) ∼

M−2
i

≪ 1. Consistent with footnote 2, we expect (B−BI )/BI ∼
(RI −R)/RI to also be small, implying that µ conservation does
not lead to a significant pressure anisotropy. For electrons, a
similar conclusion follows from confinement by the ambipolar
electric field discussed at the end of Sec. 2.1.
9 This form can also be obtained by multiplying (36) by
2R−2∂Rψ = 2Bz/R, then using (35) and the relation ∂R =
(∂Rψ)∂ψ + bR∇‖.

integrate the remaining two terms radially from R to
some outer-bound radius Rout, rearranging a bit to

B2
z(R)

B2
z (Rout)

≈ 1 − 2

∫ Rout

R

dR′

R′

(ωϕR
′)2

B2
z(Rout)/µ0ρm

. (38)

Obviously, this must be positive for any physical
equilibrium, setting an upper bound on the size of
the last term. That term represents a weighted radial
average of the ratio of the squared toroidal velocity
(ωϕR)2 to the square of the Alfven speed evaluated
with the axial field B2

z(Rout)/µ0ρm. Equation (38)
thus limits the Alfvénic Mach number, similarly to
experiment.

In a case with Bϕ = I/R larger than Bz , we might
expect the second term of (37) to dominate over ∂RB

2
z .

If that were true, and still neglecting ∂Rp and ∂zBR
terms, we could radially integrate the two remaining
terms to get

I2(R)

I2(Rout)
≈ 1 − 2

∫ Rout

R

dR′R′

R2
out

(ωϕR
′)2

B2
ϕ(Rout)/µ0ρm

. (39)

Since I2 = B2
ϕR

2 needs to be positive for a physical
equilibrium, the RHS again represents a limit on a
radial average of the Alfvénic Mach number. However,
in (39) the Alfvén speed is evaluated with Bϕ,
suggesting that one may indeed increase the rotation
speed via the addition of an azimuthal field.

Unfortunately, even with the addition of a strong
azimuthal field, the axial-field Mach number constraint
of (38) continues to apply, as we will now show. The
key constraint comes from (32) and (34), which jointly
imply that

µ0j + (∆∗ψ)∇ϕ = I ′∇ψ × ∇ϕ = I ′(B −Bϕϕ̂). (40)

In words, the axial (R, z-plane) equilibrium current is
just I ′/µ0 times the axial magnetic field. However, any
successful trap must confine both ions and electrons
in the axial direction, meaning that the axial current
density must go to zero in the endcaps. Unfortunately,
since I ′ is a flux function, and since the axial magnetic
field must stay nonzero in the endcaps, equation (40)
implies that the only way to eliminate the axial current
density in the endcaps is to set I ′ = 0. Physically,
this is equivalent to stating that the axial current
density must be zero, which restricts the azimuthal
field to take only its vacuum-field value. This means
that the azimuthal field is actually completely unable
to contribute to the confining pressure balance, since
the ∂RI

2 term in (37) must be zero, equivalently the
I ′I term in (36) must be zero. The rotation-velocity
limit is then set purely by the axial field, as in (38),
preventing one from reducing Bz below a rotation-
dependent floor, regardless of the value of Bϕ.
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Centrifugal-mirror confinement with strong azimuthal magnetic field 9

3.3. Single-particle interpretation of MHD constraints

While the results of Sec. 3.2 are mathematically
straightforward, they may appear inconsistent with the
single particle results of Sec. 2. In this section, we will
resolve the apparent discrepancy with a simple single-
particle interpretation of our MHD results.

To begin, we consider the drift motion of electrons
and ions in a strongly magnetized, supersonically
rotating two-species plasma. Recall (13) and focus first
on perpendicular motion. The strongest drift is the
E × B drift, but that is equal for electrons and ions,
thus it causes no current. Recalling (22) and (23), the
first-order drifts from (14) can be rearranged as

v⊥1 = Ω−1
s b̂×[(ωϕRϕ̂+ṽ‖b̂)·∇(ωϕRϕ̂+ṽ‖b̂)+m−1

s µ∇B].(41)

For the supersonically rotating ions, the largest first-
order drift is

v⊥1 ≈ Ω−1
i b̂×[ωϕRϕ̂·∇(ωϕRϕ̂)] = −Ω−1

i b̂×ω2
ϕRR̂.(42)

Assuming Te . Ti, the electrons’ small mass implies
that all of their first-order drift terms are smaller
than (42). If the drift from (42) were the ions’ only
response to the centrifugal force, then we would indeed
have I ′ 6= 0, so a plasma with mostly azimuthal B

could rotate at the Alfvén speed corresponding to Bϕ,
as in (39).

However, particle confinement along the field
implies a constraint that changes this conclusion: In
order for a particle to be confined in the ẑ direction,
its time-averaged vz

.
= v · ẑ must be zero. Consider

an ion with perpendicular drift vE + v⊥1 with v⊥1

from (42).10 Recalling (22) and (23), we find

(v‖b̂ + vE + v⊥1) · ẑ = bz ṽ‖ + bϕω
2
ϕR/Ωi, (43)

so in the time average we expect ṽ‖ ≈ −bϕω2
ϕR/Ωibz,

thus an azimuthal velocity around

(v‖b̂ + vE + v⊥1) · ϕ̂ = ωϕR− (b2
ϕ + b2

z)ω
2
ϕR/bzΩi.(44)

We can then calculate the current. The average
ẑ-directed velocity is separately zero for both ions and
electrons, so jz = 0. For the azimuthal current, both
electrons and ions rotate with the net E × B rotation
ωϕRϕ̂, causing no net current. However, the ions’ net
centrifugal drift is much larger, so we can estimate the
azimuthal current density to be around the ion charge
density (Zieρm/mi) multiplied by their time-averaged
azimuthal velocity minus ωϕR, leading to

j ≈ −ϕ̂(b2
ϕ + b2

z)ρmω
2
ϕR/bzB. (45)

10 This first-order drift did not contribute to the MHD mass
flux ρmu in (29), even though ρmu is very nearly equal to
the ion particle flux, times mi. The basic reason is that the
MHD equations only evaluate the mass flux with leading order
u. However, as necessitated by a leading-order cancellation, they
actually evolve the current density j up to the first-order drifts.
See Ref. [14] for a tutorial discussion.

Substituting (45) for j in (32), the axial component
gives us ∇I = 0. The azimuthal component then
reproduces (36) with I ′ = 0, in the supersonic limit,
thus neglecting ∇p and taking B2

R ≪ B2
z .11 With that,

we have reproduced the basic result of Sec. 3.2, from
an intuitive single-particle point of view.

4. Conclusions

Although centrifugal mirrors offer many potentially
appealing features, they generally require an extremely
large applied voltage Zieφ/Ti ∼ Mi(R0/ρi), presenting
a significant technical challenge for a reactor-scale
device (Sec. 1). If one were to modify the centrifugal-
mirror geometry by adding a strong azimuthal field
Bϕ, this could transfer some of the toroidal rotation
to a parallel flow (Fig. 1). Indeed, an invariant-based
orbit calculation indicates that one could maintain a
given confining azimuthal velocity ωϕR with a smaller
applied voltage φ if the axial magnetic field Bz were
proportionately decreased, even if one maintained the
total magnetic field strength by adding Bϕ (Sec. 2.2).
Further, if some modest geometric restrictions (12) are
met, then newly-ionized ions would be confined and
experience both significant perpendicular and parallel
heating within their first bounce orbit (Sec. 2.3).
Physically, the centrifugal confinement and the first-
orbit heating are electrostatic effects due to drifts up
and down ∇φ (Sec. 2.4).

Unfortunately, the MHD equilibrium limits the
possible benefits of this configuration. In essence,
the fact that the plasma current can not flow in or
out through the endcaps of the device restricts the
current, like the single-particle drifts (Sec. 3.3), to be
oriented in the azimuthal direction, (40) and following.
This means that only the axial field can contribute
effectively to radial confinement against the centrifugal
force, equivalently that the azimuthal velocity is
limited roughly to the Alfvén speed evaluated with the
axial magnetic field alone (Sec. 3.2). This presents a
hard limit on any reduction of Bz , thus of the applied
voltage required for a given azimuthal rotation speed.
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11 Equation (11) limits ω2
ϕ(R2

I − R2) . ṽ2
‖I

, thus (RI − R)/R .

ṽ2
‖I
/ω2
ϕR(RI +R) ∼ M2

i
≪ 1. For this small radial excursion to

be consistent with a system-scale axial (ẑ-directed) orbit length,
we must require B2

R ≪ B2
z .
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Centrifugal-mirror confinement with strong azimuthal magnetic field 10

Appendix A. Electron confinement and axial
potential variation

In this appendix, we relax the approximation that the
potential is a flux function, exploiting a separation of
timescales to evaluate the weak parallel variation of the
potential that confines electrons to ensure ambipolar
losses.

In Appendix A.1, we discuss the separation of
timescales that allow for an approximate solve, us-
ing parameters for a proposed centrifugal-mirror fusion
device as concrete examples. We then solve approxi-
mately in order of decreasing/slowing rates, from cy-
clotron frequency (Ωs, Appendix A.2), down through
collisionless parallel transit (vts/ℓz, Appendix A.3),
collision frequency (νs, Appendix A.4), and inverse of
confinement time (τ−1

c , Appendix A.5). The dynamics
at each frequency scale is constrained by the steady
state of all of the faster rate scales.

For definiteness, we assume a geometry like
Fig. 2 of Ellis, Hassam, Messer and Osborn (EHMO)
[3], namely with a long central confinement region,
bounded at some positive and negative z by points
z+ and z− at which B takes its maximum value Bec

and flux-surface radius R takes its minimum value Rec.
Beyond these points, there are relatively short endcap
regions where R increases and B decreases, but there
is no plasma confinement. In this geometry, there
is no direct contact of confined-particle orbits with
the material insulators at the axial ends of the vessel.
Except when otherwise stated, our analysis will focus
on the confined-plasma region, that is, on the range of
z that contains confined particle orbits.

Appendix A.1. Timescale separation: example
parameters

The high degree of confinement required for a
centrifugal-mirror fusion reactor leads naturally to
designs that feature a separation of timescales. When
EHMO proposed the Maryland Centrifugal Torus, they
also gave parameters for a possible centrifugal-mirror
fusion reactor design point. In this appendix, we use
these parameters, listed in Table A1, to give a concrete
numerical example of the failure of Bϕ to allow a
voltage reduction, and to exemplify the frequency
orderings that underlie the analysis in the subsequent
sections of Appendix A.

Consider first the velocities and voltages implied
by the parameters given in Table A1, for comparison
with Sec. 1. With vti ≈ 7.1 · 105m/s, the bulk
rotation is around uϕ ≈ 4.2 · 106m/s, quite close
to the Alfvén speed vA ≈ 4.6 · 106m/s. Since the
proposed configuration would have little or no Bϕ,
the necessary radial electric field would be (∂Rφ) ≈
uϕB ≈ 107V/m. Even if this electric field is localized

Parameter Value

ne 6 · 1019m−3

Ti, Te 13keV
Mi 6
B 2.6T
R0 4.4m

(∆R) 1.1m
ℓz 22m

Table A1. Parameters for a centrifugal-mirror fusion-plant
design point proposed by EHMO [3], with R0 and (∆R) the
central radius and radial width of the plasma at the midplane
(z = 0), and ℓz the axial length of the plasma. We take Zi = 1
and mi to be 2.5 times proton mass, to model a deuterium-
tritium mix.

to the plasma region of width (∆R), this would
require a potential difference of over 107V, a daunting
engineering challenge. The potential difference is much
larger than (Ti/e) = 1.3 · 104V, both because Mi is
somewhat larger than unity and because the radial
device scale [at least (∆R)] is much larger than the
thermal ion gyroradius ρi ≈ 7.1 · 10−3m, also than the
ion skin depth λi ≈ 4.6 · 10−2m.

Imagine that we changed the design to add an
azimuthal field Bϕ = 2.6T and reduced the axial field
to Bz = 0.26T, so B ≈ 2.6T stayed roughly constant,
leaving all other parameters the same. If we could do
this, the necessary electric field would drop to (∂Rφ) ≈
uϕBz ≈ 106V/m, thus the voltage to ∼ 106V, still
large but significantly more feasible. The ion thermal
gyroradius would stay just as small at ρi ≈ 7.1 ·10−3m,
but the system would now have finite banana widths
vtimi/ZieBz ≈ 7.1 · 10−2m, small relative to system
lengths (but allowing some neoclassical transport).
However, no MHD equilibrium could exist, because our
beta limit from (38) is substantially exceeded, that is,

2

∫ Rout

R

dR′

R′

(ωϕR
′)2

B2
z (Rout)/µ0ρm

∼ 2
(∆R)

R0

u2
ϕ

B2
z/µ0ρm

≈ 42(A.1)

is much larger than unity. Indeed, the original
design (without Bϕ) is already close to the limit, with
2[(∆R)/R0][u2

ϕ/(B
2/µ0ρm)] = 2[(∆R)/R0](u2

ϕ/v
2
A) ≈

0.42, leaving almost no room to reduce Bz (and thereby
the required voltage difference). This design is an
example of a beta-limited configuration.

Let’s move on to the timescales, again giving
examples using the parameters from Table A1, and
thinking back to Sec. 2.3. Perpendicular force balance
(Appendix A.2) is established on a gyrofrequency rate
∼ Ωs, with Ωi ≈ 1.0 · 108s−1 and Ωe ≈ 4.6 · 1011s−1.
Any variation about a collisionless drift orbit varies
at the slower parallel transit scale ∼ vts/ℓz, with
(vti/ℓz) ≈ 3.2 · 104s−1 and (vte/ℓz) ≈ 2.2 · 106s−1. The
velocity-space dependence of the distribution functions
fs relaxes towards a Maxwellian at the collision rates
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Centrifugal-mirror confinement with strong azimuthal magnetic field 11

νs, with νi ≈ 2.6·101s−1 and νe ∼ 2.1·103s−1. EHMO’s
(perhaps optimistic) confinement estimate was τ−1

c ∼
νe(4/M2

i ) exp(−M2
i /4) ≈ 2.9 · 10−3s−1. With these

orderings in mind, we will proceed to approximately
calculate the behavior at each frequency scale, with
each scale restricted by the steady-state constraints
from faster scales.

Appendix A.2. Perpendicular force balance (Ωs)

In this appendix, we will show that axisymmetry and
steady-state perpendicular force balance jointly imply
that the leading-order potential is a flux function φ ≈
φ(ψ). For intuition, you may compare with the first
gyro-orbit of the newly-ionized ion in Sec. 2.3.

At this frequency scale, we may use the cold fluid
momentum equations, also neglecting source terms12

msns∂tus = Zsens(E + us × B). (A.2)

Here ns and us are the the species particle density and
fluid flow velocity, related to the MHD variables via
ρm =

∑

s nsms and u =
∑

s nsmsus. At this level,
just as for single-particle dynamics, we see that the
(species-independent) steady-state balance is

us⊥ = (b̂/B) × (us × B) = (E × B)/B2 = vE , (A.3)

and any imbalance (us⊥ − vE 6= 0) triggers rapid
evolution ∂tus⊥ ∼ Zse(us × B)/ms ∼ Ωsus⊥.

With axisymmetry, the azimuthal (Rϕ̂·) compo-
nent of (A.2) is

ms∂t(Rusϕ) = −Zseus · ∇ψ, (A.4)

so in steady state (here meaning: rates slow compared
to Ωs), we expect the velocity to lay within the flux
surface (us ·∇ψ = 0). Also recalling (A.3), we see that
us · ∇ψ = us⊥ · ∇ψ = vE · ∇ψ, so with axisymmetry
and (1) we find the steady-state constraint

0 = ∇ψ · vE = (I/B2)(∇ψ × ∇ϕ) · (∇φ). (A.5)

Since both the axial and azimuthal derivatives of φ are
zero, we find the steady-state constraint that φ = φ(ψ)
to leading order, as a consequence of perpendicular
force balance.

For emphasis, this is only a constraint on the
leading-order φ, of order (∇φ) ∼ vtiB. In the next
section, we will evaluate a first-order (much smaller)
potential φ

∼
that does vary within the flux surface.

12 This equation neglects some small terms, particularly
using (∇ps)/(Zsensus × B) ∼ (nsTs/ℓ)/ZsensusB ∼
(vts/uϕ)[(vts/ℓ)/Ωs] and [msns(us · ∇)us]/(Zsensus × B) ∼
(us/ℓ)/Ωs ≪ 1.

Appendix A.3. Collisionless orbits (vts/ℓz)

Because vts/ℓz ≫ νs, particles typically complete
many bounce orbits within a collision time, necessitat-
ing a kinetic treatment. At this frequency scale, each
species’ distribution function fs (dependent on spatial
position x, velocity v, and time t) evolves according to
the Vlasov equation

∂tfs + v · ∇fs +
Zse

ms
(E + v × B) · ∂vfs = 0. (A.6)

Consider first a steady state (∂t → 0), and recall that
when ∂tφ = 0 the collisionless particle orbits conserve
the energy H(x,v, t) from (3), meaning that13

∂tH + v · ∇H +
Zse

ms
(E + v × B) · ∂vH = 0. (A.7)

Still assuming ∂tφ = 0, any fs that is a function
of H alone will therefore be a steady-state solution
of the Vlasov equation, since such an fs evolves
according to (A.7) times (∂Hfs), by the chain rule.
By the same logic, any fs that is a function only of
invariants of the collisionless motion (in our case, H ,
Pϕ, and µ) is a steady-state solution of the Vlasov
equation. Any deviation from this dependence will
cause variation at the vts/ℓz frequency scale until fs
relaxes to fs(H,Pϕ, µ).

To proceed, we generalize the approach of Sec. 2.2,
recalling the approximate forms for H and Pϕ from
Eqs. (3) and (4). Treating the flux-function part of φ
just as we did in Sec. 2.2, we now retain an additional
weaker portion φ

∼
(ψ, z), which may vary within a flux

surface. We can neglect the contribution of φ
∼

to
vE , and may approximate φ

∼
(ψ, z) ≈ φ

∼
(ψ0, z) in the

small-gyroradius expansion. Eq. (8) then generalizes
to

H −Zseφ0 ≈ 1

2
msṽ

2
‖ − 1

2
msω

2
ϕR

2 +µB +Zseφ∼
.(A.8)

For emphasis, the only change from (8) is the added
term Zseφ∼

. In particular, φ0 and ωϕ are evaluated
with the leading-order zonal potential, ṽ‖ is exactly
as defined in (10), and all functions are evaluated at
ψ = ψ0.

What does this mean for φ
∼

? At our level of
approximation, we may consider Eq. (A.8) at a fixed
flux surface ψ = ψ0, on which each species’ distribution
function is now a function of the invariants fs =
fs(H,Pϕ, µ). Using the spatially varying Jacobian,
∫

d3v = (4πB/m2
s)

∫

dH
∫

dµ |ṽ‖|−1,14 where |ṽ‖| is a
function of H , µ, and z via (A.8), we can calculate the

13 In this formulation, x, v, and t are the independent variables,
so e.g. x and t are held constant in the velocity partial ∂v . Note
also that ∂vv2 = 2v.
14 The given integral form assumes the integrand is even in ṽ‖,
which is true for the integrals here. If the integrand is not even,
one must use

∑

σv=+1,−1
(2πB/m2

s)
∫

dH
∫

dµ |ṽ‖|−1 where σv

is the sign of ṽ‖.
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Centrifugal-mirror confinement with strong azimuthal magnetic field 12

z-dependent ns(z) =
∫

d3v fs(H,Pϕ, µ).15 Since the
plasma is quasineutral to an excellent approximation
(cf. Appendix A.5), it must satisfy

0 =
∑

s

Zsens(z), (A.9)

and this is the relationship that determines φ
∼

(z).
Looking closer, the centrifugal potential − 1

2msω
2
ϕR

2

acts to confine ions along the field, but is negligible for
electrons. If we imagine that φ

∼
= 0 at some time

t = 0, then electrons would rapidly move outward
in z at a rate ∼ vte/ℓz, and their outflux would
drive the growth of an electron-confining φ

∼
(z) until

their outflux was reduced to match that of the ions.
[Since such a potential is de-confining for the ions,
it will concurrently increase the ions’ parallel outflux.
However, it will not cancel the centrifugal confining
force altogether, since φ

∼
only grows until the outflux

of electrons and ions are equal.] Since electrons’
kinetic energy is of order Te, this implies a steady-
state φ

∼
∼ Te/e, much smaller than the leading-

order flux-function potential. We will explicitly
calculate a relevant special case of this relationship in
Appendix A.4.

Appendix A.4. Collisional relaxation (νs)

Although the collisionless orbits allow an arbitrary
dependence of the distribution functions fs on the
orbit invariants H , Pϕ, and µ, collisions relax the
distribution function towards a Maxwellian fs ∝
exp(−H/Ts). However, any loss orbits are drained of
particles at the collisionless transit rate ∼ vts/ℓz, much
faster than collisions can refill them. In this appendix,
we will crudely treat this situation in a way that yields
a more concrete estimate for the z-varying potential
φ

∼
.

Mechanically, the principal step here is to
calculate the velocity-space boundaries for confined
orbits, as a function of z over the confined-plasma
region. For brevity, let’s define a generalized species-
dependent potential Φs

.
= Zse(φ0 + φ

∼
) − 1

2msω
2
ϕR

2,

so H = 1
2msṽ

2
‖ + µB + Φs. An orbit is confined if

its orbit turns (ṽ‖ = 0) for some z in the confinement
region, equivalently if H < µBec + Φs,ec. Conversely,
an orbit only extends to those z for which ṽ2

‖ > 0, thus

H > µB + Φs, with µ > 0 by definition. [We expect
Φs,ec ≥ Φs over the whole confined range of z, for both

15 It may appear somewhat mysterious that the spatial
dependence enters through the Jacobian in d3v. This happens
because the Vlasov equation’s characteristics (single-particle
trajectories) are divergence-free in the 6-dimensional (x, v) phase
space, but the trajectories are not divergence-free in x-space
alone.

ions and electrons.16] With that, we will crudely take

fs ≈ cs0e
−H/TsΘ(µBec+Φs,ec−H)Θ(H−µB−Φs)Θ(µ),(A.10)

with cs0 a normalizing constant and Θ the Heaviside
function (equal to unity for positive argument, and
to zero for negative argument). Of course, in a
real system, collisions will distort fs away from a
Maxwellian for (H,Pϕ, µ) near to the loss boundary,
but in a well-confined centrifugal system this distortion
should be weak outside a relatively small fraction of
phase space, motivating our ad hoc approximation.

One can straightforwardly (if tediously) evaluate
the velocity-space integral to obtain17

eΦs/Ts

(2π)3/2v3
tscs0

ns = 1 − erfc(Φ
1/2
s∆ ) · · ·

+B
1/2
∆ eΦs∆(1−B∆)/B∆erfc(

√

Φs∆/B∆),(A.11)

with normalized nonnegative functions Φs∆
.
= (Φs,ec−

Φs)/Ts and B∆
.
= (1 − B/Bec), and with erfc the

complementary error function. Physically, the “1”
on the RHS captures the basic Gibbs (adiabatic)
response to Φs,

18 and the two erfc terms capture the
µ-dependent loss cone. Approaching the boundary
points, where both Φs∆ and B∆ go to zero, the last
term of (A.11) goes to zero19 and the second-last term
approaches (-1), correctly indicating that the confined-
plasma density goes to zero there.20 In a deeply-
confined plasma away from the endcap/loss points,
Φs∆ becomes large-ish (comparable to M2

i ) but B∆ <
1, and the erfc corrections become very small. See
Fig. A1.

16 On one hand, this seems trivial—the centrifugal force confines
ions, and φ∼ confines electrons. However, the centrifugal
confinement is in fact also electrostatic, as we discussed in
Sec. 2.4. The key here is that the ions, with their greater
mass, undergo a much wider radial drift orbit, which leads
to electrostatic confinement by drift motion up or down the
radial gradient of the leading-order flux-function potential,
overpowering the smaller deconfining-for-ions force from ∂zφ∼.
17 First carry out the µ integral, with the velocity-space Jacobian
from Appendix A.3 and |ṽ‖| = [2(H − µB − Φs)/ms]1/2 ,
obtaining

m
3/2
s

25/2πcs0

ns=
m

3/2
s

25/2πcs0

∫

d3v fs=

∫ Φs,ec

Φs

dH e−H/Ts (H − Φs)1/2

+

∫ ∞

Φs,ec

dH e−H/Ts [H(1 − B/Bec) + Φs,ecB/Bec − Φs]
1/2.

For the two H integrals, change the integration variables to
t
.
= [(H − Φs)/Ts]1/2 and t

.
= [(H + b)/Ts ]1/2, with constant

b
.
= (Φs,ecB/Bec − Φs)/(1 − B/Bec). Integrate the results by

parts using ∂te−t2 = −2te−t2 and note that the boundary terms
cancel.
18 Interestingly, the Gibbs response also retains effects of the
mirror force, even though neither µ nor B appear explicitly. In
essence, the volume element is smaller where B is larger, due to
∇ · B = 0, so it contains less particles even at the same density.
19 Note that 0 ≤ eΦs∆/B∆ erfc(

√

Φs∆/B∆) ≤ 1, for all positive

(Φs∆/B∆).
20 There will be a very small outflowing plasma density on the
loss orbits, but that is not included in this density estimate.
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Centrifugal-mirror confinement with strong azimuthal magnetic field 13

BΔ
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Figure A1. Plots of (1 − nseΦs/Ts/23/2π3/2v3
tscs0) as a

function of B∆ for Φs∆/B∆ (moving downwards) of 1, 4, 9,
16, and 25. As these lines approach zero, ns approaches a Gibbs
response. All lines go to unity as B∆ → 0, meaning that no
confined orbits remain at the actual throat of the endcap, where
B = Bec and Φs = Φs,ec.

We can use Eq. (A.11) to more concretely evaluate
the quasineutrality relation (A.9). For simplicitly,
consider a well-confined case, where (Φs,ec − Φs)/Ts
is rather larger than one (although still order unity)
in the bulk/central column. Focusing on this central
region, the erfc terms of (A.11) may be neglected
relative to the Gibbs response. Defining constant
ns0

.
= (2π)3/2v3

tscs0e
−Φs(z=0)/Ts and function Φ̃s(z)

.
=

Φs(z) − Φs(z = 0), we may replace the first term

of (A.11) with ns(z)/(ns0e
−Φ̃s/Ts) so, when the erfc

terms are negligible,

ns(z) ≈ ns0e
−Φ̃s(z)/Ts . (A.12)

Letting φ̃
∼

(z)
.
= φ

∼
(z)−φ

∼
(z = 0) and R0

.
= R(z = 0)

here,21 we have Φ̃s(z) = Zseφ̃∼
+ 1

2msω
2
ϕ(R2

0−R2), with

Φ̃e ≈ −eφ̃
∼

for the electrons. With
∑

s∈i indicating a
sum over only ionic species (i.e. excluding electrons),
we can rewrite (A.9) here as

ne0e
eφ̃∼/Te ≈

∑

s∈i

Zsns0e
−Zseφ̃∼/Ts− 1

2
msω

2
ϕ(R2

0−R2)/Ts ,(A.13)

with the special case ne0 =
∑

s∈i Zsns0 at z = 0.
At any fixed z 6= 0, the LHS increases monotonically
with φ̃

∼
while the RHS decreases monotonically, so we

expect they will be equal at a single, unique value of
φ̃

∼
(z), making the problem well posed.

For physical understanding, we consider the
special case of a single ionic species. In this case
ne0 = Zini0 and we can rearrange (A.13) to

eeφ̃∼(ZiTe+Ti)/TiTe ≈ e− 1
2
miω

2
ϕ(R2

0−R2)/Ti (A.14)

thus

eφ̃
∼
/Te ≈ −1

2
miω

2
ϕ(R2

0 −R2)/(ZiTe + Ti). (A.15)

As expected, φ̃
∼

is negative and of order Te/e, forming
a potential barrier for the electrons and weakening (but

21 Note that this is a distinct usage from the R0 in Table (A1).

not eliminating) the ion potential barrier, leading to
ambipolar parallel confinement:

Φ̃e/Te = Φ̃i/Ti =
1

2
miω

2
ϕ(R2

0 −R2)/(ZiTe + Ti).(A.16)

In this special case, the solution for φ
∼

from (A.15)
holds unmodified even where the erfc terms become
nonnegligible, since (A.16) also implies Φe∆ = Φi∆. In
the cold-electron limit ZiTe ≪ Ti, the φ

∼
necessary to

confine the electrons is negligible in the ion dynamics,
in which case the treatment in Sec. 2 (focusing on
ion force balance and neglecting φ

∼
altogether) is

quantitatively justified.
We conclude that the plasma develops a potential

φ
∼

that varies in a flux surface but is much smaller
than the leading-order flux-function φ, and that this
potential φ

∼
ensures that quasineutrality is maintained

along the entirety of the confined plasma. This is
maintained by dynamics local to the confined-plasma
region, and does not depend on specific assumptions
about the endcap regions.

Appendix A.5. Momentum transport and axial current
(τ−1

c )

We have seen that the leading-order potential is
a flux function (Appendix A.2) that it is roughly
unaffected by electron parallel dynamics, which are
restricted to an ambipolar level by the much-smaller φ

∼

(Appendix A.3 and Appendix A.4). In this appendix,
we see how the leading-order potential evolves in time,
on the slowest τ−1

c frequency scale, controlled by the
transport of conserved angular momentum.

Our system conserves angular momentum because
the single-particle orbits conserve canonical angular
momentum Pϕ, defined in (4), fundamentally due to
azimuthal symmetry. Considering Pϕ = Pϕ(x,v) for
an axisymmetric, time-independent magnetic field, one
may show the Pϕ analog to (A.7):22

dtPϕ .
= ∂tPϕ+v·∇Pϕ+

Zse

ms
(E+v×B)·∂vPϕ = 0.(A.17)

Although the electromagnetic part of Pϕ is the
larger part for any single particle, msRvϕ/Zseψ ∼
ρϕ,z/R,23 its contribution to the total momentum
balance is constrained by quasineutrality: Consider a
volume V bounded radially by a constant-ψ surface Sψ,
and axially by two axisymmetric surfaces Sz+

and Sz−
,

which are aligned with ∇ψ and lay within the z range

22 Note that Rvϕ = Rϕ̂ · v, in which Rϕ̂ = ẑ × x depends only
on x. Recalling that ∇ is taken at fixed v, one finds (e.g. using
Cartesian components) that ∇(Rvϕ) = −ẑ×v, so v·∇(Rvϕ) = 0.
Also, since ∂v(Rvϕ) = Rϕ̂, we have E · ∂v(Rvϕ) = 0 by
axisymmetry, and [recalling (1)] (v×B)·∂v(Rvϕ) = v ·B×Rϕ̂ =
−v · ∇ψ
23 Recall (2).
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Centrifugal-mirror confinement with strong azimuthal magnetic field 14

of confined particle orbits.24 Charge conservation
(∂tρch = −∇ · j) and Gauss’s Law, integrated over
this volume, give us

ǫ0∂t
[

∫

Sψ

dS·E +
∑

z+,z−

∫

dS·E
]

= −
∫

Sψ

dS·j −
∑

z+,z−

∫

dS·j(A.18)

Since the endcap surfaces have dS ⊥ ∇ψ, the
term

∑

z+,z−

∫

dS · E = −
∑

z+,z−

∫

dS · ∇φ
∼

may be

neglected relative to
∫

Sψ
dS · E ≈ −

∫

Sψ
dS · ωϕ∇ψ.

For Sψ, some geometry: First, since Sψ is a surface
of constant ψ, its normal is parallel to ∇ψ, so one
has dS = σψ dS(∇ψ)/|∇ψ|, with σψ = ±1 the sign
of ∂Rψ. Second, since two nearby flux surfaces ψ and
ψ + dψ are spaced physically by dψ/|∇ψ|, the volume
element at Sψ may be written as d3x = dS dψ |∇ψ|−1

and the total volume between the adjacent surfaces is
V ′dψ for flux function V ′ .

=
∫

Sψ
dS /|∇ψ|. The flux-

surface average 〈· · ·〉, defined as the volume average
taken at a flux surface, may be written for Sψ as 〈· · ·〉 =
(V ′)−1

∫

Sψ
dS |∇ψ|−1. With that, and recalling (1),

we can relate the first term in (A.18) to the field
(Poynting) angular momentum since

−〈ǫ0E×B ·Rϕ̂〉=〈ǫ0E ·∇ψ〉=
σψ
V ′
ǫ0

∫

Sψ

dS · E. (A.19)

Assuming that Sψ is chosen inside the confined-plasma
volume, we may evaluate j =

∑

s

∫

d3vZsefsv, so

1

V ′

∫

Sψ

dS·j =σψ〈j·∇ψ〉=σψ
∑

s

〈
∫

d3v fsdt(Zseψ)〉.(A.20)

For the mechanical angular momentum, we act
on Eq. (A.6) with

∑

s

∫

d3vmsRvϕ, doing some
integrations by parts to find25

∂t
∑

s

∫

d3vmsRvϕfs + ∇ · [
∑

s

∫

d3vmsRvϕvfs]

=
∑

s

∫

d3v fsdt(msRvϕ), (A.21)

which we will flux-surface average. Using (A.17) to
replace dt(msRvϕ) = −dt(Zseψ) in the last term, we
may equate

V ′〈
∑

s

∫

d3v fsdt(msRvϕ)〉 = −σψ
∫

Sψ

dS · j

≈ −V ′∂t〈ǫ0E×B ·Rϕ̂〉 + σψ
∑

z+,z−

∫

dS · j. (A.22)

24 The axial-bounding surfaces Sz+ and Sz
−

are close to
constant-z discs, but are a bit bent in the z direction so that
they are normal to the flux surfaces, thus have dS ⊥ ∇ψ.
25 At this slow frequency scale, we should retain the collision
operator in (A.6). However, collisions conserve momentum, so
that contribution sums to zero here.

The field momentum term is much smaller than the
E × B contribution to the physical momentum term
∂t

∑

s

∫

d3vmsRvϕfs, since26

ǫ0E × B ·Rϕ̂
∑

s

∫

d3vmsRvEϕfs
=

ǫ0E × B · Rϕ̂

ρmE × B ·Rϕ̂/B2
=
v2

A

c2
≪ 1.(A.23)

For Table A1 parameters, v2
A/c

2 ≈ 2.4 · 10−4. This is
one statement of quasineutrality—it implies that we
may neglect the ∝ ∂tE terms relative to the ∝ j

terms in (A.18). Physically, a changing electric field
corresponds to a changing E × B angular momentum,
and ions move radially as they pick up this azimuthal
momentum, similar to the newly-ionized ion in Sec. 2.3.
The ion charge density resulting from this radial shift
is much larger than the actual net charge density.

With that, our flux-surface averaged angular
momentum equation is27

∑

s

[

∂t〈
∫

d3vmsRvϕfs〉+
1

V ′
∂ψ〈V ′

∫

d3vmsRvϕfsv ·∇ψ〉
]

≈
∑

z+,z−

[−2πRσ±

V ′|∇ψ|
∑

s

∫

d3vmsRvϕfsv ·b̂ax+
σψ
V ′

∫

dS · j
]

,(A.24)

with unit vector b̂ax
.
= (∇ψ × ∇ϕ)/|∇ψ × ∇ϕ|, and

σ± = ±1 chosen at each end (z+, z−) so σ±b̂ax

points outward towards the endcaps. Physically, the
flux-surface-averaged angular momentum (first term)
evolves in time due to outfluxes of mechanical angular
momentum in the radial (second term) and axial
(third term) directions, and due to a net outgoing
axial current (fourth term, equal and opposite to net
incoming radial current by quasineutrality). For the
end fluxes (second row), note that only the mechanical
momentum outflux at the surface ψ contributes, while
the entire outgoing current (axis to the ψ surface)
contributes to the final term.

Although a comprehensive transport analysis is
beyond the scope of this article, we briefly consider
the terms in the momentum transport equation (A.24),
focusing on the ways that they are constrained by the
steady states of the more rapid timescales. Let’s start
with radial transport, the second term of (A.24). At
the most rapid rates ∼ Ωs, the radial flow v · ∇ψ is
blocked by gyro-motion and the fact that φ is a flux
function to leading order, so vE · ∇ψ = 0. At the
next-slower rate ∼ vts/ℓ, recall that the collisionless
orbits followed surfaces of constant H , Pϕ, and µ,

26 Use vEϕ = (E × B · ϕ̂)/B2,
∑

s

∫

d3vmsfs = ρm, and

ǫ0µ0 = 1/c2.
27 To evaluate the flux-surface average of the flux-divergence
term (2nd on LHS), it may be easiest to evaluate the flux-
surface average as a derivative of the volume average over V ,
that is, 〈· · ·〉 = σψ(V ′)−1∂ψ

∫

V
d3x. Before differentiating in

ψ, use the divergence theorem on the volume integral. The
surface integral at the endcaps may be explicitly written as
∑

z+,z−

∫

dS =
∑

z+,z−

2πσ±

∫ ψ

0
dψ′ R|∇ψ|−1b̂ax.
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Centrifugal-mirror confinement with strong azimuthal magnetic field 15

which causes their poloidal projection to be closed,
so their v · ∇ψ averages to zero. Collisions allow
particles to take radial steps, of width the gyro-orbit
(∼ ρs = vtsms/ZseB) for Bϕ = 0 (causing classical
transport) or of width the drift orbit (∼ ρs,z

.
=

vtsms/ZseBz) for Bϕ 6= 0. In either case, there is
a radial diffusivity (∼ νsρ

2
s or ∼ νsρ

2
sz, respectively),

and in either case the transport is ambipolar (because
collisions conserve total momentum, and the radial
step is proportional to the change in momentum).28

This drives radial transport at a rate ∼ νsρ
2
s/ℓ

2 or
νsρ

2
s,z/ℓ

2, in either case much slower than νs. It cannot
directly drive radial current, since the transport is
intrinsically ambipolar. There may also be turbulent
transport, although this is potentially weakened by the
strong E × B shear in the centrifugal mirror.

Consider next the parallel mechanical momentum
end loss, the third term of (A.24). This case is again
constrained by the fact that the collisionless orbits
are closed, within the confined plasma region. Again,
collisions can scatter particles onto loss orbits, but this
process is slowed by the strong centrifugal potential
barrier for ions and comparably strong electrostatic
barrier for electrons, the Φs,ec from Appendix A.4,
so only ∼ exp(−Φs/Ts) particles have enough energy
to escape, with Φs/Ts ∼ M2

i . As discussed e.g. by
EHMO, this leads to a parallel loss rate of order
νs(4/M

2
i ) exp(−M2

i /4) ≪ νs. Since the momentum
is mostly carried by ions, the momentum end losses
may only occur at their slower rates, evaluated with νi.
The example τ−1

c from Appendix A.1 is at the faster
electron rate and captures a parallel heat-loss channel.

Consider now the current end losses, the fourth
term of (A.24). Note first that this integral goes
radially from the reference flux surface all the way
in to the axis of symmetry, so it includes not only
plasma current, but also any net current entering or
leaving the (solid) central conductor (at the trap’s axis
of symmetry, R = 0). Indeed, this central-conductor
current supplies the torque to drive the plasma
rotation, but it will generally relax to ∼transport rates
in any steady state, since the conductor is usually held
at a fixed, time-independent potential. Consider then
the plasma portion of

∑

z+,z−

∫

dS · j. Of course, with
insulating endcaps, one should strictly set this to zero,
but perhaps the endcap region or end insulator is leaky
somehow and permits some outgoing current. Even in
this case, the upstream balances will restrict outgoing

28 In detail, for neoclassical transport: The collisionless orbits
conserve Pϕ, which determine’s a particle’s radial position
(start of Sec. 2.2). A collision transfers momentum between
two particles, conserving the sum. This occurs at fixed ψ,
thus changes their Pϕ, thus their radial orbit center ≈ ψ0 =
Pϕ/Zse. Recalling (4), the equal and opposite increments to
Pϕ correspond to equal and opposite steps of Zseψ0, thus zero
radial current.

current. The closed collisionless orbits independently
restrict individual species’ outgoing fluxes thus also
current, but the constraint on j is even stricter. As we
saw in Appendix A.3 and Appendix A.4, the confined-
plasma region fluxes relax the potential φ

∼
so that

parallel fluxes are ambipolar, and this requires only
a φ

∼
that is much smaller than the leading-order flux-

function potential. Given this, and assuming a well-
confined centrifugal mirror, even with leaky endcap
regions the outgoing current would be restricted to the
rate at which transport can supply cross-field radial
current divergence, which must then be balanced by
outgoing current to restore the ambipolar φ

∼
. Since

that upstream charge density mostly results from ion
radial drifts due to momentum transport, that limits
the outgoing current term to be of a similar magnitude,
even if the endcaps were to tolerate

∫

dS · j 6= 0.

Appendix B. Endcap current to relax MHD
constraints

In Sec. 3, we found that the MHD equilibrium
beta limits were set by axial magnetic field (≈ Bz)
alone. For a beta-limited plasma, this means that
the addition of Bϕ does not permit any reduction of
Bz, and therefore also no reduction of the applied
voltage. For example, Bϕ could not meaningfully
reduce the voltage required for EHMO’s reactor design
point (see Appendix A.1). But could we get around
this restriction if we were somehow able to allow
some current out the endcaps? What would the
requirements be? In this appendix, we offer brief
analysis of these questions.

To evaluate this, we revisit Sec. 3 but relax the
analysis to allow current out the ends. The analysis
in Sec. 3.1 proceeds completely unchanged—those
conclusions rested only on force balance within
the plasma, leading-order particle confinement, and
Ampère’s Law.29 In particular, even if we allow
outgoing current, the equilibrium must still satisfy (36)
[equivalently (37)] with I = I(ψ) [due to (34)].
However, a nonzero outgoing current would allow I ′ 6=
0, cf. (40) and adjacent discussion.

How big would this current need to be in order
to effectively relax the MHD beta constraints? To get
the basic magnitude, let’s estimate the axial current-
density jax that we would need in order to do the entire
radial force balance, for example by solving (36) with

29 Note that no matter how you drive the plasma currents,
within the plasma volume they must still be consistent with force
balance and with Ampère’s Law.
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(∆∗ψ) set to zero.30 Unwinding our definitions,31 we
find (neglecting ∂ψp relative to the larger centrifugal
term)

jax ∼ ρmω
2
ϕR/Bϕ, (B.1)

simply the axial current for which j × Bϕϕ̂ balances
the outward centrifugal force.

As one possibility, suppose we generated this
current purely through plasma losses, somehow letting
all ions escape axially in one direction and electrons
in the other. The corresponding density outflux would
limit the density confinement rate to

τ−1
n ∼ n−1

e jax/eℓz ∼ (ωϕ/Ωi)(uϕ/ℓz), (B.2)

only one order smaller than simple thermal outflows.
This is much too rapid for a reactor. For example,
for the parameters from Table A1 this is around τn ∼
1.8 · 103s−1, much more rapid than their estimated τc.

As another possibility, suppose we somehow
emitted a current from one end insulator and let
it pass through the plasma, absorbing it into the
other. An electron current would be most practical,
because the light electrons carry more current per heat
flux, and they would not contribute to the outward
centrifugal force in the bulk plasma region. They
would be accelerated into the plasma by φ

∼
, passing

through the confined-plasma region with a kinetic
energy around M2

i Te [cf. (A.15)] thus speed around
Mivte and correspondingly low collisionality. They
would be decelerated again by φ

∼
on the way out to

the far endcap. However, the currents required are
almost certain to be impractically large. For Table A1
parameters, taking Bϕ =2.6T, the current density
from (B.1) times a cross-sectional plasma area around
2πR0(∆R) comes to an axial current of around 107A.
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