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This paper presents a first measurement of the cross-section for the charged-current Drell–Yan
process 𝑝𝑝 → 𝑊± → ℓ±𝜈 above the resonance region, where ℓ is an electron or muon.
The measurement is performed for transverse masses, 𝑚W

T , between 200 GeV and 5000 GeV,
using a sample of 140 fb−1 of 𝑝𝑝 collision data at a centre-of-mass energy of

√
𝑠 = 13 TeV

collected by the ATLAS detector at the LHC during 2015–2018. The data are presented single
differentially in transverse mass and double differentially in transverse mass and absolute
lepton pseudorapidity. A test of lepton flavour universality shows no significant deviations
from the Standard Model. The electron and muon channel measurements are combined to
achieve a total experimental precision of 3% at low 𝑚W

T . The single- and double differential
𝑊-boson charge asymmetries are evaluated from the measurements. A comparison to next-to-
next-to-leading-order perturbative QCD predictions using several recent parton distribution
functions and including next-to-leading-order electroweak effects indicates the potential of
the data to constrain parton distribution functions. The data are also used to constrain four
fermion operators in the Standard Model Effective Field Theory formalism, in particular the
lepton-quark operator Wilson coefficient 𝑐 (3)

ℓ𝑞
.
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1 Introduction

The Drell–Yan process [1] of lepton pair production in hadronic interactions is a powerful tool in
understanding the nature of partonic interactions and hadronic structure, and it can be a probe of the
electroweak sector of the Standard Model. It has been fundamental in developing perturbative quantum
chromodynamics (QCD) with calculations now available at next-to-next-to-next-to-leading-order (N3LO)
accuracy [2–5].

Cross-section measurements from the Large Hadron Collider (LHC) of inclusive neutral-current (𝑝𝑝 →
𝑍/𝛾∗ → ℓ+ℓ−) and charged-current ( 𝑝𝑝 → 𝑊± → ℓ±𝜈) Drell–Yan processes at centre-of-mass energies
of
√
𝑠 = 5.02 TeV, 13 TeV and at 13.6 TeV have recently been published by the ATLAS [6, 7], CMS [8–10]

and LHCb [11] collaborations. These measurements, performed at the resonant peaks where event yields
are very large and background contributions are extremely small, reach high experimental accuracy. They
provide new constraints on the parton distribution functions (PDFs) of the proton and offer insights into
the initial-state QCD radiation dynamics in vector boson production [6]. They are however restricted in
the kinematic range of partonic momentum fraction 𝑥 and four-momentum transfer 𝑄 = 𝑚ℓℓ , where 𝑚ℓℓ

denotes the invariant mass of the dilepton pair.

Measurements extending to lower or higher invariant masses have been performed in the neutral-current
channel only [12–18] and access wider 𝑥 and 𝑄 kinematic regions. At low 𝑄 the measurements are
sensitive to QCD resummation effects. At large 𝑄 they are sensitive to new physics beyond the Standard
Model and also provide new constraints on the poorly known high-𝑥 anti-quark PDFs.

The charged-current process is highly complementary to the neutral-current process. The charge-separated
cross-sections for 𝑊+ and 𝑊− production depend on different flavour combinations, while the 𝑍 production
depends on same-flavour combinations. The dominant partonic contributions are (𝑢, 𝑑) and (𝑐, 𝑠) for 𝑊+,
and (𝑑, 𝑢̄) and (𝑠, 𝑐) for 𝑊− production.

Since the final-state neutrino is not observed, the dilepton invariant mass cannot be experimentally
determined, and the transverse mass 𝑚W

T is used instead, defined by 𝑚W
T =

√︃
2𝑝ℓT𝑝

𝜈
T(1 − cosΔ𝜙(ℓ, 𝜈)).

Here 𝑝ℓT is the charged lepton transverse momentum, 𝑝𝜈T is the neutrino or missing transverse momentum,
and Δ𝜙(ℓ, 𝜈) is the azimuthal angle between them.

To date no cross-section measurements of the charged-current process above the 𝑊-boson resonance
region have been made. This kinematic region is of particular interest as at the highest transverse masses
accessible at the LHC, the observed 𝑚W

T spectrum in the decay to electron or muon final states is sensitive
to new physics. Such effects could manifest as a localised resonance [19, 20], a violation of lepton
flavour universality or an enhancement or suppression of the continuum spectrum. Modifications to
the Standard Model predictions can be described in terms of an Effective Field Theory (EFT). In this
formalism the Standard Model Lagrangian is extended with new operators which are suppressed by an
energy cut-off scale. The charged-current Drell–Yan process is sensitive to operators which modify the
couplings between fermions and the 𝑊-boson, and operators which allow for a direct interaction between
four fermions without a mediator. The effects of four-fermion operators grow quadratically with energy, so
the measurement of charged-current Drell–Yan at high 𝑚W

T therefore provides strong sensitivity to such
effects. This measurement is thus expected to provide electroweak precision tests that surpass LEP in
sensitivity [21].

This article reports a first measurement of the cross-section for the process 𝑝𝑝 → ℓ𝜈 + 𝑋 above the
𝑊-boson resonance production region. The measurements are performed using a sample of 140 fb−1 of
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𝑝𝑝 collision data at
√
𝑠 = 13 TeV collected by the ATLAS detector at the LHC in both electron and muon

channels. The double-differential measurement is reported as a function of 𝑚W
T and absolute charged-lepton

pseudorapidity |𝜂 |. The data are also presented as single-differential cross-sections d𝜎/d𝑚W
T . The data

cover the kinematic region of 200 ≤ 𝑚W
T ≤ 5000 GeV and access partonic momentum fractions from

𝑥 ∼ 10−2 up to 𝑥 ∼ 1.

2 ATLAS detector

The ATLAS detector [22] at the LHC covers nearly the entire solid angle around the collision point.1 It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic (EM)
and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core
toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |𝜂 | < 2.5. The high-granularity silicon pixel detector covers the vertex region and
typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)
installed before Run 2 [23, 24]. It is followed by the SemiConductor Tracker (SCT), which usually provides
eight measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |𝜂 | = 2.0. The TRT also provides
electron identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |𝜂 | < 4.9. Within the region |𝜂 | < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering |𝜂 | < 1.8 to correct for energy loss in material
upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,
segmented into three barrel structures within |𝜂 | < 1.7, and two copper/LAr hadronic endcap calorimeters.
The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers
of precision chambers, each consisting of layers of monitored drift tubes, cover the region |𝜂 | < 2.7,
complemented by cathode-strip chambers in the forward region, where the background is highest. The
muon trigger system covers the range |𝜂 | < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

The luminosity is measured mainly by the LUCID–2 [25] detector that records Cherenkov light produced
in the quartz windows of photomultipliers located close to the beampipe.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis points upwards.
Polar coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The pseudorapidity is
defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2) and is equal to the rapidity 𝑦 = 1

2 ln
(
𝐸+𝑝𝑧
𝐸−𝑝𝑧

)
in the relativistic limit.

Angular distance is measured in units of Δ𝑅 ≡
√︁
(Δ𝑦)2 + (Δ𝜙)2.
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Events are selected by the first-level trigger system implemented in custom hardware, followed by selections
made by algorithms implemented in software in the high-level trigger [26]. The first-level trigger accepts
events from the 40 MHz bunch crossings at a rate close to 100 kHz, which the high-level trigger further
reduces in order to record complete events to disk at about 1.25 kHz.

A software suite [27] is used in data simulation, in the reconstruction and analysis of real and simulated
data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Simulated event samples

Monte Carlo (MC) simulation samples are used to model the expected signal and background yields,
with the exception of certain data-driven background estimates. The MC samples are normalised using
higher-order cross-section predictions in perturbation theory.

The neutral and charged current Drell-Yan processes are generated at next-to-leading-order (NLO) using
Powheg Box v1 [28–31] and the CT10nlo PDF [32], with Pythia 8.1 [33] to model the parton showers
(PS) and hadronisation. The effect of QED final-state radiation was simulated with Photos++ 3.52 [34,
35]. The EvtGen 1.2.0 program [36] was used to decay bottom and charm hadrons. This MC sample is
hereafter referred to as the Powheg+Pythia sample. Using invariant-mass dependent 𝑘-factors [37] these
predictions are corrected to account for next-to-next-to-leading-order (NNLO) QCD and NLO electroweak
(EW) effects. The QCD corrections are computed using Vrap v0.9 [38] and also weight the predictions to
the CT14nnlo PDF set [39]. The EW corrections excluding QED final state radiation (FSR) are computed
using MCsanc [40] and vary from about −3% at low 𝑚W

T to about −10% at 𝑚W
T = 1 TeV. The additive

approach is used to combine the EW and QCD corrections.

An alternative simulation of the signal process is used for the assessment of systematic uncertainties arising
from different modelling choices. It is generated using Sherpa 2.2.11 [41] at NLO in QCD for up to
two additional partons and at LO for up to five partons, using the NNPDF3.0nnlo PDF set [42]. The
sample is then reweighted to the CT18nnlo PDF set [43]. The prediction is corrected to approximate
NNLO accuracy with a 𝑘-factor of 0.95 calculated using Matrix v2 [44, 45]. NLO EW corrections are
implemented in Sherpa. The exponentiated approach for combining EW and QCD corrections is used,
which yields corrections lying between the additive and multiplicative approaches. The differences between
all three corrections is however small and typically below 1%.

The background from 𝑡𝑡 production is the dominant background with isolated prompt leptons from
electroweak boson decays. It is estimated at NLO using Powheg Box v2 [46] with a top-quark mass of
𝑚top = 172.5 GeV and the NNPDF3.0nlo PDF set [42], with Pythia 8.2 [47] for parton showering and
hadronisation. The decays of bottom and charm hadrons were performed by EvtGen 1.6.0. The 𝑡𝑡 MC
samples are reweighted in the 𝑝T of the top quark and in the mass of the 𝑡𝑡 pair to inclusive cross-section
calculations at NNLO accuracy in QCD including NLO EW corrections [48]. The single-top-quark
background, consisting of 𝑠− and 𝑡−channel processes and the 𝑡𝑊 process, is also simulated under the same
conditions. The dynamic scale diagram subtraction scheme [49] is used to account for the interference
between the 𝑡𝑊 and 𝑡𝑡 production diagrams.

Further important background contributions are due to diboson (𝑊𝑊 , 𝑊𝑍 and 𝑍𝑍) production decaying
into final states with at least one charged lepton. The diboson processes are generated with Sherpa 2.2.1 or
Sherpa 2.2.2 depending on the process, using the NNPDF3.0nnlo PDF set. They were generated using
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matrix elements at NLO accuracy in QCD for up to one additional parton and at LO accuracy for up to
three additional parton emissions.

All MC samples used in the analysis include the effects of QED FSR, multiple 𝑝𝑝 interactions per bunch
crossing (“pile-up”), and detector simulation. The QED FSR is simulated using Photos [50], except for
samples generated by Sherpa which includes a native FSR simulation. The effect of pile-up was modelled
by overlaying the simulated hard-scattering event with inelastic 𝑝𝑝 events generated with Pythia 8.1 using
the NNPDF2.3lo PDF set [51] and the A3 set of tuned parameters [52]. The interactions of particles with
the detector are modelled using a full ATLAS detector simulation [53] based on Geant4 [54]. Finally,
several corrections are applied to the simulated samples, accounting for differences between data and
simulation in the lepton trigger, reconstruction, identification, and isolation efficiencies as well as lepton
resolution and muon momentum scale.

4 Event reconstruction and selection

Events are required to be recorded during stable beam condition periods and must pass detector and
data-quality requirements [55]. Due to differences in the detector response to electrons and muons the
nominal selection is optimised separately for each channel and is described in the following. In addition to
the nominal selection two further selections are defined. Both correspond to less stringent selections needed
for either the background estimation (“loose”) or in order to veto events with a second lepton (“veto”).

4.1 Object reconstruction and selection

4.1.1 Electrons

Electrons are reconstructed from clusters of energy deposited in the EM calorimeter and matched to tracks
reconstructed in the ID [56]. An energy scale correction determined from 𝑍 → 𝑒+𝑒−, and 𝐽/𝜓 → 𝑒+𝑒−

decays is applied to data. Electron candidates are required to have a pseudorapidity within the inner
detector tracking region, |𝜂 | < 2.4, excluding a region, 1.37 < |𝜂 | < 1.52, where the transition between the
barrel and endcap electromagnetic calorimeters is not well modelled in the simulation.

The primary interaction vertex is taken to be the one with the largest sum of squared transverse momenta of
all associated tracks [57]. Electrons must originate from the primary vertex and are selected by requiring
|𝑧0 sin 𝜃 | < 0.5 mm, where 𝑧0 is the coordinate of the track at the point of closest approach to the beam-line.
The significance of the transverse impact parameter, defined by the distance of closest approach of the track
to the beam-spot in the 𝑟 − 𝜙 projection |𝑑0 |, divided by its estimated uncertainty 𝜎(𝑑0), is required to
satisfy |𝑑0 |/𝜎(𝑑0) < 5.

Candidates must satisfy the LooseAndBLayer likelihood-based identification requirements [56] based on
EM shower shapes, track quality, and track–cluster matching.

Leptons produced in the Drell–Yan process are expected to be well isolated from energy depositions not
associated with the lepton. Therefore the electron candidates also need to fulfil the FCLoose isolation
working point [56], which has two distinct definitions of the degree of isolation: one is based on calorimeter
information and one is based on tracks in the ID. The calorimeter-based isolation is defined as the scalar
sum of transverse energy,

∑
𝐸T, contained in a cone of size Δ𝑅 =

√︁
(Δ𝜙)2 + (Δ𝜂)2 around the electron,
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omitting the electron transverse energy, 𝐸T. It is given by
∑

𝐸T(Δ𝑅 = 0.2) < 0.20 · 𝐸T. The track-based
criterion is based on the scalar sum of transverse momenta,

∑
𝑝T, of additional tracks around the electron,

and is required to be below 15% of the electron 𝑝T, i.e.
∑

𝑝T(Δ𝑅) < 0.15 · 𝑝T. Here, the Δ𝑅 cone size
shrinks with increasing transverse momentum of the electron, Δ𝑅 = min( 10 GeV

𝑝T
, 0.2).

The criteria above define the “loose” and the “veto” level as they are identical for electrons. The nominal
selection requires electrons to in addition satisfy the Tight likelihood-based identification requirements and
an additional electron isolation requirement that uses the FCHighPtCaloOnly isolation working point [56],
based on calorimeter information only via

∑
𝐸T(Δ𝑅 = 0.2) < max(0.015 · 𝐸T, 3.5 GeV).

4.1.2 Muons

Muon candidates are reconstructed from tracks in the muon spectrometer matched to tracks from the ID and
satisfy |𝜂 | < 2.4. Muons originating from the primary vertex are selected by requiring |𝑧0 sin 𝜃 | < 0.5 mm
and |𝑑0 |/𝜎(𝑑0) < 3.

Except for the “veto” level the muon identification uses the High-𝑝T working point [58] designed to
optimise the resolution for muons with 𝑝T above 100 GeV. This working point requires: agreement in
the charge-to-momentum ratio of the muon as measured in the ID and the MS, taking into account their
uncertainties; at least three precision space-points in the MS for improved sagitta measurement; and upper
limits on the uncertainty of the charge-to-momentum ratio. These requirements cannot be fulfilled in some
regions of the MS, for example in the transition region between barrel and endcap with 1.01 < |𝜂 | < 1.1.
The Medium working point [58], which particularly requires only two precision space-points in the MS, is
used when vetoing additional muons.

The nominal selection requires muons to in addition fulfil an isolation criteria. It is defined using the scalar
sum of transverse momenta,

∑
𝑝T, of additional tracks divided by 𝑝T, the transverse momentum of the

muon. The selection requires
∑

𝑝T(Δ𝑅 = 0.2) < 0.06 · 𝑝T, providing a good discrimination against the
background arising from the semileptonic decays of heavy quarks.

4.1.3 Jets

Jets are reconstructed and used in the determination of the missing transverse momentum in the event.
A particle flow algorithm [59] is used which optimally combines calorimetric and tracking information.
The anti-𝑘𝑡 algorithm [60, 61] is used with radius parameter 𝑅 = 0.4. They are calibrated using in situ
measurements and simulation [62]. Jets are required to satisfy transverse momentum 𝑝T > 25 GeV and
pseudorapidity |𝜂 | < 2.5. Jets with 𝑝T < 60 GeV and |𝜂 | < 2.5 are also required to pass the tight jet vertex
tagger criteria [63]. Identification of jets containing 𝑏-hadrons is performed with the DL1r algorithm [64]
with an average tagging efficiency of 𝑏-jets from simulated dileptonic 𝑡𝑡 events of 70%.

4.1.4 Overlap removal

Particles identified by the ATLAS detector may be reconstructed as multiple different objects. Ambiguities
for electrons are resolved by applying a sequential algorithm to select the best choice for each object. If a
pair of electron candidates share a track, the lower 𝑝T object is removed. Any jet within Δ𝑅 = 0.2 of an
electron candidate is removed. Then, any electron candidates found within Δ𝑅 = 0.4 of a jet are removed.
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Ambiguities for muons are not resolved at this stage as they are beneficial for the estimation of the amount
of non-prompt muons in this measurement (see Section 5.2.2).

4.1.5 𝑬miss
T

The missing transverse momentum, with magnitude 𝐸miss
T , is determined from the sum of transverse

momenta of reconstructed and calibrated objects in the event. A so-called soft term accounts for the 𝑝T of
all remaining tracks associated to the primary vertex [65].

4.2 Event selection

The electron data are collected by a set of triggers which use calorimetric information to identify a
compact electromagnetic energy deposition [66]. Identification algorithms use calorimeter shower shape
information to find candidate electrons with a minimum transverse energy of 60 or 120 GeV in 2015.
Medium identification criteria [56] are applied at the lower threshold and loose criteria for the higher
threshold. In the remaining years the higher transverse energy threshold was changed to 140 GeV. To
validate backgrounds two additional low-threshold triggers were used with trigger thresholds 24 GeV and
medium identification criteria in 2015, and a 26 GeV threshold with tight identification in subsequent years.
In the muon channel data are collected using a single muon trigger with a transverse momentum above
50 GeV [67].

Events are required to have exactly one reconstructed electron with 𝐸T > 65 GeV or exactly one
reconstructed muon with 𝑝T > 65 GeV. The electron or muon has to satisfy the nominal selection criteria.
In both cases the lepton is required to match a corresponding trigger. Events containing additional muons
or electrons with 𝑝T > 20 GeV fulfilling the “veto” level criteria are rejected. The 𝐸miss

T is required to be
greater than 85 GeV and the reconstructed 𝑚W

T must exceed 200 GeV. It is determined from the relationship
given in Section 1 using the reconstructed 𝐸miss

T , lepton 𝑝T, and the azimuthal angle between them.

5 Background estimation

The background from processes with one prompt isolated final-state lepton is estimated from MC simulation
and includes: 𝑍 → ℓℓ where one lepton is not reconstructed due to detector acceptance or efficiency effects;
𝑊 → 𝜏𝜈 and 𝑍 → 𝜏𝜏 where a 𝜏-lepton decays leptonically; diboson production of 𝑍𝑍 , 𝑊𝑍 and 𝑊𝑊 in
which one boson decays leptonically; and 𝑡𝑡 and single top production (hereafter termed the top-quark
background). The MC predictions for some of the major contributions are validated in dedicated kinematic
regions.

A further background contribution arises from light- and heavy-flavour multĳet production in which
non-prompt leptons are produced or from the misidentification of jets as fake electrons. In the following
the multĳet background is defined as the sum of both contributions. This background is not well modelled
in simulation and is determined using data-driven techniques described in detail below.
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Figure 1: Comparisons of the data and prediction in the top validation region for the (a) 𝑝T of the leading lepton and
the (b) transverse mass of the W boson. Statistical and systematic uncertainties of the prediction are included in the
uncertainty band. A blue triangle in the bottom panel indicates data points outside the vertical range shown.

5.1 Top-quark background contribution

The background contribution from top-quark production is estimated using the MC simulation, and is
expected to be large in the phase space of this measurement. It is therefore important to check the validity
of the MC simulation using data. As the dominant contribution stems from dileptonic decays of the 𝑡𝑡

pairs, a top-quark-enriched sample of events is selected by requiring two “tight” leptons – one electron and
one muon both with 𝑝T > 30 GeV. The leading lepton is further required to have 𝑝T > 65 GeV matching
the signal region selection, and this lepton is used with 𝐸miss

T in the calculation of the 𝑚W
T observable.

The 𝐸miss
T is required to be above 85 GeV, and the 𝑚W

T is required to exceed 150 GeV. This validation
region closely matches the kinematic region of the measurement and is found to be highly enriched in
𝑡𝑡 and single-top production with fractions of 85% and 9% respectively, where the single-top production
is dominated by the 𝑡𝑊 process. The signal and multĳet contributions are negligible in this sample. All
kinematic observables are found to be well described in shape and in normalisation by the sum of MC
expectations. Examples are shown in Figure 1 for the leading lepton 𝑝T and the 𝑚W

T observable.

The top-quark background is further cross checked in two variations of the validation region where the
𝐸miss

T requirement is removed or where an additional b-jet is required. The former validation region allows a
check of the region of small 𝐸miss

T used in the multĳet estimate, while the latter is a pure (> 99%) top-quark
control region. The simulation is again found to describe the data well in both regions.

5.2 Multĳet background estimate via the matrix method

The matrix method [14] is used to estimate the multĳet background in the electron and muon channels. The
method makes use of the different sets of selection criteria described in Sections 4.1.1 and 4.1.2. It relates
the number of observed leptons satisfying the nominal (“tight”) requirement, 𝑁𝑇 , or only the less stringent
(“loose”) requirements, 𝑁𝐿 , to the number of prompt (“real”) leptons, 𝑁𝑅, and to the number of non-prompt
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leptons or jets (“fake”), 𝑁𝐹 . They are connected by a pair of linear equations, using MC estimates of the
real efficiency, 𝜖𝑟 , and data-driven estimates of the fake efficiency, 𝜖 𝑓 . The real efficiency is defined to be
the fraction of prompt leptons satisfying at least the loose selection which also pass the tight selection,
𝜖𝑟 = 𝑁𝑇

𝑅
/(𝑁𝐿

𝑅
+ 𝑁𝑇

𝑅
). The fake efficiency is analogously defined as the fraction of non-prompt leptons and

jets satisfying at least the loose selection which also pass the tight selection 𝜖 𝑓 = 𝑁𝑇
𝐹
/(𝑁𝐿

𝐹
+ 𝑁𝑇

𝐹
). The

relationship is given as: (
𝑁𝑇

𝑁𝐿

)
=

(
𝜖𝑟 𝜖 𝑓

1 − 𝜖𝑟 1 − 𝜖 𝑓

) (
𝑁𝑅

𝑁𝐹

)
.

The equation can be inverted to derive the multĳet background as

𝑁multĳet = 𝜖 𝑓 𝑁𝐹 =
𝜖 𝑓

𝜖𝑟 − 𝜖 𝑓
[𝜖𝑟 (𝑁𝐿 + 𝑁𝑇 ) − 𝑁𝑇 ] .

This general method is used to derive the distribution of multĳet events as a function of any variable of
interest for both the electron and the muon channels.

5.2.1 Multĳet background estimate in the electron channel

The real efficiency is determined using the signal MC sample in which the reconstructed prompt electron
is matched to the corresponding Born-level particle. The 𝐸miss

T and 𝑚W
T criteria described in Section 4.2

are not applied. The 𝜖𝑟 are determined in 132 two-dimensional bins of electron 𝑝T and |𝜂 |. The resulting
factors are found to vary between 90 − 95% except at the largest |𝜂 | and close to the transition region
between the barrel and endcap calorimeter.

The fake efficiency is measured using a data sample enriched in fake electrons by removing the 𝑚W
T criterion

and requiring the 𝐸miss
T to be below 65 GeV, which also ensures orthogonality between the signal and

fake enriched selections. The residual real electron contribution is subtracted using the MC predictions.
The fake efficiency has the same binning in 𝑝T and |𝜂 | as the real efficiency, but depends simultaneously
also on the difference in azimuthal angle between the electron and the 𝐸miss

T , Δ𝜙(𝑒, 𝐸miss
T ), leading to 660

three-dimensional bins. The fake efficiencies are found to be typically below 50% with a marked reduction
at larger 𝑝T. The resulting efficiencies are validated by comparing the simulation and predicted multĳet
background contribution to the data in a wider fake enriched region in which the 𝐸miss

T condition is removed
completely. Figure 2 shows the data and the predicted event yields for the 𝑚W

T and 𝜂 spectra in this region
for the 𝑒− measurement channel. The data are described by the prediction given the multĳet and statistical
uncertainties shown in the figure. The dominant uncertainty, particularly at low 𝐸miss

T , arises from the
choice of calibration applied to loose objects in the 𝐸miss

T calculation as discussed in Section 7.1.

5.2.2 Multĳet background estimate in the muon channel

The multĳet background estimation in the muon channel largely follows that of the electron channel
described above. The real efficiency is determined from the signal Drell–Yan MC simulation from events
in which the reconstructed muon is matched to the Born-level particle. The 𝐸miss

T and 𝑚W
T selection criteria

are dropped. The real and fake efficiencies, 𝜖𝑟 and 𝜖 𝑓 , are determined in only 18 two-dimensional bins of

10



 [GeV]W
Tm

1−10

10

310

510

710

910

E
ve

nt
s

40 210 210×2 310 310×2
 [GeV]W

Tm

0.8
1

1.2

P
re

d.
D

at
a

-
MJ VR, e
ATLAS -1 140 fb,=13 TeVs

Data νe→W
tt Multijet

Diboson Single top
Z ντ→W
Stat.+MJ syst. unc.

(a)

η

0

1000

2000

310×

E
ve

nt
s 

/ 0
.2

 

2− 0 2
η

0.8
1

1.2

P
re

d.
D

at
a

-
MJ VR, e
ATLAS -1 140 fb,=13 TeVs

Data νe→W
tt Multijet

Diboson Single top
Z ντ→W
Stat.+MJ syst. unc.

(b)

Figure 2: Comparisons of the data and prediction in the multĳet validation region for the (a) transverse mass of the W
boson and the (b) pseudorapidity of the electron for the 𝑒− final state. The grey shaded band represents the statistical
uncertainty of the prediction and the systematic uncertainties on only the multĳet estimate. A blue triangle in the
bottom panel indicates data points outside the vertical range shown.

reconstructed muon 𝑝T and |𝜂 | due to the limited sample size available to the fake efficiency estimate when
compared to the case of electrons. The real efficiencies are found to exceed 99% in all bins.

The fake enriched region in the muon channel is created by first removing the 𝑚W
T requirement and requiring

𝐸miss
T < 65 GeV, as described in Section 5.2.1. Since the dominant source of fake muons arises from

heavy flavour 𝑏- and 𝑐-hadron decays within jets, further selections are used to enhance the yield of
this class of events. Dĳet topologies are targeted in which an additional jet is required (see Section 4.1)
which is back-to-back in the azimuthal angle with respect to the muon, Δ𝜙( 𝑗 , 𝜇) > 5

6𝜋. The azimuthal
angular separation between the muon and the 𝐸miss

T is required to be less than 𝜋
6 . This criterion efficiently

suppresses the signal contribution. Finally, the transverse impact parameter significance |𝑑0 |/𝜎(𝑑0) is
required to be greater than 1.5. The remaining contributions from EW processes and the signal process are
subtracted using the predictions from MC simulation.

An algorithm similar to the one used to resolve particle object ambiguities in the electron channel within
an event as described in Section 4.1 is not applied in the muon channel as non-prompt muon arise
predominantly from within jets. Therefore, the contribution from non-prompt muons is increased in the
fake enriched region while these muons are efficiently suppressed by the isolation requirement for muons
which is part of the tight selection.

The efficiency for selecting fake muons is found to be about 10% at low 𝑝T, rising to between 30% for
central pseudorapidity and 65% at the highest pseudorapidity. It is validated by estimating the multĳet
background in an enlarged kinematic region with respect to the region used to estimate the fake efficiency.
This is achieved by first removing the 𝐸miss

T selection criterion. Figure 3 shows the data and the predicted
event yields for the extrapolation in 𝐸miss

T and for 𝜂 for the 𝜇+ measurement channel. Up to 𝐸miss
T ≈ 150 GeV

where the multĳet contribution is large, the data are well described by the predictions within the systematic
uncertainty of only the multĳet estimate and the statistical uncertainty of the prediction. However, the
region of high 𝑚W

T cannot be validated as the requirement on Δ𝜙(𝜇, 𝐸miss
T ) suppresses the event yield.
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Figure 3: Comparisons of the data and prediction in the multĳet validation region for the (a) missing transverse
energy and the (b) pseudorapidity of the muon for the 𝜇+ final state. The grey shaded band represents the statistical
uncertainty of the prediction and the systematic uncertainties on only the multĳet estimate. A blue triangle in the
bottom panel indicates data points outside the vertical range shown.

Therefore a second validation region is defined by removing the requirement on Δ𝜙(𝜇, 𝐸miss
T ) and requiring

at least three jets instead. The resulting phase space is found to be composed of approximately equal
contributions from multĳet events, signal, and top quark processes. The data in this phase space are well
described by the prediction.

5.3 Data and prediction comparisons

The number of expected events is calculated as the sum of the data-driven and simulated background
estimates, and the expected event yield predicted by the signal Drell–Yan MC simulations.

Figures 4 and 5 compare data and expectation for the reconstructed lepton 𝑝T, 𝐸miss
T , and 𝑚W

T distributions.
In the phase space of the measurement the three largest background contributions in the electron channel are
the top-quark (𝑡𝑡 and single top), multĳet and diboson contributions which are found to be approximately
23%, 4%, and 3% respectively in the 𝑊 → 𝑒+𝜈 channel. The corresponding contributions in the 𝑊 → 𝑒−𝜈
channel are 33%, 5%, and 4%.

In the muon channel the three largest background contributions are from top-quark (𝑡𝑡 and single top),
𝑍+jets, and diboson production. They constitute about 20% , 8%, and 2% of the total expectation in the
𝑊 → 𝜇+𝜈 channel. In the 𝑊 → 𝜇−𝜈 measurement the contributions are found to be approximately 31% ,
6%, and 3% of the expectation event yield. The multĳet contribution in the muon channels is below 2%.

The data event yields and spectra are found to be well described by the expectation in both the 𝑊± → 𝑒±𝜈
and the 𝑊± → 𝜇±𝜈 channels.
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Figure 4: Comparisons of the data and prediction in the signal region for the (a, b) transverse momentum of the
lepton, (c, d) missing transverse momentum, and (e, f) transverse mass 𝑚W

T in the (a, c, e) 𝑒+ and (b, d, f) 𝑒− final
states. Statistical and systematic uncertainties of the prediction (except for theoretical uncertainties on the signal) are
included in the uncertainty band. A blue triangle in the bottom panel indicates data points outside the vertical range
shown.
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Figure 5: Comparisons of the data and prediction in the signal region for the (a, b) transverse momentum of the
lepton, (c, d) missing transverse momentum, and (e, f) transverse mass 𝑚W

T in the (a, c, e) 𝜇+ (right) and (b, d, f)
𝜇− final states. Statistical and systematic uncertainties of the prediction (except for theoretical uncertainties on the
signal) are included in the uncertainty band. A blue triangle in the bottom panel indicates data points outside the
vertical range shown.
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6 Cross-section measurement

The charged current Drell–Yan cross-sections are measured for each charge and lepton flavour separately.
The differential cross-sections are measured in 12 𝑚W

T bins in the range 200 ≤ 𝑚W
T ≤ 5000 GeV. Double

differential cross-sections in five 𝑚W
T bins and up to 12 |𝜂 | bins are also presented covering the region

0 ≤ |𝜂 | ≤ 2.4, and 200 ≤ 𝑚W
T ≤ 2000 GeV, as listed in Table 1.

The binning in 𝑚W
T is chosen such that the bin widths are larger than the detector resolution to minimise

migrations between bins and that the bins at the highest values of 𝑚W
T have moderate statistical uncertainties.

In particular, the muon channel is expected to have worse resolution at high 𝑚W
T than the electron channel

since the muon is fully reconstructed from track-based measurements only. The muon 𝑝T dominates the
resolution for 𝑚W

T > 400 GeV, but below this region it is the 𝐸miss
T which gives the leading contribution. In

the fiducial region the single differential bin purity, defined as the yield ratio of particle-level signal MC
events to reconstructed signal MC events, is found to be typically 60%. In the muon channel this decreases
in the 2 − 5 TeV 𝑚W

T bin, whereas in the electron channel it increases, reaching unity at the highest 𝑚W
T .

6.1 Fiducial definition

The measurements are unfolded to a common fiducial region that closely matches the kinematic selection
described in Section 4. It is defined at particle level as |𝜂 | < 2.4, 𝑝ℓT > 65 GeV, the transverse momentum
of the (anti-)neutrino 𝑝𝜈T > 85 GeV, and 200 ≤ 𝑚W

T ≤ 5000 GeV for the single differential measurements,
or 200 ≤ 𝑚W

T ≤ 2000 GeV for the double differential measurements. The lepton charge is included in the
definition of the fiducial region.

The fiducial region is defined at the Born particle level prior to any QED radiation from the final-state
charged lepton. The measurements can also be corrected to the “dressed” particle level by multiplying the
reported cross-sections by the multiplicative factor𝐶fsr defined as the ratio of the dressed-level cross-section
to the Born level, and is provided in the data tables (see Section 8). The dressed particle level is obtained
from MC simulation by merging the Born-level leptons with any prompt photons within a cone of Δ𝑅 < 0.1
around the charged lepton. The 𝐶fsr are close to unity and found to vary weakly with 𝑚W

T .

6.2 Unfolding procedure

After the signal region selection has been applied and each of the background contributions has been
subtracted from the data, the observed distributions are corrected for detector effects in an unfolding
procedure [68]. The differential one-dimensional cross-section d𝜎 𝑗/d𝑚W

T is determined using

d𝜎 𝑗

d𝑚W
T

=
1

Δ𝑚W
T · Lint · 𝜖 𝑗

∑︁
𝑖

𝑅−1
𝑖 𝑗 · 𝑓 𝑖in · (𝑁

𝑖
𝑑 − 𝑁 𝑖

𝑏),

where Δ𝑚W
T is the bin width, Lint the integrated luminosity, and 𝑁 𝑖

𝑑
and 𝑁 𝑖

𝑏
are the numbers of observed

data and estimated background events in the 𝑖-th bin, respectively. The factor 𝑓 𝑖in corrects for signal events
that pass the detector-level selection but not the fiducial selection, i.e. for events which migrate into the
measurement region, also called “in-smearing”. The factor 𝜖 𝑗 corrects for signal events that pass the
fiducial selection but not the detector-level selection, accounting for selection efficiency and acceptance.
The matrix 𝑅𝑖 𝑗 is the detector response matrix containing the number of events in the 𝑖-th reconstructed
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Table 1: Kinematic bin edges for the two-dimensional cross-section measurements.

𝑚W
T / GeV 200 , 300 , 425
|𝜂 | 0.0 , 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 , 2.2 , 2.4

𝑚W
T / GeV 425 , 600 , 900
|𝜂 | 0.0 , 0.4, 0.8, 1.2, 1.6 , 2.0 , 2.4

𝑚W
T / GeV 900 , 2000
|𝜂 | 0.0 , 0.6, 1.2, 1.8 , 2.4

measurement bin and the corresponding prediction in the 𝑗-th particle-level bin. It gives the probability
of a selected event reconstructed in a given bin 𝑖 to have originated at particle level from the fiducial bin
𝑗 . The signal MC sample is used to obtain 𝑓 𝑖in, 𝜖 𝑗 and 𝑅𝑖 𝑗 . The equation is trivially extended for the
two-dimensional case.

Iterative Bayesian unfolding [69] is used to approximate the inversion of the matrix 𝑅𝑖 𝑗 . The procedure
is regularised through the number of iterations in which the particle-level prediction is used as a biased
prior. The prior is replaced by the unfolded output of the previous iteration, thereby reducing the bias, but
potentially increasing the variance. The measurement is optimised using two iterations.

6.3 Event migration studies

The reconstructed event selection efficiency including acceptance losses, is found to be 𝜖 𝑗 ≈ 70% – 90% in
the electron channel and 𝜖 𝑗 ≈ 50% – 75% in the muon channel.

The factors 𝑓 𝑖in are used to correct the data for in-smearing in particular from the 𝑊-boson resonance
production region into the kinematic phase space of this analysis. As the correction is done without
iteration it is better to maximise its value, reducing the impact of measurement biases. This was studied
by reducing the 𝑚W

T selection to 150 GeV and introducing an additional bin in the iterative unfolding
procedure covering the region 150− 200 GeV. This modification is found to increase the value of 𝑓 𝑖in in the
measurement bin 200 < 𝑚W

T < 250 GeV from 70% to 85%, but has no impact at larger 𝑚W
T .

The measurement is not extended down to 𝑚W
T = 150 GeV because 𝑓 𝑖in is only 40% meaning 60% of

reconstructed events in this extended bin are predicted to originate from mainly the𝑊-boson resonance. For
this reason the unfolding is performed with (a) a selection cut of 𝑚W

T > 150 GeV, and (b) the introduction
of a so-called “shadow bin” with 150 ≤ 𝑚W

T ≤ 200 GeV which serves to stabilise the unfolding. The final
cross-section measurements are only reported for 𝑚W

T ≥ 200 GeV.

Figure 6 shows the two-dimensional correction factor 𝑓 𝑖in for the negatively charged electron and positively
charged muon analyses. The shadow bin (shaded region) is also shown for comparison. The in-smearing
factors are found to be very low in the shadow bin, but reach 85% – 90% in the first measurement bin.
They are observed not to depend strongly on |𝜂 |, as expected.

6.4 Optimisation of number of iterations

The robustness of the unfolding procedure is tested in a number of studies using the signal MC. These
include using the Sherpa MC as pseudo-data unfolded using the Powheg+Pythia MC sample; unfolding
the 𝑊+ MC pseudo-data with the 𝑊− MC sample and vice versa; and applying an arbitrary linear 𝑚W

T
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Figure 6: The correction factor 𝑓 𝑖
𝑖𝑛

that corrects for events not generated in the fiducial measurement range are shown
for a (a) negatively charged electron and (b) positively charged muon. On the horizontal-axis the double-differential
measurement binning in the transverse mass of the W boson and the absolute pseudorapidity of the lepton is shown.

dependent event weight to the signal MC which changes the predicted cross-section by ±20% and ±50% at
low 𝑚W

T . In all cases the resulting biases and variances were studied for between one and five iterations.
The optimum number of iterations is chosen to be two, mainly based on a scan of global correlation
coefficients [70] but also on the linear 𝑚W

T dependent reweighting discussed above.

6.5 Observed and predicted event yields

In Figure 7 the predicted event yields are compared to data in the one-dimensional measurement binning
separated by charge and lepton flavour. The uncertainty band represents the combined statistical and
systematic uncertainties. The overall agreement of data and prediction, taking into account the uncertainty
band, is very good.

In Figure 8 the predicted two-dimensional event yields are compared to data separated by charge and lepton
flavour. The distributions are shown in the final binning used to report the cross-section measurements.
The distribution in the shadow bin is also shown for comparison.
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Figure 7: Comparisons of the data and the predictions in the signal region shown in the measurement binning of
the transverse mass of the 𝑊 boson, for the (a) 𝑒+, (b) 𝑒− , (c) 𝜇+ and (d) 𝜇− final states. Statistical and systematic
uncertainties of the prediction (except for theoretical uncertainties on the signal) are included in the uncertainty band.
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(d)

Figure 8: Comparisons of the data and the predictions in the signal region shown in the double-differential measurement
binning in the transverse mass of the 𝑊 boson and the absolute pseudorapidity of the lepton for the (a) 𝑒+, (b)
𝑒− , (c) 𝜇+ and (d) 𝜇− final states. Statistical and systematic uncertainties of the prediction (except for theoretical
uncertainties on the signal) are included in the uncertainty band. For better readability, the numbers of predicted and
data events are scaled up by factors of 3, 5, 15 and 50, respectively, in the last four 𝑚W

T bins.

19



7 Systematic uncertainties

The systematic uncertainties on the measurements are discussed separately for those sources which arise
only in the electron channel, those which arise only in the muon channel, and those which are common to
both measurements. Each source is classified as being correlated or uncorrelated between measurement
bins in a single channel. All bin-to-bin correlated sources are also correlated between measurements of the
same lepton flavour but opposite lepton charge. In addition, all common bin-to-bin correlated sources are
considered to be correlated between the two lepton flavour channel measurements.

The correlated uncertainty contributions are propagated by the offset method in which the values from each
source are coherently shifted upwards and downwards by one standard deviation and the magnitude of
the change in the measurement is computed. Only the systematic uncertainties with an impact of at least
0.5% in at least one bin of any of the measurement distributions are propagated. By default the computed
systematic uncertainties are symmetrised unless they are one-sided or strongly asymmetric.

A summary of the statistical and systematic uncertainties in the single- and double-differential cross-sections
are shown in Figure 9 for the electron channel and Figure 10 for the muon channel. The systematic
uncertainties in the cross-section in the electron channel are dominated primarily by the uncertainties in
the determination of the multĳet background described in Section 5.2.1 and by the electron energy scale.
In the muon channel the charge-dependent impact in the muon momentum scale calibration (sagitta bias) is
the dominant uncertainty at larger values of 𝑚W

T and |𝜂 |, while various sources contribute on a similar level
at smaller values of 𝑚W

T .

7.1 Electron channel

Multĳet background The uncertainty in the multĳet background is driven by the statistical and systematic
uncertainties in the fake efficiency estimate, as the real efficiency is taken from the MC simulation directly.
The fake efficiency depends on the selections used to define the multĳet enriched regions and the modelling
of the backgrounds with real electrons in these regions. Biases from the selection are estimated by varying
the 𝐸miss

T range from 𝐸miss
T < 65 GeV to 𝐸miss

T < 30 GeV and 30 < 𝐸miss
T < 65 GeV and by asking for an

additional jet well separated from the electron. The modelling of the real electron contributions is varied
by using the alternative Sherpa signal sample normalised to the Powheg+Pythia prediction and by scaling
the cross-sections of the MC samples by ±10%. The value of 10% used here is larger than the uncertainties
used in the main analysis due to the unusual phase space of the fake enriched region, see Section 5.2.1.
Finally, as 𝐸miss

T itself depends on the sum of transverse momenta of all reconstructed and calibrated objects
in the event an ambiguity can arise depending on which calibration is applied to a certain object. Applying
e.g. a jet calibration or an electron calibration to a certain reconstructed object typically results in a factor
of two difference in transverse momentum. While not a problem for well identified (“tight”) objects this is
different for objects that only satisfy the less stringent (“loose”) requirements utilised in the matrix method,
for which the true nature (electron or jet) is unknown. A systematic uncertainty is assigned by attempting
to estimate the actual contribution of true electrons and jets as a function of the event kinematics.

While asking for an additional jet leads to negligible differences, all other uncertainties have a 1%-3%
impact on the measurement at low 𝑚W

T , which is decreasing for higher values of 𝑚W
T . They constitute the

dominant source of uncertainty in the measurement at low 𝑚W
T .
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(d)

Figure 9: Summary of the uncertainties in the unfolded (a, b) single-differential and (c, d) double-differential
cross-sections for the (a, c) 𝑒+ and (b, d) 𝑒− final state. Similar sources of uncertainties are combined via their
quadratic sum. The light blue band indicates the total systematic uncertainty. In addition the statistical uncertainties
in the prediction and in the data are shown.

Electron trigger, reconstruction, identification and isolation efficiencies The efficiencies of the trigger,
electron reconstruction and identification, and of the isolation criteria are estimated with 𝑍 → 𝑒+𝑒− data
using a tag-and-probe method [66, 71]. The uncertainties are given in a scheme using a single nuisance
parameter for each of the isolation, reconstruction and trigger efficiency contributions and two nuisance
parameters for the charge misidentification. The remaining identification uncertainties are given by 16
sources correlated between measurement bins. An additional 24 nuisance parameters describe the impact
of sources uncorrelated in |𝜂 | and 𝑝T, but fully correlated between electron charges.

Among those, the largest uncertainties are due to the isolation and identification efficiencies. The former is
largest for 𝑚W

T ∼ 1 TeV where it reaches 2%. The latter is dominated by one bin-to-bin correlated source
in particular which reaches 1% in size for 𝑚W

T above 0.5 TeV, while the uncorrelated sources contribute
typically at the level of 1% in their respective |𝜂 | bin.
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Figure 10: Summary of the uncertainties in the unfolded (a, b) single-differential and (c, d) double-differential
cross-sections for the (a, c) 𝜇+ and (b, d) 𝜇− final state. Similar sources of uncertainties are combined via their
quadratic sum. The light blue band indicates the total systematic uncertainty. In addition the statistical uncertainties
in the prediction and in the data are shown.

Electron energy scale and resolution The determination of the electron energy scale and resolution is
presented in Ref. [56]. The related uncertainties are described by 25 nuisance parameters for the energy
scale and a further nine for the resolution. The energy scale is the larger contribution to the measurement
uncertainty rising from 0.5% at low 𝑚W

T to 3% in the highest 𝑚W
T bin.

7.2 Muon channel

Multĳet background As for the electron channel, the multĳet background estimation in the muon
channel depends on the selections used to define the fake enriched region and the modelling of the real
electron contribution in this region. Biases from these contributions are estimated by varying the 𝐸miss

T
range used in the same way as in the electron channel and, additionally, varying the jet multiplicity, the
impact parameter selection, or the Δ𝜙(𝜇, 𝐸miss

T ) selection individually. The modelling of the real muon
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contribution is varied in the same way as described for the electron channel in Section 7.1. All of these
uncertainty estimates are found to contribute less than 1% to the final cross-section measurement.

Muon trigger, identification, vertex association and isolation efficiency The muon efficiency cor-
rections are obtained for the full Run 2 data using 𝑍 → 𝜇+𝜇− data and simulation with a tag-and-probe
method described in Refs. [58, 67]. The vertex association efficiency corrects for losses arising from the 𝑑0
and 𝑧0 impact parameter selection criteria. Each of these contributions is associated with two nuisance
parameters for a correlated and uncorrelated statistical component of the uncertainty. The largest impact on
the measurement is from the identification efficiency which rises from 1% at low 𝑚W

T to 5% in the highest
bin.

Muon momentum scale and resolution The uncertainties in the determination of the muon momentum
and resolution are discussed in Ref. [72], and are determined using similar samples as for the muon
efficiency corrections above. In total six nuisance parameters are used to describe the impacts of these
uncertainties. They relate to separate resolution effects in the ID and muon spectrometer, biases in the
momentum scale, and three contributions related to the sagitta bias, which are anti-correlated between the
muon charges. The three contributions are a global residual bias, a specific component for the high-𝑝T
extrapolation of muons with |𝜂 | > 1.1 and 𝑝T > 450 GeV, and a contribution from local biases in |𝜂 | and
𝜙 of the muon. The first two of these three contributions have the largest impact and dominate the overall
uncertainty for 𝑚W

T > 600 GeV, reaching up to 10% at the highest values of 𝑚W
T for the former and up to

20% at the highest values of 𝑚W
T and |𝜂 | for the latter.

7.3 Common uncertainties

Top-quark background The 𝑡𝑡 background uncertainties are divided into a number of contributions. The
influence of hadronisation and fragmentation models is determined by re-showering the nominal top-quark
generator-level events with Herwig 7 [73]. The sensitivity to initial (ISR) and final (FSR) state QCD
radiation is determined by varying a parameter of the A14 tune [74] corresponding to a variation of 𝛼𝑆 for
the ISR, and by variations of the renormalisation scale in the FSR part of the PS sample. The Powheg
ℎdamp parameter is a resummation damping factor that effectively regulates the high-𝑝T radiation against
which the 𝑡𝑡 system recoils. It is changed from 1.5 to 3 times the top-quark mass. The 𝑝T-hard parameter
controlling the matching of Powheg matrix elements to the PS is also varied. The PDF uncertainty is
evaluated by using the RMS of one hundred replicas of the nominal NNPDF3.0nlo PDF set.

The relative size of the systematic uncertainties discussed above are evaluated before the reweighting of
the 𝑡𝑡 MC sample to the NNLO QCD calculations including NLO EW corrections described in Section 3.
The sequence (top 𝑝T, 𝑡𝑡 mass) in which the reweighting is performed is another source of uncertainty.
Potential differences in the modelling of additional radiation between the NNLO calculation and the PS are
also taken into account, separately for the 𝑝T of the top quark and the 𝑡𝑡 mass. The choice of PDF has
also been varied in order to assess the impact on the EW corrections. Finally, separate variations of the
factorisation and renormalisation scales 𝜇𝑅 and 𝜇𝐹 , in the NNLO calculation are taken into account by
varying the scales independently by factors of two.

The interference between the 𝑡𝑊 and 𝑡𝑡 production processes is accounted for in the simulation through
the diagram subtraction scheme [45] as discussed above, and the difference to the dynamic scale diagram
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removal scheme [75] is used as uncertainty. The Powheg ℎdamp parameter is varied for the 𝑡𝑊 samples in
the same way as for the 𝑡𝑡 samples. In addition, a normalization uncertainty of 4% is assigned, arising
from the uncertainty in the theoretical prediction at NNLO [76]. This is also assigned to all single-top
channels which is 90% dominated by 𝑡𝑊 production.

The largest uncertainties are due to the hadronisation and fragmentation models, the interference between
𝑡𝑊 and 𝑡𝑡, and the differences in the modelling of additional radiation between the NNLO calculation and
the PS. At small |𝜂 | and for the negative lepton charges, where the contribution from top background is
largest, these uncertainties extend up to 2-3% each.

EW background The remaining EW background processes lead to small contributions in the signal
region. A correlated normalisation uncertainty is applied for each process separately, taken to be 5% for
𝑍 → ℓℓ and 𝑊 → 𝜏𝜈 [77], and 6% for diboson processes.

Jet uncertainties The uncertainties in the jet energy scale and resolution directly influence the 𝐸miss
T

reconstruction and are described in detail in Ref. [62]. The Jet Energy Scale (JES) uncertainties are
described using the 29 nuisance parameter scheme, which considers uncertainties arising from the pile-up
correction to jets, calibration biases, the jet flavour response, the modelling of jets and of the detector, as
well as punch through and the response of high 𝑝T jets. The Jet Energy Resolution (JER) uncertainties
use an eight-parameter scheme. They are larger than the JES contributions but still remain below 1.5%
throughout the measurement range.

Uncertainties in the 𝑬miss
T soft term The 𝐸miss

T soft term uncertainties arise from the momentum scale
of this contribution to the 𝐸miss

T , and from the separate parallel and perpendicular resolution modelling of
the tracks comprising the soft term with respect to the mean 𝑝T of the tracks [65]. These contributions are
largest at low 𝑚W

T , and dominate the uncertainty in the lowest 𝑚W
T bin reaching 1.5%. In the shadow bin

this rises to 4%.

Pile-up modelling To account for differences between simulation and data in the pile-up distribution, the
pile-up profile in the simulation is corrected to match the one in data. The uncertainty in the correction
factor is ±4% and is applied in the measurement as a variation of the event weight.

MC statistics The size of the MC samples used in the analysis leads to uncertainties that are considered
uncorrelated between measurements bins, charges and flavours.

Luminosity The uncertainty of the ATLAS luminosity measurement is 0.83% and is discussed in detail
in Ref. [78].
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Unfolding uncertainties The uncertainty in the unfolding procedure is estimated for two sources. The
first contribution assesses the bias arising from differences between data and MC simulation in the measured
observables 𝑚W

T and |𝜂 |. This is estimated by reweighting the MC simulation at the particle level such
that its resulting distribution at reconstruction level matches the distributions observed in the data. The
uncertainty is derived by unfolding the resulting distribution on reconstruction level with the nominal
unfolding procedure and comparing the result to the reweighted particle level MC spectra. The uncertainty
is found to be below 1% throughout the range of the measurement.

A second contribution to the unfolding uncertainty quantifies the impact of poor modelling in unmeasured
observables for example (but not only) the transverse momentum of the 𝑊 boson which is modelled
differently by the Powheg+Pythia and Sherpa signal MC samples. The uncertainty is estimated by
reweighting the alternative Sherpa signal MC sample to the Powheg+Pythia spectra at the particle level in
𝑚W

T and |𝜂 | and then unfolding the resulting distribution on reconstruction level with the nominal unfolding
procedure. The difference between the unfolded distribution and the reweighted one at particle level is
taken as the uncertainty, and has an impact on the measurement of typically 1%.

8 Results

8.1 Separate differential cross-sections in the electron and muon channels

The unfolded Born-level cross-section measurements d𝜎/d𝑚W
T including their statistical, systematic and

total uncertainties are presented in Figure 11 separately for each lepton charge and flavour. Note that here
and in the following the luminosity uncertainty of 0.83% is not shown and not included in the overall
systematic and total uncertainty bands. Detailed tables for all results including the systematic uncertainties
separately for each source can be found in Hepdata [79, 80].

The data are compared to predictions from Sherpa, using the CT18nnlo PDF set, and Powheg+Pythia
using the CT14nnlo PDF set. The lower panels in each of the figures show the ratio of the two predictions
to the data measurement and the uncertainty contributions.

The cross-sections are observed to fall over seven orders of magnitude as the 𝑚W
T increases from

200 − 5000 GeV. The 𝑒+ and 𝜇+ cross-sections are everywhere larger than the corresponding 𝑒− and
𝜇− cross-sections as expected from the difference between the 𝑢- and 𝑑-quark PDFs in the proton. The
predictions describe the data well within the measurement uncertainties.

The measurements have a data statistical uncertainty ranging from about 0.5% at low 𝑚W
T to about 33% in

the 𝑒+ and 𝜇+ channels and about 50% in the 𝑒− and 𝜇− channels at the highest values of 𝑚W
T .

In the 𝑒+ channel the total systematic uncertainty varies from 3% − 5% over the 𝑚W
T range, compared

to 5% − 8% for the 𝑒− measurement. At low 𝑚W
T , the largest contribution to the systematic uncertainty

in both cases are from the 𝐸miss
T , JER, and multĳet background estimations. At higher 𝑚W

T the largest
contributions to the experimental uncertainty are from the multĳet estimation, the electron calibration, and
the top-quark background, specifically the choice of the single-top 𝑡𝑊 subtraction scheme.

In comparison, the muon channel measurements achieve a better systematic uncertainty at low 𝑚W
T , 3%

and 4% for 𝜇+ and 𝜇− respectively, due to a variety of smaller contributions. However, the systematic
uncertainty is worse at large values of 𝑚W

T , reaching 13% for 𝜇+ and 22% for 𝜇−, driven by two muon
sagitta uncertainty sources.
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Figure 11: Unfolded differential cross-section binned in 𝑚W
T region for the (a) 𝑒+, (b) 𝑒− , (c) 𝜇+ and (d) 𝜇− final states.

The error bars represent the statistical uncertainty. The inner shaded band represents the systematic uncertainty in the
cross-sections, and the outer shaded band represents the total measurement uncertainty (excluding the luminosity
uncertainty). The data are compared to predictions from Sherpa and Powheg+Pythia.

The Born-level two-dimensional cross-sections d2𝜎/d𝑚W
T d|𝜂 | are shown in Figure 12 separately for each

lepton charge and flavour. The data are presented in each 𝑚W
T bin separated by the vertical lines, and the

measurements for 𝑚W
T ≥ 300 GeV are scaled by the factors shown for presentation purposes only. The

measurements are compared to the Sherpa and Powheg+Pythia predictions which describe the data
well.

The cross-sections at low 𝑚W
T show a plateau-like behavior for |𝜂 | up to 1.4, and then decrease at larger

pseudorapidity. With increasing 𝑚W
T the plateau region narrows.

8.2 Electron-muon ratios of charge-integrated cross-sections

Charge-integrated single- and double-differential cross-sections have also been extracted separately for the
electron (𝑒±) and muon (𝜇±) channel and can be found in Hepdata.
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Figure 12: Two-dimensional unfolded cross-section binned in |𝜂 | and 𝑚W
T for the (a) 𝑒+, (b) 𝑒− , (c) 𝜇+ and (d) 𝜇−

final states. The error bars represent the statistical uncertainty. The inner shaded band represents the systematic
uncertainty in the cross-sections, and the outer shaded band represents the total measurement uncertainty (excluding
the luminosity uncertainty). The data are compared to predictions from Sherpa and Powheg+Pythia. For better
readability, the cross-sections in the last four 𝑚W

T bins are scaled up by factors of 2, 10, 50 and 500, respectively.

Ratios of the charge-integrated cross-sections for the 𝑒± to the 𝜇± final state are shown in Figure 13. Here
all asymmetric uncertainties are symmetrized and the one-sided uncertainties are mirrored. This ratio
provides a test of lepton flavour universality and is consistent with unity within the uncertainties.

8.3 Combination of electron and muon channels

The measurements in the 𝑒± and 𝜇± final states are combined using a 𝜒2 minimisation procedure [81–83]
under the assumption that the unfolded measurements for the same charge should agree. The technique
improves the statistical precision of the data as well as the systematic uncertainty in case of uncertainties
that are not (fully) correlated between the lepton flavours. The bin-to-bin correlated systematic uncertainties
are taken into account by introducing a nuisance parameter for each source of uncertainty modelled as a unit
Gaussian probability density contributing to the 𝜒2 definition. The systematic sources and their correlations
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Figure 13: Ratio of the unfolded (a) single- and (b) double-differential electron- and muon-channel cross-sections in
the combined ℓ±-channel. The error bars represent the uncorrelated (systematic and statistical) uncertainties between
the electron and muon channels, while the inner uncertainty band corresponds to the correlated uncertainties. The
total uncertainty in the ratio is presented with the outer uncertainty band.

between channels are discussed in Section 7. The nuisance parameter values are optimised in the fit
which minimises the 𝜒2 difference between the combined cross-section and the separate flavour channels,
summed over the measurement bins. The combination provides new orthogonal systematic uncertainty
sources which are linear combinations of the original sources, and therefore lose their association to
specific experimental causes. In order to aid interpretation, the covariance matrix is rotated back to the
(approximately) original physical source decomposition. Both versions are available in Hepdata. The
combination is first performed for the double-differential cross-sections, and simultaneously for both lepton
charges, which allows optimal systematic contraints from the separate charge combinations and from the
additional information encoded in the |𝜂 | variable. The resulting shifts and constraints on the nuisance
parameters are then transferred to the combination of the single-differential cross-sections.

The combined cross-sections d2𝜎/d𝑚W
T d|𝜂 | for the ℓ+ and ℓ− final states are shown in Figure 14. The

double-differential cross-section combination shows good agreement between the lepton flavours. The fit
has 80 degrees of freedom, and the total 𝜒2 is found to be 74 yielding 𝜒2/dof = 0.92. In each figure the
upper panels show the measured Born-level cross-sections for the electron channel, muon channel and the
combination. The ratio of the pre-fit individual channels to the combined measurement is shown in the
middle panel. The lower panel displays the pulls of the two channels, defined as the difference between
the post-fit single-channel measurement and the combined result in units of the bin-to-bin uncorrelated
uncertainty. No coherent trends between the measurements are observed and the pulls are found to be
below two standard deviations everywhere.

The post-fit nuisance parameters shown in Figure 15 fluctuate around a mean of zero with shifts typically
below one standard deviation. The exception to this is the high-𝑝T sagitta bias parameter with a shift of 1.8
standard deviations indicating a small residual undercalibration. This systematic source only affects the
region |𝜂 | > 1.1. The parameter is also highly constrained by the combination indicating the calibration
potential of this measurement. In addition, two of the twelve 𝜂 binned electron identification systematics
have pulls greater than one standard deviation. These sources arise from the limited sample sizes of the
𝑍 → 𝑒+𝑒− data and are therefore statistical in nature.
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Figure 14: Electron, muon and combined fiducial Born-level cross-sections binned in 𝑚W
T and |𝜂 |, for the (a)

positive and (b) negative lepton charge. The error bars represent the statistical uncertainty. The inner shaded band
represents the systematic uncertainty in the combined cross-sections, and the outer shaded band represents the total
measurement uncertainty (excluding the luminosity uncertainty). For better readability, the cross-sections in the last
four 𝑚W

T bins are scaled up by factors of 2, 10, 50 and 500, respectively. The central panel shows the ratio of each
measurement channel to the combined data, and the lower panel shows the pull of the post-fit electron and muon
channel measurements with respect to the combined data.

8.4 Charge asymmetry of combined cross-sections

An asymmetry in the production of 𝑊 bosons arises from the purely weak coupling to the quarks, the
relative sizes of the production helicity amplitudes, and the PDFs. As the rapidity of the 𝑊 boson is not
directly accessible, measurements of the lepton charge asymmetry, 𝐴ℓ , have been performed at the LHC [9,
84, 85] at 7, 8 and 13 TeV centre-of-mass energies in the resonant production region of the 𝑊 boson.

The measurements presented here extend the experimental determination of the asymmetry to large 𝑚W
T for

the first time. The single- and double-differential lepton charge asymmetries are defined as

𝐴ℓ =
d𝜎+ − d𝜎−
d𝜎+ + d𝜎−

,

where d𝜎± represents the cross-section for the ℓ+ or the ℓ− final state respectively. The charge asymmetry
uses the Born-level flavour-combined measurements with orthogonal uncertainty sources provided by the
post-fit combination. They include correlations between the cross-sections for both charges as the flavour
combination is performed over both charges simultaneously as described in Section 8.3.

The single- and double-differential determinations of 𝐴ℓ are shown in Figure 16. The asymmetry is found
to be large and positive, increasing with 𝑚W

T , as expected from the increasing contribution of the 𝑢-valence
PDF at larger Bjorken 𝑥. The |𝜂 | dependence of 𝐴ℓ is observed to be approximately constant for |𝜂 | ≲ 1.2
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Figure 15: Shifts of the systematic uncertainty nuisance parameters after the combination of the double-differential
electron and muon cross-sections. The systematic uncertainties are related to the unfolding procedure (“unf.”), the
jet energy resolution/scale (“JER/JES”), the 𝐸miss

T scale and resolution, the electron and muon scale, resolution
and efficiency (“Eff.”), the multĳet and 𝑡𝑡 (where RW refers to a reweighting to NNLO) background estimates and
normalization of small background processes (“Norm.”). The uncertainties are marked whether they are symmetric
(“s”), asymmetric (“a”) or one-sided (“o”). The systematic uncertainties labeled with “Electron” or “Muon” are not
correlated between the lepton flavours.

and to fall rapidly at higher values of |𝜂 | for larger values of 𝑚W
T . The Powheg+Pythia predictions are

here updated to the CT18nnlo PDF set, which is already used for Sherpa. Both predictions provide a
good overall description of the measurements. In the highest 𝑚W

T and |𝜂 | bins the predicted asymmetry
from Sherpa and Powheg+Pythia becomes slightly negative. However the measurements do not have the
statistical precision to confirm this behaviour.

9 Interpretation and discussion

9.1 Comparison to QCD predictions

The measured cross-sections are compared to a selection of QCD predictions. In particular the MC
predictions from Powheg+Pythia and Sherpa are presented together with a fixed-order calculation
performed at NNLO with DYTurbo [86, 87]. The NLO EW corrections applied to Powheg+Pythia
(see Section 3) are also added to DYTurbo, whereas Sherpa includes these contributions natively. The
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Figure 16: Charge asymmetry of the (a) single- and (b) double-differential electron/muon combined cross-section.
The error bars represent the statistical uncertainties. The inner shaded band represents the systematic uncertainties
that are correlated between the charges, and the outer shaded band represents the total measurement uncertainty. The
data are compared to predictions from Sherpa and Powheg+Pythia, both using the CT18nnlo PDF set.

predictions from Powheg+Pythia, Sherpa and DYTurbo are shown for the CT18nnlo PDF set. In addition
the DYTurbo prediction is shown for four alternative PDF sets - MSHT20nnlo [88], NNPDF4.0nnlo [89],
ATLASPDF21nnlo (𝑇 = 3) [90], and CT18qed [91].

The flavour-combined single- and double-differential cross-sections for the ℓ+ and ℓ− final states are
compared to the predictions in Figures 17, 18, and 19. The middle panels of Figure 17 and the left
panels of Figures 18 and 19 show that the Powheg+Pythia, Sherpa and DYTurbo predictions using the
CT18nnlo PDF set agree very well for both lepton charges. They are consistent with the measurements,
although a moderate undershoot of the predictions is observed for low 𝑚W

T . The panels also display the
DYTurbo calculation using the CT18qed PDF which exhibits a consistently lower cross-section than from
the CT18nnlo PDFs. This difference is however small and increases with increasing 𝑚W

T and increasing
|𝜂 | to up to 3%.

The middle panels of Figure 17 and the left panels of Figures 18 and 19 show DYTurbo predictions using
different PDF sets as well as the 90% confidence level PDF uncertainty bands from the CT18nnlo PDF.
The prediction using MSHT20nnlo is typically rather similar to the one from the CT18nnlo PDF set,
while the one using NNPDF4.0nnlo is above the CT18nnlo uncertainty band in the ℓ+ channel in the
region 𝑚W

T < 900 GeV. The calculations with the ATLASPDF21nnlo are typically above the CT18nnlo
uncertainty band. The DYTurbo predictions using different PDF sets are also compared to the measured
single- and double-differential charge asymmetry 𝐴ℓ in Figure 20. For the asymmetries the predictions
agree well with the measurements and also for the separate ℓ+ and ℓ− final states the predictions are
consistent with the measurements taking into account the sizeable uncertainties due to the PDFs. These
uncertainties are found to be larger than the experimental uncertainties for 𝑚W

T ≲ 1 TeV, indicating the
potential of these measurements to improve PDF determinations.
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Figure 17: The combined Born-level cross-sections for the single-differential distributions are shown for the (a) ℓ+
and (b) ℓ− final state. The middle panels show a comparison to the predictions from Sherpa, Powheg+Pythia and
the fixed-order calculation from DYTurbo, each using the CT18nnlo PDF. In addition, a fixed-order calculation
using DYTurbo and the CT18qed proton PDF is shown. A comparison to predictions with different PDFs using
DYTurbo is displayed in the lower panel. The 90% CL PDF uncertainty is shown for CT18nnlo prediction. The
statistical uncertainty of the combination is displayed with the error bars. The inner uncertainty band indicates
the systematic uncertainty while the outer band corresponds to the total measurement uncertainty (excluding the
luminosity uncertainty).

9.2 Effective Field Theory constraints

The measurements presented here may be sensitive to potential new physics beyond the direct energy reach
of the LHC. EFTs are a useful tool for describing the physics below a defined energy cutoff scale Λ. The
SMEFT is a generalised extension of the Standard Model, offering a broad and largely model-independent
approach to search for new physics [92]. This approach is adopted here to interpret the cross-section
measurements in terms of indirect contributions from physics beyond the Standard Model.

The SMEFT Lagrangian includes all possible operators constructed out of the SM field content:

LSMEFT = LSM +
∑︁
𝑑>4
L𝑑 = LSM +

∑︁
𝑑>4

∑︁
𝑖

𝑐𝑖,𝑑

Λ𝑑−4O𝑖,𝑑 ,

where LSM is the SM Lagrangian, and O𝑖,𝑑 are SMEFT operators of dimension 𝑑 > 4. Each operator
is weighted by a dimensionless parameter, the Wilson coefficient 𝑐𝑖,𝑑 , and is additionally suppressed by
powers of the energy cutoff scale Λ.

It is conventional in SMEFT analyses to set Λ to 1 TeV, with higher dimensional operators having
increasingly suppressed Wilson coefficients. For this reason, it is common to truncate the SMEFT to
dimension 𝑑 ≤ 6, as operators with 𝑑 > 6 will likely have reduced impact on physical observables.
Additionally, all odd mass-dimension operators in the SMEFT violate at least one of baryon or lepton
number conservation, which are believed to be strong symmetries. All odd-dimension operators can
therefore also be neglected, which justifies only considering the dimension-6 operators of the SMEFT.

32



ATLAS 
s =  13 TeV, 140 fb 1

high mW
T , +

Powheg+Pythia8
Sherpa 2.2.11
DYTurbo
DYTurbo CT18qed

DYTurbo
CT18nnlo
PDF 90% CL
MSHT20nnlo
NNPDF40nnlo
ATLASpdf21 T3

Data
Total unc.
Syst. unc.

0.9

1.0

1.1

Th
eo

ry
/D

at
a 200 GeV < mW

T  < 300 GeV

0.9

1.0

1.1

Th
eo

ry
/D

at
a 200 GeV < mW

T  < 300 GeV

0.9

1.0

1.1 300 GeV < mW
T  < 425 GeV

0.9

1.0

1.1 300 GeV < mW
T  < 425 GeV

0.9

1.0

1.1 425 GeV < mW
T  < 600 GeV

0.9

1.0

1.1 425 GeV < mW
T  < 600 GeV

0.8

1.0

1.2 600 GeV < mW
T  < 900 GeV

0.8

1.0

1.2 600 GeV < mW
T  < 900 GeV

0 0.6 1.2 1.8 2.4

| |
0.8

1.0

1.2 900 GeV < mW
T  < 2000 GeV

0 0.6 1.2 1.8 2.4

| |
0.8

1.0

1.2 900 GeV < mW
T  < 2000 GeV

Figure 18: The combined Born-level cross-sections for the double-differential distributions are shown for the ℓ+

final state. The left panel shows a comparison to the predictions from Sherpa, Powheg+Pythia and the fixed-order
calculation from DYTurbo, each using the CT18nnlo PDF. In addition, a fixed-order calculation using DYTurbo and
the CT18qed proton PDF is shown. A comparison to predictions with different PDFs using DYTurbo is displayed in
the right panel. The CT18nnlo 90% CL PDF uncertainty is shown for the prediction. The statistical uncertainty of
the combination is displayed with the error bars. The inner uncertainty band indicates the systematic uncertainty
while the outer band corresponds to the total measurement uncertainty (excluding the luminosity uncertainty).
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Figure 19: The combined Born-level cross-sections for the double-differential distributions are shown for the ℓ−

final state. The left panel shows a comparison to the predictions from Sherpa, Powheg+Pythia and the fixed-order
calculation from DYTurbo, each using the CT18nnlo PDF. In addition, a fixed-order calculation using DYTurbo and
the CT18qed proton PDF is shown. A comparison to predictions with different PDFs using DYTurbo is displayed in
the right panel. The CT18nnlo 90% CL PDF uncertainty is shown for the prediction. The statistical uncertainty of
the combination is displayed with the error bars. The inner uncertainty band indicates the systematic uncertainty
while the outer band corresponds to the total measurement uncertainty (excluding the luminosity uncertainty).
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Figure 20: The Born-level lepton charge asymmetry of the combined cross-sections are shown for the (a) single- and
(b) double-differential measurements. The error bars represent the statistical and uncorrelated systematic uncertainties
between the ℓ+- and ℓ−- channels, while the inner uncertainty band corresponds to the correlated uncertainties. The
total uncertainty in the asymmetry is represented with the outer band. In addition, theoretical predictions using
DYTurbo for different PDFs are displayed. The lower panels show the absolute difference between each theory
calculation and the measured asymmetry.

A complete set of dimension-6 operators of the SMEFT is given by the Warsaw basis [93]. The Warsaw
basis provides a minimal basis with all redundant operators removed, containing 2499 dimension-6
operators, each associated with a Wilson coefficient. The Wilson coefficients are unknown free parameters,
whose values must be determined experimentally. The number of free parameters can be reduced by
imposing symmetries amongst the flavour structure of the fermion generations. The most restrictive flavour
symmetry is known as the 𝑈 (3)5 symmetry, and reduces the number of operators to 59, considering only
those that conserve baryon and lepton number [92].

Physical observables receive corrections from the presence of dimension-6 SMEFT operators. The
amplitude-squared for a general physics process is given by

|A2 | = |ASM |2 +
∑︁
𝑖

𝑐𝑖

Λ2A
†
𝑆𝑀
A𝑖 +

∑︁
𝑖

|𝑐𝑖 |2
Λ4 |A𝑖 |2 +

∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝑐𝑖𝑐 𝑗

Λ4 A
†
𝑖
A 𝑗 ,

whereASM is the SM amplitude andA𝑖 is the contribution from dimension-6 operator O𝑖 to the amplitude
A. The modifications to physical observables can be separated into three terms:

• Linear interference between the SM and EFT amplitudes.

• Pure quadratic EFT contribution.

• Interference cross terms between EFT amplitudes.
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The charged-current Drell–Yan process receives corrections from four different dimension-6 operators,
within the 𝑈 (3)5 symmetry scheme of the Warsaw basis. Those operators and their Wilson coefficients are
shown in Table 2.

The sensitivity of the charged-current Drell–Yan process to each operator is studied by generating MC
predictions within the SMEFT and comparing against SM predictions. Both SMEFT and SM predictions at
LO in QCD are produced using MadGraph5_aMC@NLO 2.9.9 [94] and the SMEFTsim 3.0 package [95].
The 𝑚𝑊 , 𝑚𝑍 , 𝐺𝐹 electroweak input parameter scheme is used. Events are interfaced with Pythia 8.3 [96]
for parton showering and hadronisation. The cutoff scale is set to Λ = 1 TeV.

The effects of each operator on the single-differential cross-section are studied by setting the Wilson
coefficient of each of the four operators to unity and setting all others to zero in turn. It is observed that the
quark-lepton contact operator O (3)

𝑙𝑞
gives significant enhancements to the cross section at high 𝑚W

T , whilst
the other three operators introduce a constant scaling in the cross-section with no mass dependence. A
similar analysis of the double-differential cross-sections shows there is no additional SMEFT operator
sensitivity associated with the |𝜂 | dependence of the cross-sections. Similarly, the charge-separated results
do not yield additional sensitivity. Therefore the SMEFT analysis is performed on the single-differential
charge-integrated cross sections for the electron, muon and combined channels only.

The statistical model employed is a likelihood function with multivariate Gaussian probability density
functions representing the measurement uncertainties. The likelihood is written as

𝐿 =
1√︁

(2𝜋)𝑁bins |Σ |
exp

{
−1

2

[
®𝑥 − ®𝜇( ®𝜃)

]T
Σ−1

[
®𝑥 − ®𝜇( ®𝜃)

]}
×

∏
𝑖

𝜃𝑖 .

Here, Σ is the covariance matrix, which includes statistical uncertainties only and is therefore diagonal.
The vectors ®𝑥 and ®𝜇 represent the measured distribution and predicted distributions, respectively. Both the
experimental and theoretical systematic uncertainties are included as nuisance parameters ®𝜃, where a shift
of ®𝜃𝑖 = 1 corresponds to a shift of the source 𝑖 by one standard deviation.

The EFT dependence of the cross-section is parametrised as a quadratic function. In particular, the
cross-section in bin 𝑖 is given by a quadratic function of the Wilson coefficient 𝑐:

𝜎𝑖 = 𝜎𝑆𝑀,𝑖 + 𝑐 𝜎lin,𝑖 + 𝑐2 𝜎quad,𝑖 ,

Table 2: Dimension-6 SMEFT operators and their corresponding Wilson coefficients affecting the charged current
Drell–Yan, in the 𝑈 (3)5 symmetry of the Warsaw basis. Here, 𝐻 is the Higgs doublet, and 𝑞, 𝑙 represent the
left-handed quark and lepton doublets respectively. The matrices 𝜏𝐼 , 𝐼 = 1, 2, 3 represent Pauli matrices, and 𝐷 𝐼

𝜇 is
the usual Standard Model covariant derivative. The subscript of each operator and Wilson coefficient denotes the
fields involved in the operator, and the superscript (1) or (3) denotes whether the operator transforms as a singlet or
triplet, respectively.

Wilson Coefficient Operator

𝑐
(3)
𝑙𝑞

O (3)
𝑙𝑞

= (𝑙𝜏𝐼𝛾𝜇𝑙) (𝑞𝜏𝐼𝛾𝜇𝑞)
𝑐
(1)
𝑙𝑙

O (1)
𝑙𝑙

= (𝑙𝛾𝜇𝑙) (𝑙𝛾𝜇𝑙)
𝑐
(3)
𝐻𝑙

O (3)
𝐻𝑙

= (𝐻†𝑖←→𝐷 𝐼
𝜇𝐻) (𝑙𝜏𝐼𝛾𝜇𝑙)

𝑐
(3)
𝐻𝑞

O (3)
𝐻𝑞

= (𝐻†𝑖←→𝐷 𝐼
𝜇𝐻) (𝑞𝜏𝐼𝛾𝜇𝑞)
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Figure 21: The (a) expected and (b) observed limits on Wilson coefficients at 95% CL. The results are shown for
linear-only and linear+quadratic fits, for both the electron and muon channels, as well as their combination. The
inner (outer) error bars indicate the limits when using the 68% (90%) CL for the PDF uncertainty.

where 𝜎𝑖 is the SM prediction, and 𝜎lin,𝑖 and 𝜎quad,𝑖 are constants describing the dependence of the
cross-section on 𝑐 and 𝑐2 respectively. These two coefficients, 𝜎lin,𝑖 and 𝜎quad,𝑖, as well as 𝑏𝑖 must be
determined from MC simulation in order to infer information about the Wilson coefficients.

As the SMEFT and SM predictions are only computed at LO in QCD, the predictions are modified to
account for higher-order QCD and EW corrections via

𝜎𝑖 = 𝜎best
𝑖

(
1 + 𝑐

𝜎lin,𝑖

𝜎LO
𝑖

+ 𝑐2𝜎quad,𝑖

𝜎LO
𝑖

)
,

where 𝜎best
𝑖

represents a higher-order SM prediction, and 𝜎LO
𝑖

represents the LO SM prediction. It is
assumed that the relative effect of higher-order predictions does not change in the presence of dimension-six
operators. The higher-order SM prediction is generated using DYTurbo, as introduced Section 9.1. The
prediction uses the CT18nnlo PDF set, with 𝛼𝑠 = 0.118 and additive EW corrections.

Theoretical uncertainties arising from variations of 𝛼𝑠, PDFs, EW corrections, and the renormalisation
(𝜇𝑅) and factorisation scale (𝜇𝐹) variations are implemented as follows: the value of 𝛼𝑠 (𝑀𝑧) at the 𝑍 pole
is varied by ±0.001; 𝜇𝑅 and 𝜇𝐹 are varied independently by factors of 2 avoiding extreme variations; the
EW corrections are included as multiplicative factors on the predictions, rather than additive; and the PDF
eigenvector variations for the CT18nnlo set are used at the 90% CL.

Expected limits on the Wilson coefficients are derived by using the DYTurbo prediction as the measurement
pseudo-data instead of using the actual measurement as for the observed limits. The fits are performed
first by using only the linear SM and EFT interference terms, then by including the quadratic pure EFT
contributions as well. They are obtained by allowing only one coefficient to be non-zero at a time.

The expected and observed limits on the Wilson coefficients are given in Figure 21 and are also shown
in Table 3. All observed limits are compatible with the 𝑐𝑖 = 0 assumption at 95% CL, indicating no
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Table 3: The expected and observed EFT limits at 95% CL, shown for the linear-only and linear+quadratic electron,
muon, and combined fits.

Expected (Linear + Quadratic) [TeV−2 ] Observed (Linear + Quadratic) [TeV−2 ]
Electron Muon Combined Electron Muon Combined

𝑐
(3)
𝑙𝑞
/Λ2 [−0.0039, 0.0041] [−0.0044, 0.0046] [−0.0035, 0.0037] [−0.0058, 0.0016] [−0.0051, 0.0038] [−0.0047, 0.0021]

𝑐
(1)
𝑙𝑙
/Λ2 [−1.05, 1.08] [−0.92, 0.95] [−0.85, 0.87] [−0.86, 1.31] [−0.75, 1.15] [−0.60, 1.15]

𝑐
(3)
𝐻𝑙
/Λ2 [−1.07, 1.03] [−0.95, 0.92] [−0.87, 0.84] [−1.30, 0.83] [−1.14, 0.75] [−1.14, 0.60]

𝑐
(3)
𝐻𝑞
/Λ2 [−1.04, 1.08] [−0.93, 0.95] [−0.85, 0.88] [−0.85, 1.31] [−0.75, 1.16] [−0.61, 1.15]

Expected (Linear) [TeV−2 ] Observed (Linear) [TeV−2 ]
Electron Muon Combined Electron Muon Combined

𝑐
(3)
𝑙𝑞
/Λ2 [−0.0038, 0.0043] [−0.0042, 0.0048] [−0.0033, 0.0038] [−0.0051, 0.0015] [−0.0047, 0.0039] [−0.0042, 0.0021]

𝑐
(1)
𝑙𝑙
/Λ2 [−1.03, 1.10] [−0.91, 0.96] [−0.84, 0.89] [−0.85, 1.34] [−0.74, 1.18] [−0.60, 1.18]

𝑐
(3)
𝐻𝑙
/Λ2 [−1.08, 1.02] [−0.96, 0.91] [−0.88, 0.83] [−1.34, 0.83] [−1.17, 0.75] [−1.17, 0.60]

𝑐
(3)
𝐻𝑞
/Λ2 [−1.03, 1.10] [−0.91, 0.97] [−0.84, 0.89] [−0.84, 1.34] [−0.74, 1.19] [−0.61, 1.18]

significant deviations from the SM are observed. The strongest limits are derived by using the data from
the combined channel due to the reduced statistical and systematic uncertainties after the electron-muon
combination. Differences between the constraints obtained using linear+quadratic and linear-only terms
are negligible, indicating the constraints are driven mostly by the linear-interference terms. This suggests
that the measurement is largely insensitive to the 1/Λ4 contributions arising from interference between
SM and dimension-8 operators, implying the constraints are robust despite truncating the SMEFT to
dimension-6.

The limits on the EFT Wilson coefficients improve by a factor 1.4 to 2.6 when the fits are performed
using only experimental uncertainties. This indicates the importance of increasing the precision of the
theoretical predictions, in particular for the PDFs, in future measurements. Figure 21 shows that using the
68% CL PDF uncertainty instead of the 90% CL uncertainty improves the limits on the Wilson coefficients
by a factor of 1.1-1.4. The limit on the Wilson coefficient 𝑐 (3)

𝑙𝑞
exceeds previous four-fermion limits using

ATLAS and CMS data [97, 98] as well as limits from low-energy data [99] and global analyses [100,
101].

10 Conclusions

This paper present a first measurement of the 𝑊± production cross-section above the resonant production
region. The single-differential cross-sections, d𝜎/d𝑚W

T , are measured in the region 200 ≤ 𝑚W
T ≤ 5000 GeV.

The measurements are also presented as double-differential cross-sections, d2𝜎/d𝑚W
T d|𝜂 |, in the region

200 ≤ 𝑚W
T ≤ 2000 GeV and 0 ≤ |𝜂 | ≤ 2.4. These fiducial measurements use 140 fb−1 of LHC 𝑝𝑝

collision data collected by ATLAS at a centre-of-mass energy of 13 TeV, and are performed separately for
both charges and for the electron and muon final states. They are unfolded for detector effects to the Born
level. Corrections to the dressed particle level are also provided.

Combinations of the charge-separated cross-sections for the electron and muon final states are performed
to improve the statistical and systematic uncertainties in the measurements. These combined data
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compare well to state-of-the-art theoretical predictions at NNLO in QCD including NLO EW effects. The
uncertainties in the predictions arising from the PDFs are found to be typically larger than the experimental
uncertainties, indicating the potential of these measurements to improve PDF determinations. The single-
and double-differential lepton charge asymmetry, 𝐴ℓ , is presented and shown to be well described by the
predictions.

A test of lepton flavour universality in the range 200 GeV < 𝑚W
T < 5000 GeV is performed by determining

the ratio of the charge-combined cross-sections for the electron to the muon final state. No deviations from
the Standard Model are observed.

Finally, the single-differential cross-sections are used to search for signals of new physics in an effective field
theory approach within the SMEFT 𝑈 (3)5 symmetry model. The data constrain the Wilson coefficients of
four operators in the Warsaw basis. In particular the measurements provide the world-leading constraints
on the Wilson coefficient 𝑐 (3)

𝑙𝑞
.
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