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1 Introduction

The goal of this work is to simulate a volumetric energy deposition (VED) driven Rayleigh-Taylor
instability (RTI). Efforts will focus on simulating effects observed in two-fluid VED-driven RTI
experiments [11], [13]. The VED triggers the RTI by changing the density of the fluids through
time, hence a variable Atwood number is achieved. While initially stable (heavier fluid on the
bottom), the microwave heating creates a density inversion and leads to a RTI. We hope to explore
the mechanisms in VED-driven RTI and see how initial perturbations change the dynamics of
growth. This work will primarily focus on early-time behavior but will also include steps towards
simulating late-time nonlinear behavior.

1.1 Motivation

Buoyancy-driven instabilities, such as the RTI, present significant challenges in engineering appli-
cations, including inertial confinement fusion (ICF) and metal casting [12]. In ICF, imperfections
in the manufacturing of the capsules can seed RTI growth during compression, potentially limiting
or prohibiting ignition due to an uneven implosion. A deeper understanding of the mechanisms
driving the RT1I is therefore critical for improving target performance and maximizing energy yield
of ICF.

Since the conditions present in ICF are very difficult to replicate in a laboratory setting, it
has been increasingly important to accurately model the physical behavior, though it is difficult to
validate these simulations with experimental references. Simplified experiments of VED RTI have
been done using microwaves to trigger the instability [11] [13]. These can help us understand the
different dynamics of VED-driven RTI compared to classical RTI and provides a way to verify if
the simulations/models are matching reality.

1.2 Dynamics

In VED-driven RTI, the main physical phenomena of interest is variable-Atwood number RTI.
However, this brings about various other types of physical processes that impact the flow evolu-
tion. Important processes such as heat conduction between different materials bring about potential
Rayleigh-Bénard convection (RBC) cells, and multi-modal effects can lead to shearing of different
fluids which cause Kelvin-Helmholtz instabilities. T.ate time behavior becomes nonlinear and even-
tually transitions to turbulence. These are all problems on their own and require special attention.
In this section, we will go over these physical phenomena to guide the modeling efforts and ensure
we capture all relevant physics.

The RTI is classically caused by a misalignment of the density gradient and an acceleration field,
such as gravity, i.e. Vp x Vp # 0. A perturbed interface leads to baroclinic instability and grows
over time. The instability is typically parameterized by the Atwood number

pr(t) — pa(t)

A = O+ p5(0)’

(1)
figure 1-1 shows an unstable fluid configuration (positive Atwood number) and the misalignment
of the pressure and density gradients which grow the initial perturbation. In VED-driven RTI,
the Atwood number changes with time. This is done by varying one or two fluid densities with
time by adding a volumetric heat source. This brings about additional effects which are arguably
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p2 > p1
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Figure 1-1: Classical Rayleigh-Taylor instability [1]

more important than the RTT itself. The change in temperatures introduce a temperature gradient
between the two fluids, which is the key driver for RBC. In RBC, heat flows from the hot fluid to
the colder fluid. This forms a local thermal boundary layer in each fluid. For point of reference,
suppose the top fluid is denser and colder than the bottom fluid. If the temperature difference
becomes large enough in the thermal boundary layer of the colder fluid, the portion of the cold fluid
at the bottom becomes less dense due to heating and starts to rise. If this buoyant force overcomes
viscous and diffusive resistance, convection sets in. A pattern forms and creates Bénard convection
rolls, in which warmer parts of the cold dense fluid rises in the center of a cell, spreads out at
the top, cools, and sinks along the edges. This can be important in VED-driven RTI because the

Wall boundaries for constant-volume

Rayleigh-Benard convection

Surface tension and
interface preservation

vp —VP \

—— Rayleigh-Taylor instability

\ \ \ Energy sourcing and heat
—t— .

\ - \ conduction
+E.

source

Figure 1-2: Relevant physics for VED-driven RTi.

convection rolls, if formed correctly, can increase the growth rate by “necking" the instability with
the motion of the fluid, as shown in figure 1-2. Finally, it is also important to note that at later
times, the fluid flow may display a large range of scales, characteristic of turbulent flow, even for
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Introduction

immiscible fluids. Onset of turbulence is quicker in miscible fluids. A turbulent field is shown in
figure 1-3, where even at 1 microsecond, the length scales are disparate. In immiscible fluids, the
surface tension helps delay turbulence by reducing the growth rate (this is explained in the stability
theory section of this report). However, it is not completely avoidable, as it was seen visually in the
experiment by Root et al. [11], and even more so in miscible liquids VED-driven RTI experiments
such as Wachtor [13].

Figure 1-3: RTl with transition to turbulence at large times, from DNS of [9]

1.3 Experiment of interest

The experiment this work aims at replicating is a VED-driven RTI of soybean oil and silicone oil
(PDMS), as described in [11]. It is emphasized that exact replication is likely impossible in the
internship time frame due to lack of equation of state tables for these two fluids. Regardless, we
describe the experiment to guide the initial input creation.

In the experiment, a borosilicate container of volume 7 cm x 7 cm x 12.1 cm was used to
reduce dielectric loss with a volume large enough to ignore viscous boundary layer effects on the
RTI (boundary layer with the walls). The container was completely filled with the fluid to prevent
liquid-air boundary surface waves from interfering with the RTI between the two liquids. The
fluids of interest were selected due to their immiscibility and density inversion when subject to
microwave heating. For this to happen, the bottom fluid must decrease in density faster than
the top fluid. This is characterized by the expandability index which depends on the properties’
dielectric loss, density, specific heat, and thermal expansion coefficient. Soybean oil and silicone oil
(PDMS) were chosen because both had similar microwave penetration depth (which reduces heating
non-uniformity) and different microwave expandability, 2.15 - 107°> m3/kJ and 4.07 - 10~° m?/kJ,
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respectively. Interfacial surface tension was also measured in [11]. The interfacial surface tension
was experimentally measured using a floating lens approach. It was measured at an average value
of 0.45 £+ 10.12 mN/m between 20 — 70°C. Finally, a 1D thermal simulation was used to confirm
that the fluid configuration would develop an RTI. The density change was computed for each fluid

using
or o*T 2
p(T, z)Cyp(T, Z)E = k(T, Z)ﬁ + 2w feoe” (T, z) E*. (2)

where the 7" and B subscripts denote top and bottom fluids (as oriented at time=0).
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2 Methodology

We now outline the methodology used to simulate the VED-driven RTI. An Eulerian code, xRage
[4], is used to simulate the RTI. A brief overview of the governing equations and how the code solves
the PDEs is explained, along with case-specific implementation details, such as EOS, energy source,
heat conduction, and surface tension.

2.1 Governing equations and solver

The xRage code [4] is a finite-volume code and uses directionally-split hydrodynamics algorithm
to solve the compressible Euler equations. It also includes adaptive mesh capabilities to resolve
fine, dynamic details. Cell fluxes are computed with a MUSCL-Hancock algorithm and include an
acoustic Riemann solver. The states in the Riemann solver are calculated using linear reconstruction
to maintain both spatial and temporal second-order accuracy. The two-fluid compressible Euler
equations are the set of governing equations that xRage solves. The primitive variables of interest
are the micro-densities of each material p1, p2, velocity components u; in the i*! direction, pressure
p, and the total energy F = %uiui + e. The Euler equations consist of the conservation of mass,
momentum, and energy.

3621;71 + E;::i (a1p1u;) = 0, (3)
c’)cggth + E;Zi (azpzui) =0, (4)
afWE + 6%:1 [ui(pE + p)] = puig; (6)

where g; is the gravitational acceleration in the i*! direction and «y, is the volume fraction of the
k'™ material. The relationship between the micro-densities, volume fractions, mass fractions iy,
material specific volume Vj, and specific volume V = 1/p is given by

Vi
ar = B (7)

volume fractions are not advected and instead are used to give the mean density of a cell through

2
p=>_ appy (8)
P

These equations are unclosed by themselves. In order to close them, a relationship between ther-
modynamic variables must be established. This is done by the equation of state.

2.2 Equation of state

The equation of state provides closure to the compressible Euler equations by relating thermody-
namic variables. Since the fluids of interest are liquids, the common EOS of ideal gas is not valid.
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Methodology

However, it can be used to simulate a VED-driven RTI easily, as the density change is always
controlled by change in volume and not pressure/temperature. The ideal gas law is

p = pRT (9)

where R is the universal gas constant. If we are trying to replicate the experiment exactly, the
correct temperatures/pressures are required and a complete EOS must be provided. A complete
equation of state specifies the temperature and the specific entropy as a function of thermodynamic
variables, usually given in tabular form for pressure and specific internal energy as functions of
specific volume (or density) and temperature p = p(v,T), e = e(v,T). The EOS must provide the
material-dependent internal energies e; and specific volumes such that mean values can be computed
through

2 2
v= Z #iVi(p’ T)a €= Z ,U'iei(p’ T) (10)
i=1 i=1

xRage solves the system of equations in each mixed cell using an iterative bisection method as
described in [4].

2.3 Surface tension and immiscibility

Surface tension and immiscibility are modeled using methodology described in [7|. They are required
when the two fluids cannot physically mix together and form an emulsification instead of a mixture.
Surface tension is incorporated through source terms in the Euler equations for momentum and
energy,

d(puj) 0 o N day
5% + o2, (puiuj + pdij) = pgi + ok 0z, (11)
OpE 0 _ day
ot + dz; [uz (pE + p)] = pUuyg; + 0K oz, Uj (12)

where o is a surface tension coefficient and « is curvature. The interface between fluids is preserved
using the volume of fluid (VOF) method, which determines a piecewise-linear interface reconstruc-
tion that preserves sharp material interfaces for mass advection calculation [2, 10].

2.4 Internal energy source

VED is implemented by adding a source term to the energy equation. This source term is the time-
integrated specific internal energy increase due to microwave heating. All energy is put into the bulk
material /electron field and fluid properties are used to compute the microwave power absorption.

de _ 27 feoe” (T, z) E*
d  p(T,2)

(13)

where €y = 8.854 x 10712(F/m) is the vacuum permittivity, €’ is the dielectric loss coefficient, F

is the electric field strength (V/m), f is the microwave frequency (Hz), and p is the density of the
fluid (g/cm®).

Choosing an appropriate energy deposition rate for a given set of simulation parameters (e.g.,
simulation time, initial thermodynamic conditions, etc.) can be nontrivial and often involves trial
and error. To mitigate this difficulty, a simplified model describing the evolution of both pressure
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and density as a function of the internal energy deposition, assumed to be constant in time and
uniform in space for each fluid, can be useful for providing semi-quantitative predictions prior to
running a full scale simulation. The following model assumes a single, homogeneous ideal gas, where
thermodynamic properties are spatially uniform and the adiabatic index v is constant. In the case
of VED-induced Rayleigh-Taylor instability (RTI), this model must be applied separately to each
species in the system. Using the equation of state for an ideal gas, the density of the fluid can be
written as a function of its specific internal energy and pressure.

B
e(y—1)

Differentiating equation 14 with respect to time results in the relationship between the change in
density in terms of changes in pressure and specific internal energy.

dp _1(ldp pde
a-0 (e dt e dt (15)

p= (14)

From ideal gas, the time derivative of pressure is proportional to the change in internal energy scaled

by a factor of v — 1.
dp —1 [ d(pe) —1( dp de
= =(y-1 =(y-1 L4 p= 1
-0 () - (e (16)

Substituting the relation in equation 16 into equation 15 gives the time derivative of density purely
in terms of the change in specific internal energy.

dp 2 (dp  pde 1 pde

—=(v-1 —+=-—]-(r-1 =— 17

) (dt tea) 07V (au (17)
Rearranging the implicit form of equation 17 results in an explicit expression for the time rate of
change of density, written solely in terms of the change in specific internal energy and the system’s

current state. Substituting this result back into equation 16 similarly produces an explicit expression
for the time evolution of pressure.

dp 1 p_p(y—1)\de
R e G b a8

i mGe ol ) )E o

Once an initial state is specified, these two equations 18-19 are numerically solved simultaneously at
each time step to update the thermodynamic state of the system in response to energy deposition.
This simplified model enables rapid evaluation of how a given initial state evolves over time, which
is especially useful for estimating the required internal energy source strength to flip the Atwood
number of the system.

2.5 Heat conduction

Heat conduction is the transfer of thermal energy through matter, from a region of higher temper-
ature to a region of lower temperature [6]. It can be described as heat energy transferred from one
volume of material to another by direct contact. In VED-driven RTI, the two different fluids at
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different temperatures are in contact at the interface and thus have heat transfer. Typically, the
Euler-equations are not suitable for this as thermal conductivity is set to zero, but xRage includes
options to include heat conduction.

Heat conduction is accomplished through the bulk material/electron, denoted 2T and 3T modes,
respectively. For this problem, we only care about the material heat conduction. The PDE that is
solved is

or 0 8T] (20)

PCo o = o {”(P, T)a—a:i

(2

where ¢, is the specific heat at constant volume and (p, T') is the thermal coefficient. The coefficient
is found using an analytic power law

T. Ntemp
Km = KO (TZOT;> p,jyf (21)
re

where T}op, is the ion temperature, xq is the thermal coefficient for conduction, Niemp is the exponent
for temperature power law, T}.; is the reference temperature for temperature power law, and N,
exponent for density power law. If only kg is specified, then k,, = k¢ for all temperatures and
densities. Thermal conductivity was held constant for each material to simplify everything and
since density /temperature changes are small. This equation is solved implicitly for stability at large
time steps. In mixed (multi-material) cells, k is calculated by averaging the values of k,, for all
materials using the averaged state values.

2.6 Fluid Selection

Fluid selection plays a pivotal role in determining the dynamics of the RTI, particularly in systems
involving time-dependent VED. Unlike classical RTI with a constant Atwood number, where the
density gradient is externally fixed, VED creates local temperature changes that dynamically alter
the density field with time. Therefore, extra consideration must be given to the relationship between
temperature, pressure, and density, since the density gradient must flip from a stable to an unstable
configuration to trigger a RTI. The requirement for immiscibility further constrains fluid choices to
liquids, as gases are typically miscible. In addition multiphase systems involving phase transitions
are often dominated by diffusion and latent heat effects rather than interfacial instability dynamics,
so we avoid conditions that introduce multiphase effects.

Most conventional liquids exhibit low compressibility and weak thermal expansion, meaning their
density does not change significantly with temperature. This limits their usefulness in simulations
and experiments of VED driven RTI, where the changing density gradient is required to drive
RT growth. To combat this, choosing two liquids with similar density at the same thermodynamic
state, i.e. matching pressure and temperature, minimizes the total energy required to flip the density
gradient through heating. Additional consideration must be made to ensure that both fluids remain
in liquid phase throughout the total duration of energy deposition, since phase changes will obscure
the study of the interface instability. Some oils, liquid hydrocarbons and molten polymers are
generally more compressible than water and have comparable densities when in liquid state.

In xRage, the SESAME tables must be used for the equation of state closure of liquids. However,
there were no oil tables available. Instead, we attempted to use water as the liquid. We were able to
get some results using water, but the simulations ran significantly slower and had difficulty obtaining
any significant Atwood number change in the liquid phase as water would quickly evaporate before
the density changed. Because of this, we created our own “numerical experiment" by using ideal
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gases instead of liquids. This allowed us to obtain more realistic Atwood number changes that would
drive the RTI. The two gases selected were air and Neon. These were chosen because the ratio of
their gas constants R were such that the temperature gradient between the two fluids was minimized
assuming pressure equilibrium at the interface and a negative initial Atwood number of A;9 = —0.15.
The temperature ratio is found through the ideal gas equation, i.e. p;/ps = RoT5 /Ry T}.

2.7 Initial perturbation and boundary conditions

The initial perturbation is used to create the instability that grows due to misaligned buoyancy and
pressure force. a single, double, quadruple, and multi-modal period sinusoidal wave is specified at
the interface,

n = Acos(Bz + C). (22)

where A = 0.25 cm, B = 27k/(Tmaz — Tmin), and C = 0. The wavenumber k£ was changed to
increase/decrease the number of perturbations, and a multi-modal perturbation was achieved by
overlaying a second perturbation of the same form but different wavenumber. This interface is stable
at the start due to zero density gradient between the two fluids, but becomes unstable and grows
as the density of the bottom fluid decreases and it’s volume increases. The domain was initialized
such that there was more of the top fluid than the bottom fluid, such that as the bottom expands,
it does not push the interface into the top boundary. Reflective wall boundary conditions are used
for all sides. Reflective B.C. are automatically assumed in xRage.

The size of the domain and height of the interface are sized such that an adequate Atwood
number is reached before the interface reaches the top of the domain. More details on computing
these dimensions is given in the Navier-Stokes solver section.
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3 Stability theory and scaling analysis

Stability theory provides rough estimates of the early-time growth rates of the initial perturbation.
The growth rates are obtained by working with momentum and continuity equations but are only
valid before the onset of turbulence. This may prove to be more extendable to immiscible fluids
as turbulence occurs much later. This section derives the growth rate for VED-driven RTI and
compares the results to classical RTI growth rate estimates.

3.1 Linear stability theory for traditional RTI

We begin with a review of traditional stability theory for early-time (thus linear) classical RTI,
and derive the growth rate. This section follows closely the work by Waddell et al. [14]. Linear
stability theory for this problem considers two incompressible fluids having densities pi, p2 and
velocity potentials @1, ¢2. Suppose these two fluids are separated by a perturbed planar interface
with perturbation 7. A sinusoidal perturbation is used to form the interface,

n = noeke 1t (23)

where the perturbation grows exponentially in time at rate -y, with spatial wavenumber k. Through
incompressibility, we seek the velocity potential for each material ¢;2(z, 2,t), where
2%¢

= gi amda—:l322 =0 (incompressibility)

Usg

The elementary solution for the velocity potential is found using the separable ansatz and the form
of the initial perturbation
¢i (I’ z, t) = Qi(z)ez’n-kﬂ

Where ®;(z) is the z-dependent velocity potential. From Laplace’s equation 8%¢/8z? = 0, we get:

dQQi 2 kz
=3~ K29, =0 = ®;(z) = AjeT

The top fluid (z > 0) ¢1 ~ e ** decays upward while the the bottom fluid (z < 0): ¢ ~ €** decays
downward. Now we apply boundary conditions at the interface z = 0. The kinematic boundary
condition (interface moves with the fluid) enforces

on i B
a =w; = 62 at z = 0.
Using 1 ~ e, and matching vertical velocity:
i 0p1 02
= = —_— = — =
M=, 2=0 0z 0z

Next, the dynamic boundary condition due to pressure continuity across the interface is applied.
From the linearized Bernoulli equation:

a¢i_ P§ /o 6¢1,
ot = g I pi G ton
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Stability theory and scaling analysis

Apply pressure continuity (it’s not a shock):

pr=py = —pi(7¢1+gn) = —pa(yd2+ gn)
Substitute ¢; = ®;(0)e?**+7% and relate ®;(0) to 7 using the kinematic condition:

91 _ _ — —_1
% k®1(0) =yn = ©1(0) = A
9¢a _ _ _m
9z +k’q)2(0) =N = @2(0) =%

Now plug back into the dynamic condition:

() )= o (F) 40

2 2
Y op—gn)=p (L
m(kn gn) pz(knﬂm)

2

i 2 gk(Pz—Pl)
p1+p2)5-=g(p P = ¥ =—"
(o1 2)k (P2 ) p2 + p1

Thus we obtain the classical relationship with the Atwood number A;

v = kg (24)

3.2 Linear stability theory for VED-driven RTI

Simplify:

Now solve for y2:

The fundamental change in a VED-driven RTI is that the fluid densities are now functions of
time p1(t), p2(t), surface tension may be non-negligible (immiscible), and heat conduction between
surfaces introduces thermal diffusion effects. The heating and subsequent expansion of the fluid also
pushes up the interface and thus induces a local velocity change in the fluids, artificially varying the
acceleration field. We derive solutions for immiscible fluids and assume uniform heating such that
the densities are homogeneous in each material (Atwood number changes in time). The perturbation

now depends on it’s time history,

n= 770€ikz+f(; ~(t)dt

where the growth rate (t) is a function of time now. The analysis is essentially the same if the
timescale of the density changes are longer than ~(¢)~!

7(t) = VEA(t)g (25)

Adding the effects of surface tension and heat conduction make this considerably more difficult.
Surface tension modifies the dynamic boundary condition at the interface by resisting curvature

and introducing a pressure jump,
2
p1 Py = ok
where o is the surface tension coefficient. This is added to the Bernoulli equation and gives the
addition to the growth rate as

ok?
p1(t) + p2(t)
Modeling Volumetric Energy Deposition-driven Rayleigh-Taylor Instability
Los Alamos National Laboratory Page 3-2

v(t)? = kAi(t)g (26)



Stability theory and scaling analysis

Finally, we consider heat conduction effects. Heat conduction introduces a localized density gradient
in either fluid (p(T") =~ po[l — (T — Tp)]). The Rayleigh-Bénard instability is triggered in each
material because of this. Energy is governed by the heat diffusion equation:

oT
5 = k2T

(Here kp = ,% is thermal diffusivity.) The key idea is that thermal diffusion tends to smooth
temperature (and hence density) gradients, weakening buoyancy. In a linear analysis, this leads
to a stabilizing term that scales like k2. This is analogous to the thermal damping term in other
buoyancy-driven instabilities like the Rayleigh-Bénard instability. The simplest model of this effect
is to treat thermal diffusion as a damping term in the dispersion relation:

72 (t) = A(t)gk — — Drp(t)k? (27)

p1(t) + pa(t)
Where Dp ~ AZTQ"’ encapsulates the effect of heat diffusion (details depend on system geometry

and boundary conditions). This term appears naturally in more advanced stability analyses that
couple the Navier-Stokes and energy equations using the Boussinesq approximation [3].

3.3 Scaling Analysis

In this section, we perform scaling anaylsis to determine if the VED-driven RTI or RBC is more
dominant in the experiment by Root et al. [11]. The impact of neglecting viscosity is difficult to
quantify since we do not have access to a true Navier-Stokes solver. It is believed that, at least in
the experiments, the main driving force for the instability is actually convection due to temperature
differentials, following the dynamics of Rayleigh-Bénard convection. This kind of convection and
heat conduction is dependent on thermal boundary-layers, which is coupled with fluid boundary
layers that require viscosity terms to properly simulate. RBC is typically quantified with the
Rayleigh number,

_ gBATh3
T av
where « is the thermal diffusivity, 8 the thermal expansion coefficient, and h is the height of the
fluid. The critical value at which RBC begins is R, =~ 1708 [5]. Considering the top fluid, soybean
oil, we must determine the characteristic length of the temperature gradient in the fluid. Through
a 1D thermal simulation, Root et al. [11| determined that the maximum thermal boundary layer
height was h = 0.01m. We use this approximation for the Rayleigh number computation, as well
as the predicted maximum temperature difference AT = 363K estimated from an unpublished
but similar experiment, shown in figure 3-2. For soybean oil the following coefficients are used:
BaTx1071K 1 a~T7x107%m?/s v = 4.5 x 107°m?/s at 25°C This gives a Rayleigh number of
R, = 7.9 x 10°. From this basic evaluation, it is clear that not only is RBC present, it is significant.
This contradicts the evaluation by Root et al. [11]. We believe the authors did not fully consider
the effects of the temperature differential from the uneven heating of the fluid. An unpublished
report that replicated the experiment by Root et al. [11] measured the Atwood number and found
a maximum of A; = 0.006, which is a very small compared to the effects of RBC as quantified by
the non-dimensional analysis, So not only is RBC dominant in this case, it is also likely that a fluid
boundary layer forms from the convection currents which further changes the heat conduction. In
other words, viscosity is intrinsically coupled to RBC and both these quantities have a large impact
on the evolution of the instability we are trying to study.

R, (28)
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Stability theory and scaling analysis
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Figure 3-1: Experimentally measured temperature difference from VED-driven RTI experiment[1]
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4 Navier-Stokes solver

From the scaling analysis, it is clear that viscosity is important for modeling RBC. This is not
achievable with the Euler equations. In addition, simulating mixing correctly requires high-order,
high-resolution simulations to capture all pertinent scales. This provides motivation to create a
Navier-Stokes solver or direct numerical simulation (DNS). This section reviews the pertinent gov-
erning equations for a compressible fluid, and describes how the equations are solved for in a finite-
difference code. The primitive variables are identified and are closed via physical approximations.
To simplify things, we consider two miscible fluids only such that full multi-material tracking is not
required and the interface is smooth.

4.1 Governing equations

The Navier-Stokes equations are the governing equations we must solve for. The continuity, mo-
mentum, and energy, and species transport equations are

3(%"") + a%j(puiu,- +pdij — Tij) = pgiy (30)
@ + c’i’i:zJ [uj(PE + p) — wimij + q;] = pgivi + Sk. (31)
G = 3 (05) @)

where p is the density, u; is the velocity vector, p is pressure, e is specific internal energy, £ = e+ %uiui
is the specific total energy, Y is the mass fraction of one of the fluids, D is the mass diffusivity
(D = 6.5x107° for Neon in air), Ti; is the viscous stress tensor, g; is heat flux, g; is the gravitational
acceleration vector, and Sg is the energy source term. Now the constitutive relations are given. We
assume a Newtonian fluid such that the viscous stress tensor is

B Ou; Ou; 2 %
Tij = H (sz + Ox; 35” 3zk) ' (33)

w1 is the dynamic viscosity. For heat flux modeling, we use Fourier’s law with enthalpy transport
due to diffusion of two materials

oT + oD Oh 0Y
—K ek
oz | 7Y o

g = (34)
k is the thermal conductivity and 7" is temperature, h is the enthalpy (for two materials, dh/dY =
h1—hz2). Next, Sutherland’s Law is used to compute the dynamic viscosity of each material (denoted
by the m subscript),

T \*? T, . ¢+ Sm
) L (35)

T) = —_—

/—Lm( ) Hm,ref (Tm,ref T+S,,
The thermal conductivity is easily found with the Eucken relation once dynamic viscosity is known,

CpmHm

B 36
Km Pr,m ( )
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Navier-Stokes solver

where P, is the Prandtl number (0.71 for air, 0.67 for Helium, etc.) and c, is the specific heat
at constant pressure (¢, for constant volume). For simplicity, we assume that cp, ¢, are constants.
They allow us to relate total specific energy to temperature,

e=c,T, h=c,T (37)
Next, ideal gas equation of state is used to relate thermodynamic properties
p = pRT (38)

with R the specific gas constant in the current cell. Finally, we now identify the primitive variables

for which we must evolve in time. The primitive variables we select to evolve are the density p,

velocity vector u;, total specific energy E, and mass fraction Y. These are the four natural primitive

variables that the Navier-Stokes equations evolves. These primitive variables are all that are required
1

to compute secondary variables, like temperature 7' = o (E - %ukuk), dynamic viscosity, etc.

4.2 Mixing rules

For different materials, the dynamic viscosity, thermal conductivity, microscopic density, and all
material constants (cp, ¢y, R) are different and depends on the mass fraction i.e. p(Y),x(Y). For
simplicity, we will assume that D is constant and the same for both materials. Material constants
are also different for each material. The mixing rules govern how the average of these quantities in
the discrete cell is computed. The two options are the simple linear mix rule,

a=Ya + (1 -Y)as, (39)
where a is the variable of interest (k, p, etc.), or Wilke’s mixing rule,

a = G.IY + 0.2(1 —Y) .
Y+¢121-Y) 1-Y +¢nY’

()" ()"

bij = (41)
8 (1 + M};)

where M; is the molar mass of the specific material M, ~ 0.029 kg/mol, My, ~ 0.004 kg/mol,
ete).

(40)

with the tensor

<

4.3 Heat source

To study variable Atwood-number RTI, we have added a preferential heat source to the energy
equation Sg. This heat source is designed to heat up one fluid faster than the other, and thus
depends on the mass fraction. The simplest model has the form

Su(Y) = pQo(1 - Y) (42)
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Navier-Stokes solver

where @ is the peak heating rate [W/kg] and f(Y) is a weighting function. A few options exist for
the weighting function. The easiest is binary switching,

1, ifY >05
Y)= 43
1Y) {0, otherwise (43)

a smooth weighting function can also be used,
1
fY)=Y or f(Y)= 5(1 + tanh(k(Y — 0.5))) (44)

or a spatially localized form such as

2
f@,Y)=Y -exp (-%) (45)
This way, one fluid (say, species 1) heats up faster, expanding and reducing in density over time —
altering the local Atwood number. Numerical methods for solving all the equations presented are
detailed in the appendix.

4.4 Stability and scale requirements

For explicit time schemes, time step is limited by both acoustic and advective waves. The acoustic
time scale Az/c is often the most restrictive in compressible DNS. Stiff diffusion (binary mixture),
may also be limiting. The CFL condition is

(46)

) 2 ) 2
At < min (CadvAl' CiiscAz® CaigAzx )

lu| + ¢’ v D

where c is the local speed of sound, Az is the grid spacing and C,gqy, Cyisc, Caig ~ 0.2-0.5 are the
CFL numbers. To fully resolve turbulence in DNS, the smallest dynamically important scales must
be resolved by the grid. The scales of interests are the Kolmogorov scale n for viscous dissipation,

3 1/4
n=\—
€
with € the local dissipation rate and Az < n (or Az/n < 1), and the Batchelor scale np: for scalar

(species) dissipation
ne =n/VSc (for Sc > 1)

where Sc¢ = v/D is the Schmidt number. So, if S¢ > 1 (e.g., heavy gases in air), then one needs
finer resolution to resolve scalar gradients than velocity gradients.

Therefore,to resolve all relevant turbulent scales, we must satisfy:Az < n Az < ng (if Se > 1).
The mesh size estimate in 3D is

L 3
N N,N, ~ (—) ~ Re%/4
n

L is the domain size, and Re is the large-scale Reynolds number. So a moderate DNS at Rey = 100
may already require 5123-10243 grid points.

Modeling Volumetric Energy Deposition-driven Rayleigh-Taylor Instability
Los Alamos National Laboratory Page 4-3
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While not strictly necessary for this project, it is important to keep in mind that thermodynamic
and diffusive phenomena may require their own resolution scales: viscous and thermal boundary
layers (especially near walls), acoustic scales to ensure Az < Apin for any relevant acoustic waves,
and shock thickness in high Mach flows. Compressibility and species transport may also imply steep
gradients in density, temperature, species mass fraction, which require fine resolution, especially at
interfaces or reaction zones.

4.5 Initialization

High-fidelity initialization helped to inform both the DNS and Euler-solver initial conditions. The
six primitive variables must be initialized to run the simulation. We are looking to simulate a
VED-driven RTI, so to initialize such a simulation, we need a thermodynamically consistent and
hydrostatically balanced state, with small perturbations to seed the instability. We take the two
species to be gases (e.g., air and Neon), gravity in the vertical z-direction, and a heated lower layer.
We set a smooth transition between the two fluids to avoid sharp gradients,

Y(2) = % {1 + tanh ("‘ _JZO)] (47)

where z; is the interface location and ¢ is the interface thickness. Note that Y = 0 is the heavier fluid
(e.g., air) and Y = 1 is the lighter fluid (e.g., Neon). We then perturb the interface by super-imposing
a sinusoidal perturbation field in the mixing-layer of Y. A very fine perturbation with random waves
is shown in the density profile in figure 4-1. Next, the equation of state (equation 38) is used along
with hydrostatic equilibrium gg = —pg to find density and pressure. By prescribing a density profile
p(z), we can integrate the hydrostatic equation numerically and obtain the relationship where the
pressure at the bottom p(zg) is known.

P(i+1) = D) — Pi)9Az (48)

Finally, all velocity components are set to zero everywhere and total specific energy is easily com-
puted using F = e + %uiui and equation 37.

There are two strategies to simulating variable-Atwood number RTI: expansion of the bottom
fluid and pushing out the top fluid through a constant pressure outflow such that only the bottom
fluid changes (reduces) in density, or a constant-volume approach where the bottom fluid expands in
volume and the top fluid contracts. The second is simpler and will give a larger final Atwood number
due to the compression/expansion of both fluids. It will also require a smaller domain and we don’t
have to worry about the fluids being pushed out. We now present the way the domain physical size
is computed such that a desired Atwood number is obtained with a certain grid discretization. To
give ourselves a fighting chance, we will try to limit the number of grid points in the finest direct,
the vertical z-direction, to 4096 points. We will also limit the change in Atwood number from
0.03 to 0.06. How much heating is needed? We assume constant pressure at interface (hydrostatic
equilibrium) and no heat transfer between the fluids. The cross-sectional area stays constant along
with total height,

L, = hyo + hio, my = proAhso, m¢ = proAhao

via pressure continuity at the interface, we get that py7}, = p;7;. By combining with mass conser-

vation we get and rewriting in terms of Atwood number, we get
A
mpT} Prohso %ﬁ
hy=———=L, =1L, 174, — sz(At)
mpTy + myTy prohio + prohso 14
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This shows that the height of the bottom fluid will always be a fraction (f(A;)) of the total height.
We can constrain this problem by enforcing a minimum top-fluid height. We enforce that h; = hyo,
such that the domain height must satisfy

hy

L2 11y

Now we compute the Reynolds number we expect to see. We use the characteristic buoyancy velocity
scale which assumes that the RTI length reaches the initial height of the bottom fluid, U ~ /A;ghy.
Turbulent dissipation is approximated by € ~ U?/hyo which, when dynamic viscosity is known, gives
us the Kolmogorov scale 7 = (v3/€)'/4 for which the grid must be smaller. The same check is done
for the Batchelor scale ng = n/4/v/D. Thus we get the final relation,

hy
1 f(Ay)

Thus we specify Ay, hyg, L., and N, to fully constrain the problem

< Lz < min(Nzn, Nan)’ Lm < mm(Na:n, Nan)’ LZI < min(NyTI, NynB) (49)
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Figure 4-1: Initial density interface field using random perturbations.
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Results are given for initial growth of VED-driven RTI using xRage. The results are 2D and are
given for four different kinds of perturbations; a single, two-period, four-period, and multi-modal
period. By holding all of properties of the mixture identical besides the wave number, the affect
that perturbation frequency has on the growth of the perturbation can be studied.

5.1 Single-mode perturbations

Figure 5-1 shows the initial density fields for three perturbation types. All perturbation heights
were set to 0.25 cm. Both fluids have uniform pressure and temperature fields, set to 101,325 Pa
and 293.15 K, respectively. During the stable period, a few key events happen: the center of the
perturbation descends and reverses its direction, the perturbation contracts but retains its shape,
and the perturbation dissipates due to surface tension and heat conduction, leading to delayed
growth. Figure 5-2 shows that the densities of both fluids at 0.5 seconds are approximately equal
due to energy deposition from an internal source into the lower fluid, resulting in an Atwood number
of zero. Initial perturbation amplitude decays while still in the stable configuration. Figure 5-3
shows the point when the density gradient has reversed relative to the initial condition, resulting in
a positive Atwood number.
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Figure 5-1: Initial density fields for three perturbation types: a) a single period perturbation; b) two-period perturbation; c)
four-period perturbation.

Diffusive effects play a significant role in the final evolution of each perturbation configura-
tion. Higher wavenumber perturbations are also more susceptible to damping during periods when
the Atwood number is negative (stable). Additionally, physical mechanisms such as heat diffusion
and surface tension contribute further to the suppression of higher-frequency perturbations. These
diffusive effects can alter both the amplitude and the shape of the perturbation, creating multi
modal shapes. Changing only the amplitude of the perturbation does not affect the growth rate,
rather increasing the time required to reach a certain height. In the case of the four-period per-
turbation—shown in Figures 5-1 to 5-5¢, the initial disturbance is damped so significantly that the
interface effectively flattens out before any meaningful growth can occur. As a result, the instability
develops much slower compared to configurations with fewer initial wavelengths. The single and
two-period cases have a similar growth qualitatively.
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and c) four-period perturbation.

5.2 Growth rates and Atwood number

The growth rate and Atwood can be measured in the xRage simulations. Figure 5-6 shows the
evolution of the Atwood numbers for the three single-wavenumber cases. The Eulerian simulations
follow relatively closely to the simplified Atwood number evolution model (blue line), and thus
shows that the method for predicting Atwood number beforehand is sufficient for domain sizing
as long as conservative bounds are used. All three cases have nearly the same Atwood number
evolution except at later times where mixing becomes more prominent and heat conduction begins
to dissipate heat and diffuses the density gradients. The drop in the two-period case corroborates
the visual results, where there is more surface area between the fluids (due to more instability
growths) and thus greater effective heat transfer. Figure 5-7 provides a comparison of perturbation
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Figure 5-6: Simulation Atwood number evolution in time compared to zero dimensional model derived from equation of state.

amplitude growth from simulations and theoretical predictions for both traditional and VED-driven
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RTI. The theoretical prediction for VED-driven RTI does not include the heat diffusion dampening
term because an exact form for this was not determined, but it does include dampening from
surface tension. The classical RTI height growth is started at 0.5 seconds when the VED-driven
RTI becomes unstable for a fairer comparison. Perturbation heights are measured in simulations
for all three single-wavenumber cases up to 0.5 seconds of evolution. The traditional RTT model
assumes a constant Atwood number of 0.25. Delayed and lowered growth rates are observed for all
cases compared to traditional RTI. This matches with what is predicted from linear stability theory.
The height evolution from the simulation compared to the VED-driven RTI theory also agree for
early-time behavior and have similar slopes past 1.7 seconds, except for the four-period case. The
height of the four-period cases is almost 3 times as high as the height predicted by theory. This
is counter-intuitive and shows signs that additional dynamics not accounted for are impacting the
four-period case. One of these can be the RBC, where if the convection cells form in a favorable
way, can increase growth rate. This is not captured in the linear stability theory.
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Figure 5-7: Comparison of perturbation amplitude growth from simulations and theoretical predictions for both traditional
and VED-driven RTI (ignoring heat diffusion) for a) a single-period perturbation, b) a two-period perturbation, and ) a
four-period perturbation.

5.3 Multi-modal perturbation

The multi-modal perturbation explores the growth rate and interaction of different-sized perturba-
tions. The initial Atwood number is reduced to A;g = —0.004 and is left to grow up to A, = 0.4.
However, later time behavior is likely under-resolved due to the rapid structure-breakdown exac-
erbated by secondary instabilities/interactions due to shearing. Two sinusoidal wave perturbations
at double the wavenumber ratio i.e. k; = 2k, are superimposed. This gives three large peaks and
two smaller peaks in between, as seen in figure 5-8 a. The higher wavenumber perturbations grow
faster, as expected from classical RTI linear stability theory. Dampening effects of surface tension
and heat diffusion were not as pronounced, and follow similar growth to the two-wave perturbation.
It is seen that the smaller wavenumber bubbles interfere with the root of the larger bubbles, and a
shearing effect disconnects the top “mushroom cloud" of the larger perturbations and begins forming
secondary instabilities on the lower half, as seen in figure 5-8 c-d.
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6 Conclusion

In this work, we have presented the key dynamics to VED-driven RTI and performed simulations
to study the early-time behavior of this unique phenomenon. We have identified, via scaling anal-
ysis, that in past experiments, RBC was likely the driving mechanism and that the fluid selection
added complexities that could not be captured fully with xRage, the Eulerian code. The main
problem is the equation of state is not readily available and thus prevents fair direct comparison
with simulations and experimental findings. Tmmiscibility, surface tension, and heat conduction
were found to have diffusive behavior on the VED-driven RTI early-time growth rate. This was
found via linear stability theory accounting for the additional effects. A GPU-based finite-difference
DNS code was also created from scratch to simulate the VED-driven RTI governed by the Navier-
Stokes. The motivation for this was to be able to capture viscous effects, such as RBC, and obtain
accurate predictions for late-time, nonlinear behavior. Finally, 2D simulations were performed using
xRage for various initial perturbations. These simulations explored how the perturbations (chang-
ing wavenumber and multi-modal) impacted the initial growth rate. Results were consistent with
the linear stability theory, where increased wavenumber increased growth rate up to a point, where
diffusive effects started becoming more prominent and decreased the growth rate. The time period
where the Atwood number was still stable was also found to dampen /flatten the initial perturbation
which meant that the starting bubble height was reduced.

6.1 Future Work

Future work will mostly focus on studying late-time behavior of VED-driven RTI. We hope to be
able to explore nonlinear growth, mixing, and transition to turbulence. The most significant step
towards this is completing of the DNS code. We were unable to obtain any presentable results with
the DNS code due to several issues: the multi-GPU framework was not implemented so we could
only run under-resolved grids with sufficient memory on the single GPU, the implementation of
the equations and numerical methods was not tested rigorously enough to give confidence in the
results, and the simulation run-time, even for under-resolved grids, was too long and could not be
completed in the given time frame. However, the code does run and outputs correct initialization.
We hope to complete this code in the future.

Additional efforts should be focused on a more in-depth linear stability analysis to obtain more
accurate growth rate laws. This would give further insight into the important early-time dynamics
and can be compared against Eulerian simulations using xRage. Finally, the 2D simulations can also
provide much more information than what was provided in this report. We can obtain quantitative
data on growth rate and dampening of the initial perturbation, and try out various different initial
conditions, Atwood number ranges, and types of fluids. Grid convergence studies should also be
performed to ensure the simulations are not under-resolved.
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Appendix A: Numerical methods for Navier-Stokes solver

This appendix describes the finite-difference numerical methods used for the direct numerical sim-
ulation of the Navier-Stokes equations.

A.1 Equation forms
It is well known that taking the derivative twice for double-derivative terms leads to instabilities,

especially for viscous terms. Because of this, we decompose the diffusion terms and take the second
derivatives directly. The equations can be written in the conservative form:

p 0 9 9

2% :3—331(17“1) - 3—z2(PU2) - a—m(ﬂu:"l (50)
flux
Opu; 0 0 0
gt = " om (puiuy + péi1) — 2, (puiug + péiz) — 23 (puiuz + P5i3)/
flux
0 0 0
A (Ti o (7i o (7i i (91
9o (Ti1) + P (Ti2) + T (T32+pg (51)
diﬁ;;ion
OpE 0 9 )
5 = :3—331 (u1pE + u1p) — 9y (ugpE + ugp) — 924 (uspE + U3p)1
flux
0 0 0
+— (uitin — 1) + — (wiTi2 — q2) + — (wiTi3 — q3) +pgivi + S (52)
N oz Oxo Ox3 ’
diffusion
oY 0 ) )
OPY _ _ % (oY) — - (pusY) — 2 (pusY
o~ om (purY) 925 (puY’) B (pus3 Z
ﬂ‘urx
0 oY 0 oY 0 oY
2 () + 2 (%) + 2 (D 2™
+ 0z, (p 311) + O0xa (p 3:1:2) + 0z3 (p 3:1:3) (53)
diﬁgioxl
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AppendixA: Numerical methods for Navier-Stokes solver

Now, the respective diffusion terms can be decomposed into terms that can be fed into the flux
computation (mixed-diffusion), double derivatives (pure diffusion) and source terms.

0 ouy 2 Ougps 0%u; 2 32u1 au Oou; 2. Oup

Momentum diffusion — = ( et — u= 6; 5; i P
omentim GusIon = 5, (”azi M3 e ) T o M3% 52 311 oz, 3 "' ox,

mixed-diffusion pure diffusion so;;ce

N i % 20 Oug£2 0%u; 25 32u2 L on ou [ Ou; 25. %
61'2 uc’)zi #3 2 6.’13}6#2 H 61‘% #3 2 02 6 31'2 61132 3 2 31'2
mixed :iriﬁusion pure dl?fusion SO:I?CG

d Ous 2 . Oupys 0%u; 2 3211,-3 op (Ou; 2 _ Oug

(6 5 25 54
+ 61'3 (# c’)a:z #3 3 6.’13}6#3 # c’)z§ #3 B 952 6 * oza 31'3 61133 3 233 I3 ( )
mixed-:iriﬁusion pure d‘i?fusion source

Energy diffusion = u; X (momentum diffusion)

32T BZY ok OT 0 oY
r 322 + pD(cp,1 Cp2)T 2 @718—331+ a—zl(PD(Cp,l cp2)T) 7— oz,

-~

pure diffusion source
0%T 0%Y 0k OT ad oY
g +pD(cpa Cp,z)Ta—z% o, 01, + 92y (pD(cp1 — ¢p2)T) 71— oz

~~
source

-~

pure diffusion

32T 0’Y 0Ok OT 0 oY
"ol +pD(ep1 — ep2)T 55 2 ?733—953 + a—xz(PD(Cp,l %,2)T)3731 (55)

-~

-

pure diffusion source

2 2 2
Species diffusion = ng l; +pD8_Y+ Dc’) Y 39 DE?Y 3P DE?Y 4L 9P 3p D(')Y

822 a2+az1 9z, " Bu; 0z ' Ors Ozs (56)

-~

pure diffusion source

Note that all terms can be computed from conservative variables. for example, the temperature
derivative is

OT _ 1 [1(0(pE) L 0p 10(pug) ug 9p Z( ) 1(0(Y) 9
ox; ¢, |p\ Ox; ox; Uk p Ox; p Ox; Cy Col G2 p \ Ozx; ox;

or the velocity derivatives are

Ou; _ (O(pui)  Op
or; ( ox; "*azj /e

A.2 Spatial discretization

A finite-difference scheme is used to evaluate spatial derivatives. The finite difference approximation
f! to the first derivative 9 f(x;)/dz at the node i (varying in x-direction) with uniform grid spacing
is evaluated by solving a tridiagonal system of the form [§|
afi_ 1+ fit+afiy= bfl+24hfz—2 + aflﬂzhfz—l
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AppendixA: Numerical methods for Navier-Stokes solver

The relations between the coefficients a,b and a are derived by matching the Taylor series coefficients
of various order. For example, with a = 2(a+2)/3, b = (4a— 1)/3, a family of fourth order schemes
is obtained. It may be noted that as a — 0 this family merges into the well known fourth order
central difference scheme. Similarly for @ = 1/4 the classical Padé scheme is recovered and for
a = 1/3 the leading order truncation error coefficient vanishes and the scheme is formally sixth
order accurate. The second derivatives are evaluated in a similar way,

five —2fi + fi—2 fir1 —dfi + fi—1
T +a 1,2 (58)

aff 1+ f'+afl,=0b

with @ = 4(1 — @)/3, b = (10a — 1)/3. Again this approaches the classical fourth-order central
difference as @ — 0 and a = 1/10 for Padé. When a = 2/11, a sixth-order scheme is recovered. In
this work, the sixth-order scheme is used. The spectral-like accuracy of the schemes follows from
the nature of the dispersive errors associated with eq. 57. It has been shown that compared to the
traditional finite difference schemes these schemes reduce the dispersive errors over a wider band of
the length scales represented on the grid [§].

A.3 Temporal discretization

The minimum acceptable time integration order for DNS is typically fourth-order. Due to the
time-resolving nature of the simulation, and explicit scheme is adequate. We implemented the
Runge-Kutta fourth-order scheme (RK4)

L (@)

LT ot
L U + 8tky)

2= ot

by — a(f (t")a-: o) (59)
L OUF(E") + Athy)

1= ot

At
fn+1 =f"+ o (k1 + 2ka + 2k3 + k4)

That’s all there is to it!

A.4 Slip-wall boundary conditions

Slip walls are used to ensure constant-volume domain and are used and neglect frictional forces.
if 2 = n where n is the normal direction to the wall, then we impose zero normal velocity u; = 0
and zero shear stress d—ﬁéiﬂ = (0. The wall is also adiabatic and non-reactive such that all scalar
derivatives normal to the wall are zero, i.e. 3—;: =0, % =0, ;x—pi = 0, etc. These conditions impose
Dirichlet (state is zero) and Neumann (derivative of state is zero) numerical boundary conditions
which are enforced through the matrix and RHS formation. Note that Neumann BC are enforced
through ghost states for first derivative, while Dirichlet requires explicit state enforcement and
single-sided stencils. Second-derivatives with Neumann conditions also require a biased stencil.
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The Neumann and Dirichlet BC inform us how to form the tridiagonal matrix. We explicitly
describe the numerical BC for flux and diffusion terms. For the flux terms,

6 3 . 2 a .
~ g, (Pui) > Dirichlet, -2 (ﬂ”i“j + P8 — po L+ p b uk*’) — Dirichlet when i # j,
T; ox; ox; 3 Ozps;
_37]- (PUin + pdij — ,Uaxji + ,Ug ij 3$k¢;) — Neumann when i = j, set pu;u; + ,ugéij 3zk¢j~ =0,

aia:j [u]- (pE + p) — pu; g:: - uuig dij gz::ﬂ — Dirichlet, Bi:c] (—pu;Y) — Dirichlet
and the pure diffusion term numerical BCs are
0%u; ) e . ..
ﬁ? — Neumann when i # j, Dirichlet when 7 = j,
% — Neumann,
?:TIZ; — Neumann

This gives us the correct way to apply BC to the compact finite differences. The Neumann condition
is enforced directly through the matrix, and reflective ghost points are used to enforce the zero
derivative at the boundary node (f-1 = f1, etc.). The first-derivative matrix is

1 0 0 O 0 0 0 T

al a 0 0 0 2(fs— f1) + 2 (f1— fa)

0 a 1 «a 00 L (fs— f2) + 5 (fs — f)
Al,Neumann = ) bl,Neumann =

00 « a 0 sr(FN-1— Ina) + 3 (fn — Fn—a)

0 0 0 1 « 2 (fn — fn—2) + 25 (fn-1— fn—3)

0 0 0 0 1 i 0 J

Only a fourth-order stencil is used because that is the most accurate first derivative one-sided
stencil provided by Lele [8]. The coefficients are a = 1/4,a = 2(a + 2)/3,b = (4a — 1)/3. The
second-derivative matrix requires a one-sided stencil,
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a 0
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os 1]
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[ L (asfi + bsfo + csfs + dofa + esf3) ]
&(fs— fa+ fr) + 12 (fa f2+f2)+9§z(f5 fa+ f3)
&(fa— fa+ fo) + gp2(fs — fa+ F1) + 52 (fo — fa+ fo)
%(fs—f4+f3)+%(f6— fat fo) + 5= (fr— fa+ f1)

b2,Neumarm =

5 (fn—2 — Fn—3+ fn—a) + pz(fN1 —fN 3+ fn-s) + gz (fn — fn—3 + fn—s)
s(fN-1—fn-2+ fn-3)+ (v — fn—2+ fn-a) + iz (FN-1— fn—2+ fN—s5)
(fn = fn—1+ fn—2) + 522 (Fv—1 — fn—1 + fn—s) + giz (Fv—2 — fn—1 + fn—4)

— 3z (asfn +bsfn-1+ csfn—o+dsfn-3+ esfn-1) ]
The coeﬂiments for fourth-order central second derivative are o = 1/10,a = 12/11,b = 3/11,¢ =0
and for fourth-order one-sided second derivative are oy = 1/10,a5 = 7,bs = —104/5,¢ = 114/5,d =
—56/5,e = 0. For Dirichlet conditions, since the value at the node are enforced to be zero, we can
apply odd reflection to obtain the ghost states (f—1 = — f1). Since the derivative at the boundary is
unknown, we must use a one-sided stencil for Dirichlet BC. The Matrix-vector system for the first
derivative will look like

TleTleTle

1 a¢ 0 0 ... 0 O

a 1 0 0 0

0 1 « 0 0
Al,Dirichlet =|: eo el e o

0 0 a 1 a 0

0o 0 ... 0 o 1

0 0 ... 0 0 as 1]

[ %(asfl+bsf2+csf3+dsf4+esf5) 1
o5 (fa—f1) + %(fzi + f2)
on (fa = fo) + 7 (fs = f1)
bl,Dirichlet =
A (fn-1— fn-3) + & (fn — Fn-3)
2 (fn — fn—2) + g5 (—fn-1 — fn—2)
|~ (asfN +bsfN-1+ csfn—2 + dsfN_3+ esfN_4)]
The one-sided first derivative coefficients for fourth-order accuracy are as = 3,as = —17/6,bs =
3/2,cs = 3/2,ds = —1/6,e5s = 0. Second-derivative matrix also requires a one-sided stencil, with
the same matrix form (but different coefficient values) as the second derivative with Neumann

h_lz (asfl + bsf2 + Csf3 + dsf4 + esf5)
&(fa—fot+ 1)+ 12(fa— f2— f2) + 552 (fs — f2— f3)
we(fa— fa+ f2) + W(fs — f3+ f1) + 552 (fo — f3 = f2)
we(fs — fa+ f3) + g2 (fo — fa+ f2) + gi=(fr — fa + f1)
b2 Dirichlet = :

& (fn—2— N3+ fn-a) + 1z (fn—1 — fN—3+ fN—s5)+ 552 (fN — fN—3+ fN—6)
wz(fn-1— fn—2+ fNn-3)+ gz(fn — fn—2+ fN-a) + 552(— fNn—1 — fn—2+ fN-5)
S (N — N1+ fN—2) + gz fn-1— IN-1+ fN-3) + iz (— fN—2 — fN—1+ fN-4)
— iz (asfN 4+ bsfN-1+ csfN—2 + ds fN—3 + s fN-4)

Again, the central and one-sided second derivative uses the same coefficients as before.
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