Eif algorithms

Article

An Early Investigation of the HHL Quantum Linear Solver for
Scientific Applications

Mugqing Zheng *', Chenxu Liu

and Ang Li *

check for

updates
Academic Editors: Esam El-Araby
and Naveed Mahmud

Received: 8 July 2025
Revised: 3 August 2025
Accepted: 5 August 2025
Published: 6 August 2025

Citation: Zheng, M.; Liu, C,; Stein,
S.; Li, X.; Miilmenstadt, J.; Chen, Y.; Li,
A. An Early Investigation of the HHL
Quantum Linear Solver for Scientific
Applications. Algorithms 2025, 18, 491.
https://doi.org/10.3390/a18080491

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Samuel Stein ¥, Xiangyu Li ', Johannes Miilmenstiddt ‘*, Yousu Chen

Pacific Northwest National Laboratory, Richland, WA 99354, USA; chenxu.liu@pnnl.gov (C.L.);
samuel.stein@pnnl.gov (S.S.); xiangyu.li@pnnl.gov (X.L.); johannes.muelmenstaedt@pnnl.gov (J.M.);
yousu.chen@pnnl.gov (Y.C.)

* Correspondence: muging.zheng@pnnl.gov (M.Z.); ang li@pnnl.gov (A.L.)

Abstract

In this paper, we explore using the Harrow—Hassidim-Lloyd (HHL) algorithm to address
scientific and engineering problems through quantum computing, utilizing the NWQSim
simulation package on a high-performance computing platform. Focusing on domains
such as power-grid management and climate projection, we demonstrate the correlations
of the accuracy of quantum phase estimation, along with various properties of coefficient
matrices, on the final solution and quantum resource cost in iterative and non-iterative
numerical methods such as the Newton—-Raphson method and finite difference method,
as well as their impacts on quantum error correction costs using the Microsoft Azure
Quantum resource estimator. We summarize the exponential resource cost from quantum
phase estimation before and after quantum error correction and illustrate a potential way
to reduce the demands on physical qubits. This work lays down a preliminary step for
future investigations, urging a closer examination of quantum algorithms’ scalability and
efficiency in domain applications.

Keywords: quantum computing; quantum simulation; hybrid software for QC-HPC

1. Introduction

Starting with the Deutsch—Jozsa algorithm and Shor’s discrete logarithm algo-
rithm [1,2], the potential of quantum computing algorithms has extended beyond merely
simulating quantum systems. The potential speedup of quantum algorithms over their
classical counterparts has gathered tremendous attention, including a fundamental demand
in science and engineering: solving linear systems. Harrow, Hassidim, and Lloyd (HHL)
first developed a quantum linear solver with an exponential speedup in problem dimen-
sions in [3]. Built upon the exponential speedup of quantum linear system algorithms
(QLSAs), many works have explored theoretical quantum advantages in various applica-
tions. These fields include portfolio optimization [4], machine learning [5,6], differential
equation solving [7], linear optimization [8-11], and semi-definite optimization [12,13].

However, the HHL algorithm proposed in [3] has a quadratic dependency on matrix
condition number and matrix sparsity, worse than classical linear solvers such as factor-
ization methods and conjugate gradient, where condition number is the product of the
norm of the coefficient matrix and the norm of the inverse matrix. Several works have
been proposed to reduce the dependency on the condition number of coefficient matrices
and the accuracy of the solution state [14-22]. Specifically, based on adiabatic theorems,

Algorithms 2025, 18, 491

https://doi.org/10.3390/a18080491


https://doi.org/10.3390/a18080491
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-6659-9672
https://orcid.org/0000-0003-2616-3126
https://orcid.org/0000-0002-2655-8251
https://orcid.org/0000-0002-5722-0018
https://orcid.org/0000-0003-1105-6678
https://orcid.org/0000-0001-7591-9597
https://orcid.org/0000-0003-3734-9137
https://doi.org/10.3390/a18080491
https://www.mdpi.com/article/10.3390/a18080491?type=check_update&version=2

Algorithms 2025, 18, 491

20f21

the state of the art has a linear or quasi-linear dependency on the condition number and a
logarithmic dependency on the inverse of the solution accuracy [18-20,22].

The HHL algorithm has been demonstrated in experiments to solve linear algebra
problems. The largest linear systems demonstrated on real gate-based quantum machines
are up to 4 x 4 systems with variants of the HHL algorithm [23-25] and an 8 x 8 system
with the linear solver based on adiabatic quantum computing [26]. However, testing QLSAs
on real quantum devices to demonstrate a quantum advantage still suffers from multiple
obstacles, such as the large number of required quantum gates and the high noise level of
current quantum devices [27].

With the current development of quantum hardware and exploration of quantum
error correction (QEC) codes, a large-scale fault-tolerant quantum computer is expected
to be demonstrated in the foreseeable future [28-34]. QEC codes, such as surface codes,
are expected to detect and correct Pauli errors, as well as any linear combinations of them,
provided the errors occur below a certain threshold probability [35]. Although the gap be-
tween algorithm requirements and hardware specifications is shrinking, the gap still exists,
which necessitates the analysis of the resource costs involved [36]. Resource estimations
have been performed for chemistry [37], Grover’s algorithm on the Advanced Encryption
Standard [38], Shor’s discrete logarithm algorithm for the RSA cryptosystem [39], and the
computation of elliptic curve discrete logarithms [40]. However, despite this being essential
for understanding the disparity between hardware capabilities and practical applications,
there is limited work on non-asymptotic resource estimation for QLSAs [41].

In this paper, we focus on resource estimation and experiment with the HHL algorithm
on several applications selected from domain science, such as power grid and climate pro-
jection. Different from the previous works about asymptotic and non-asymptotic resource
analysis [3,14-22,41], we investigate the factors affecting the final accuracy, resource cost,
and fault-tolerant hardware requirements. Our experiments show the effectiveness of the
HHL algorithm in scientific applications with a low accuracy in quantum phase estimation.
Working with the Microsoft Azure Quantum resource estimator [42,43], we summarize
the exponential dependency of quantum resources on the number of clock qubits in HHL
circuits and demonstrate a possible method to reduce the demands on physical qubits in
fault-tolerant quantum computing.

This paper is organized as follows: Section 2 introduces the idea of quantum linear
system solvers, with implementation-related details. Section 3 presents the simulator,
NWQSim [44], and the resource estimation tool. Next, we explore the factors of interest in
evaluating numerical experiments in Section 4 and perform those experiments in Section 5.
Finally, we discuss the limitations in Section 6 and conclude the implications of our work
on domain science applications in Section 7.

2. Quantum Linear Systems and the Implementation of the Solver
2.1. Overview of the Harrow-Hassidim—Lloyd (HHL) Algorithm

Quantum information is encoded into the state of quantum systems. Here, we assume
all relevant quantum states can be represented as statevectors. An n;-qubit statevector
|x) = ]z.ido_l o |]_> is a normalized complex vector, i.e., a; € C for all j and ijldo_l |zxj|2 =1,
while j € {0,1}" is the number j as a binary string. The set {|)} forms the basis set of C2",
referred to as the computational basis. Specifically, |j) is the unit vector whose (j + 1)1

entry is 1 and other entries are 0. The notation <]_] is the conjugate transpose of |f>

Definition 1 (A quantum linear-system problem). A quantum linear-system problem is to solve
a system of linear equations with a normalized solution vector |x) = A~1|b) /||A~1|b) || where
coefficient matrix A € CN*N is Hermitian and |x) and |b) are both normalized vectors.
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Start with a classical complex linear system AX = b, A € CN*N, where the right-hand-
side (RHS) vector b is normalized to obtain |b) := b/||b||2; then, a quantum linear-system
problem can be formed with A and |b) if A is Hermitian. Otherwise, a larger linear system

0 | _| b
ekl v

where ' is the conjugate transpose. Therefore, we assume coefficient matrices are Hermitian

can be constructed as follows [3]:

0 A
At 0

in the rest of this paper. Since the data is encoded into qubits, if the dimensions of A and b
are not in the power of 2, A and b must be expanded. Suppose there exists a quantum linear
system solver that obtains |x) = A~ |b) /||A~1|b) ||2 from the circuit; then the original
solution of the system can be recovered by X = ||b|[2|| A1 |b) ||2 |x). While ||b]| is known
from the previous computation, the solver needs to provide the value of || A~! |b) ||,.

2.1.1. Mathematical Foundation of HHL

Harrow, Hassidim, and Lloyd first developed the HHL algorithm to solve the quantum
linear-system problem [3]. The fundamental idea behind the HHL algorithm is that the
eigenstates of the Hermitian matrix A (noted as {|v;) }) form a complete orthonormal basis
of CN (i.e., (vj|vg) = ), and hence the state |b) can always be decomposed by this basis
as |b) = Z}\’:?)l bj |vj). Similarly,

A7lb
R
[AT15) T2
1 N-1 1 I N-1
= — |v;) (v; b; |v;
AT & 3, ) O & B
1 N-1 b:

=) <l 2

In other words, the HHL algorithm needs a quantum computer to perform eigen-
decomposition of A and eigenvalue inversion. Figure 1 shows a general description of the
circuit that exactly serves the purpose, with an additional n;-qubit data-loading block to
load |b) into the quantum computer and n; = [log(N)].

[0)

|0>®"c{ 5

)"

Figure 1. HHL circuit. The unitary gates in quantum phase estimation (QPE) are U = et and
U? = ¢4 where i> = —1 and t is a scaling factor. The top qubit is referred to as the ancillary qubit,

and it is the most significant qubit.

2.1.2. Quantum Phase Estimation

The eigen-decomposition requires a subroutine called quantum phase estimation

(QPE), as illustrated in the sky blue part of Figure 1. Given a unitary matrix U has an
277i0);
i

eigenstate [v;) with eigenvalue ¢“™/, QPE is a quantum algorithm to solve the phase of

the eigenvalue (0;) [35]. After executing the QPE algorithm, the binary representation of
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the phase angle 6 is stored in a qubit state. The qubits carrying the phase information

are named “clock qubits”. In the HHL algorithm, if [v;) is an eigenstate of a Hermitian

matrix A with eigenvalue A}, by constructing a unitary matrix U = ¢4 with a scale factor

t, the state |0;) becomes an eigenstate of U with eigenvalue ¢!, Therefore, the eigenvalue

Aj can be estimated using the QPE algorithm.

27l |,
v

Suppose we have access to the gate U; then it is clear that U’ [v;) = ¢ ) for some

positive integer I. QPE requires a submodule called quantum Fourier transform (QFT).
QFT maps

. 1 |7
QFT|j) = NI Y, k)
k=0
_ ;ﬂ <‘0> 20, |1>> <‘0> 1 270 jne |1>) .. (|O> 1 202 \1>)

2711/ (2") ntuitively, j can be considered as binary number

where j has . bits and w = e
j=jija--jn. suchthatj; € {0,1} and QFT transforms this binary number from a state to
the phases of bases in different accuracy. So, on the contrary, if we apply the inverse of the
QFT operator, denoted by QFT, the phase value becomes a state, and we can measure the
state to obtain the phase value in the binary representation.

To summarize the process of a standalone QPE routine, we have

2" —1

H®ne 1 -
k) [0)

0)2" o) 225
2Mc —1

cu 1 0.k 17
Sequence Z 627.[19]]( |k> |U]>

V2% 15

QFTY  ~
—10)) [v})

where the CU sequence is the controlled-U sequence in the sky blue part of Figure 1 and
éj = 0; if 0; can be perfectly represented in . bits; otherwise, éj is an estimation of 6; in a
finite accuracy. In other words, the number of clock qubits, 1., governs the accuracy of the
estimated eigenvalue in QPE. To understand more details about QFT and QPE, we direct
the interested reader to [35,45].

Note that, without circuit optimization, the increase in n, will exponentially increase
the gate counts in HHL circuits. Recall the HHL circuit in Figure 1: an extra clock qubit
leads to an extra controlled 2" ' and an extra controlled inverse 2" ' in the HHL circuit,
where U = ¢/*4 and A is the coefficient matrix in a linear system. Generally, we should not
explicitly compute the matrix u?"", but apply gate U for 2"~ ! times in the circuit. Then,
the QPE part of the circuit contains 27;61 2/ = 2" — 1 number of U, and when there are
ne + 1 clock qubits, an extra 2" number of U is added into the QPE, which almost doubles
the number of gates U in QPE. The same situation happens on the inverse QPE part of the

HHL circuit.

2.1.3. State Evolution in HHL

In general, the evolution of states in the HHL circuit is
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Data loading
EE—

10) 0)"" |0”d> 10) 10) =" [b)

2"d —1

ZbIO A7) o7)

Eigenvalue 1
Inversion = C C -~
— ) b [1—=5510)+ = (1) | IAj) [v))
— A2 A
i i /
Measure the ancillary
2" -1 p

only keep |1)

QpE! ey,
=—D1)[0™) }, }T],Ivﬁ%DID 10%) |x)
=07

where }\j ~ Aj is the eigenvalue of A with a finite accuracy estimated in QPE, and C and D
are both constant normalization factors

C 1

/ZZ’M 1 Cz‘b |2 ||147l |b> ||2

Thus, the norm ||[A~1|b) |2 can be estimated by the probability of measuring the ancil-
lary qubit in state [1), i.e., |[A71|b) |2 &~ /Pr(Measure 1 in ancillary). This value can
be obtained without extra cost as we need to run the circuit multiple times to get |x) or

D =

(x| M |x) for some observable M. The overall runtime complexity of HHL algorithm is
O(log(N)s?«?/¢€), where s is the sparsity of A, x = || A||||A~!|| is the condition number of
A, and e is the final additive error of the solution defined by the ideal state |x) and the
result from HHL |xppr) through || |x) — [xgpur) || < € [3].

2.1.4. Quantum-Classical Data Exchange in HHL

There are two major input models for encoding both matrix A (or ¢4) and vector |b)
into a quantum computer. One is the sparse-access model, used in the HHL algorithm [3].
The sparse-access model is a quantum version of classical sparse matrix computation,
and we assume access to unitaries that calculate the index of the I'" non-zero element of the
k" row of a matrix A when given (k, ) as input. A different input model, now known as
the quantum operator input model, is from Low and Chuang [46]. This method is based on
the block-encoding of A to allow efficient access to entry values. Its circuit implementation
can be found in [47,48]. Meanwhile, this encoding scheme can also be achieved using
quantum random access memory [49-52]. It requires the complexity O(polylog(N/egE))
for realizing an epg-approximate block-encoding of A € CN*N with quantum random
access memory [50].

Definition 2 (The block-encoding of a matrix). The block-encoding of a matrix A € CN*N isq
unitary operator U such that

U:

Ala ]
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where a > || A|| is a normalizing constant. In other words, U and A satisfy, for some constant a
and n,

a(<0|®” ® IN)u(IN ® |0>®”) = A
where Iy € RN*N is the identity matrix.

To construct the matrix exponential ¢4 in QPE via block-encoding-based methods,
block-encoding first embeds the coefficient matrix A into a larger unitary matrix, and then
uses Quantum Signal Processing to achieve the Hamiltonian simulation ¢'t4 [53]. However,
limited by the size of tested matrices in our numerical experiments, block-encoding alone
already does not show advantages over Quantum Shannon Decomposition (QSD), a method
that directly decomposes ¢4 into a sequence of basis gates, in terms of gate counts and
the number of encoding qubits. We illustrate this in Table 1. Note that the coefficient
matrix used in Section 5.1 is non-Hermitian, so its conversion to a Hermitian matrix using

Equation (1) brings a disadvantage to QSD in terms of the number of gates.

Table 1. Resource costs of using FABLE [47] to block-encode A and QSD to synthesize g2miA,

# of

Linear System Problem Dimension Method Qubits #of CX # of Uj!
Section 5.1 Tter. 1 5x5 F%?LDE ‘; 17030 27008
Section 5.2 Three-point 9x9 FE]?EE ;l ;gg ;gi
Section 5.2 Five-point 25 x 25 FEIS;I?E 151 1461349 19003‘2

1 Uj gate is the 1-qubit rotation gates with 3 Euler angles.

On the other hand, efficiency in reading |x) could be a potential threat to quantum
speedup. The current state-of-the-art quantum state tomography algorithm is from Apel-
doorn et al. [54]. For a state |¢) = Z]-Ii o B /) € CN, with probability 1 — 4, the pure-state

tomography in [54] requires O (\/N /o -1log(N/é )) queries to the unitary oracle that pre-
pares |¢) from |00...0) to output a vector Bess € RN such that |R(B) — Bestllo < 0.

The same routine can be applied to i [¢) to estimate the imaginary part.

2.2. Implementation of the Circuit Generation

In all experiments in this paper, the code for the HHL circuit generation comes from
a Qiskit-based open-sourced package [55], which only produces the essential parts of
the HHL circuit as colored in Figure 1. We made slight modifications to accommodate
the changes in Qiskit 0.46. The state preparation for |b) uses the algorithm in [56] that
decomposes an arbitrary isometry into the optimized number of single-qubit and CNOT
gates, where isometry refers to the inner-product-preserving transformation that maps
between two Hilbert spaces; i.e., the state preparation is a special case of isometries. To
construct the unitary operator ¢4 in the QPE stage, the code directly uses Quantum

Shannon Decomposition to synthesize the matrix exponential in the circuit.

3. Simulator and Resource Estimation Tool

The statevector simulator carries the simulations in the experiments, SV-Sim [57],
in Northwest Quantum Circuit Simulation Environment (NWQSim)(V2.5.0) [44]. As shown
in [57], compared to simulators in Aer from Qiskit [58] and gsim from Cirq [59], NWQSim
provides specialized computation for a wide range of supported basis gates and archi-
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tectures of CPUs and GPUs, such as gate fusion. In Table 2 and later in Section 5, we
demonstrate that the gate fusion strategy in NWQSim can reduce about 80% of gates in the
circuits without sacrificing error rates. On the other hand, NWQSim utilizes a communica-
tion model called “PGAS-based SHMEM” that significantly reduces communication latency
for intra-node CPUs/GPUs and inter-node CPU/GPU clusters. In this case, SV-5im has
an exceptional performance over other simulators in deep-circuit simulation [57]. Figure 2
shows the running time of the HHL circuit in the size of 11 qubits to 17 qubits on SV-Sim
on four different GPUs.

Table 2. HHL circuit properties for four random examples.

No. of Qubits Total No. of Gates
ng ne CX Gates Depth Before Fusion After Fusion
4 6 116,535 248,084 325,189 70,804
5 7 1,111,178 2,373,842 3,106,244 665,921
6 8 9,335,345 19,969,964 26,117,061 5,557,777
7 9 78,420,632 167,816,254 219,386,270 46,631,320

10{ EEm V100

A100
mmm H100
. MI250X

295,637
368,217
264,030
309,363

[
o
=

=
o
=

Execution Time (ms)

=
o
w

102

n11_d4_325,189 n13_d5_3,106,244 n15_.d6_26,117,061  nl7_d7_219,386,270

Figure 2. NWQSim performance on different GPUs. The testing HHL circuits use randomly generated
sparse matrices and random RHS vectors. The three numbers in the name of each testing circuit are
the number of qubits in the circuit, the number of qubits for data loading, and the total number of
gates in the circuit, respectively.

The resource estimator in [42,43] from Microsoft Azure Quantum establishes a system-
atic framework to access and model the resources necessary for implementing quantum
algorithms on a user-specified fault-tolerant scenario. This tool enables detailed estimation
of various computational resources, such as the number of physical qubits, the runtime,
and other QEC-related properties to achieve a quantum advantage for certain applications.
Specifically, the tool accepts a wide range of qubit and quantum error correction code
specifications and an error budget that allows different error rates to simulate a described
fault-tolerant environment.

The tool is compatible with circuits generated from a high-level quantum computing
language or package, including Qiskit and Q#. After a circuit is given, the input is compiled
into Quantum Intermediate Representation through a unified processing program, and the
estimator can examine the code and record qubit allocation, qubit release, gate operation,
and measurement operation. Then, logical-level resources are estimated and used to
compute the required physical-level resources further. The tool returns a thorough report on
resources demanded to perform the given algorithm on fault-tolerant quantum computers,
including the explanation and related mathematical equations of those estimates. A selected
list of estimates is described in Section 4, and their values in conducted experiments are
displayed in Section 5.
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4. Factors of Interest

As we focus on the linear system in scientific applications instead of random systems
for benchmarking, we have less control over the specific values of matrix properties like
condition numbers. Our interest is more on the number of clock qubits 7. in the HHL circuit,
which controls the accuracy of estimated eigenvalues. The error in eigenvalue estimation
affects the solution of the linear system through Equation (2). From [35], to obtain an
eigenvalue with 27 accuracy with at least 1 — PQPE, fail SUccess probability using QPE,

we need
ne—b+ |log, (24—
‘ &2 2popE fail | |

In the Qiskit-based HHL implementation that we used [55], it is suggested that
ne = max(ng + 1, [log, (x + 1)) + Lo (3)

where [,;; = 1 if the coefficient matrix has a negative eigenvalue; otherwise, it is 0. In this
paper, we will adjust 1, to illustrate the influence of the QPE resources on the HHL circuit’s
total cost and the algorithm’s accuracy in domain applications.

When discussing resource estimation under a fault-tolerant setting, our primary
concerns are the estimated runtime, the number of physical qubits, and extra resources
required from the QEC code. We adopt a distance-7 surface code that encodes 98 physical
qubits into a single logical qubit. The theoretical logical qubit error rate is 3 x 10710,
and the error correction threshold is 0.01. The Azure Quantum resource estimator provides
several qubit parameter sets to simulate different qubit properties. The preset qubit settings
we used in this paper are (ns, 107*) and (us, 10~#) from [42], where the former is close to
the specifications of superconducting transmon qubits or spin qubits, and the latter is more
relevant for trapped-ion qubits [42]. A list of detailed configurations of qubit parameter set
(ns, 107%) and (us, 10~%) is in Table 3. We enforce 2-D nearest-neighbor connectivity of
the qubits to simulate the connectivity constraint on real quantum computers. So we also
demonstrate the changes in some factors before this constraint is enforced (“pre-layout”)
and after this constraint is enforced (“after layout”).

Table 3. Qubit parameter configurations.

Qubit Parameter Set (ns, 107%) (us, 107%)
Measurement 100 ns 100 ps
. . Single-qubit gate 50 ns 100 ps
Operation Time Two-qubit gate 50 ns 100 ps
T gate 50 ns 100 us
Measurement 1074 1074
ole-aubi —4 —4
Error rate Single qub%t gate 10_4 10_4
Two-qubit gate 10 10
T gate 10~* 107°

Another important tunable parameter is the overall allowed errors for the algorithm,
namely error budget. Its parameter value is equally divided into three parts:

*  Logical error probability: the probability of at least one logical error;
e  T-distillation error probability: the probability of at least one faulty T-distillation;
*  Rotation synthesis error probability: the probability of at least one failed rotation synthesis.
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There are also specific breakdowns in the resource required by QEC that are of
interest [42,43]. We list them in Table 4.

Table 4. Factors of interest in QEC.

Factors of Interest

Description

Under the nearest-neighbor constraint, extra logical qubits could be required to satisfy the

Number of logical qubits pre- and after layout connectivity needed in the algorithm (circuit); the relation is #Z,gter = 211015 + L /Snalg—‘ + 1, where

1a)g is the number of logical qubits pre-layout and 1, is the number of qubits after layout

Number of physical qubits for the algorithm

The product of the number of logical qubits after layout and the number of physical qubits needed
to encode one logical qubit

Number of physical qubits for T factories T factories produce T states to implement non-Clifford operations in a circuit

Number of physical qubits

The sum of the number of physical qubits for the algorithm and the number of physical qubits
for T factories

Number of T states

The estimator requires 1 T state for each of the T gates in a circuit, 4 T states for each of
the CCZ and CCiX gates, and 18 T states for each of the arbitrary single-qubit rotation gates

Number of T factories

Determined from algorithm runtime, T state per T factory, the number of T states, and T factor
T state - T factor duration "

T state per T factory - algorithm runtime

duration through the equation [

Number of logical cycles for the algorithm The logical depth of the algorithm

Min. logical qubit error rate required to run logical error probability

the algorithm within the error budget Number of logical qubits - Number of logical cycles
Min. T state error rate required for distilled T distillation error probability

T states Total number of T states

5. Scientific Applications and Evaluation

This section examines the utilization of the HHL algorithm in the fields of power grids
and climate projection. We evaluate the performance of HHL in terms of solution accuracy,
resource cost, and influence on convergence speed for applicable problems.

In addition to the hardware specifications in Section 3, all resource estimator jobs are
run on the Azure Quantum cloud server. Due to the limitation on the cloud service usage,
we cannot examine some of the deepest circuits in this section with the resource estimator,
and all evaluated circuits are transpiled.

with respect to a given basis gate set from the estimator using the transpiler in Qiskit.
The optimization level of the transpiler is set to level 2. The Qiskit version is 0.46. The
Azure Quantum version is 0.30.0. The MATPOWER version is 7.1.

5.1. Power Flow Problem in Power Grid

The use of quantum algorithms has drawn much attention in recent research on
power system applications, especially the areas where quantum linear system solver can
be deployed, including power flow, contingency analysis, state estimation, and transient
simulation [60-65]. The specific problem type we illustrated in this section is an alternating
current power flow problem.

The power flow equations are essential to analyzing the steady-state behavior of power
systems by describing the relationship between bus voltages (magnitude and phase angles),
currents, and power injections in a power system. The basic power flow equations are
as follows:

n
Pie= 3 (1VelIViIRe(¥j5) cos(6y) + Vil V;l1m (1) sin(6))
j=1

Q=Y. (\Vk||Vj|Re(Y1?j) sin(0;) — |Vl [V;[Im(Yy;) COS(%’))
=1
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where

* P real power injection at bus k.

* (4 reactive power injection at bus k.

e |Vk]: voltage magnitude at bus k.

* b phase angle difference between bus k and bus .
* Y} admittance between bus k and bus ;.

For a power flow problem with B buses and G generators, there are2(B —1) — (G — 1)
unknowns representing voltage magnitudes, |Vi|, and phase angles, 6y, for load buses
and voltage phase angles for generator buses. With the knowledge of the admittance
matrix of the system that represents the nodal admittance of the buses, we can use the
Newton-Raphson (N-R) method to solve power flow equation iteratively: after an initial
guess for the voltages at all buses, in each N-R iteration, we solve

e

9A AP

b oV AB _ AP @)
A0 a0 | IAIV]| — |AQ
96 V|

where AP, and AQy are computed using the admittance matrix, nodal power balance
equation, and mismatch equations with the data from the last iteration or initial guess.
Then, 6 and |V| are updated by A§ and A|V|, respectively. The algorithm is considered
converged when ||AP|| and ||AQ|| are smaller than a convergence tolerance.

It is worth noting that while HHL can solve Equation (4) for the normalized solution
state [AGT A|V|T]T with limited accuracy, the un-normalized vector could have a smaller
norm than the accuracy of HHL. Thus, the final accuracy of voltage magnitude and phase
angles is much higher than the accuracy used in HHL. This situation is similar to iterative
refinement in semi-definite optimization in [13].

5.1.1. Settings of the Numerical Experiments

The test case is the four buses and two generators problem in ([66], p. 377), coded in
a MATLAB package called MATPOWER [67]. Based on the framework built in [68], we
incorporate HHL circuits and quantum simulators into the solving process in MATPOWER.
The linear systems of our interest are all 5 x 5 systems but not Hermitian. So, the actual
input system is first expanded to 8 x 8 so the size of the RHS vector is the power of 2, and
then it is enlarged to 16 x 16 following Equation (1). So, we eventually use 4 qubits to
encode the vector b. This process is illustrated in Figure 3a.

The default value of n. set by [35] using Equation (3) is 6. To demonstrate how the
accuracy of eigenvalues affects an iterative algorithm, we select 7, from 4 to 7. With 4 clock
qubits in QPE and an ancillary qubit required by the HHL algorithm, the number of qubits
in each HHL circuit ranges from 9 to 12. The N-R method converges when

AP
AQ

However, because the linear system formed in an N-R iteration depends on the solution

< 1078,

‘ e

from the previous N-R iteration, the linear systems at Iteration j with different n. will differ.
Our comparison focuses on the convergence speed and the final solution at the convergence
instead of errors at each iteration across different n..
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Figure 3. Matrix expansion and error plot for the experiments of the power flow problem. (a) Expand-
ing the coefficient matrices and the RHS vector in Equation (4) to fulfill the requirements of the HHL
algorithm. (b) Two types of solution errors in each N-R iteration with various values of n.: the errors
of the solution state (labeled “|x)”) in log base 10, || |x) — |x) g |l2, and the errors of the solutions
(labeled “¥”) in log base 10, ||X¥ — ¥gyL||2. The symbols A, b, %, and |x) refer to the corresponding
part in Equation (4). (c) The convergence performance under different values of .. The y-axis is
the convergence criteria, the infinity norms of [AﬁT AQT]T, in log base 10. The value at iteration 0
represents the norm from the initial guess, and the gray-shaded area is where the convergence criteria
are satisfied.

5.1.2. Performance Evaluations

The sparsity of all tested coefficient matrices is 84.375% after the expansion, with condi-
tion numbers in the range of [5.950,5.970]. The minimums of the magnitude of eigenvalues
are in the range of [12.263,12.506], and the maximums are [73.209,74.659]. Figure 3b,c
provide illustrative evidence of the use of a less precise linear solver in the iterative method
like the N-R method. Although the N-R method with an HHL subroutine converges slower
than a classical linear solver in MATLAB, all methods converge under the same criteria
and obtain a similar solution. A trade-off between convergence speed and complexity of
linear system solving exists in our experiments.

On the other hand, if we compare the values of normalized error || [x) — |x) gz |2,
when 1. = 4,5, 6,7, using more clock qubits indeed leads to lower error from the HHL
algorithm itself. However, increasing 1. does not imply less error on the solution vectors,
XnpL, nor faster convergence by looking at the values of ||X — ¥y |2 and [APT AQT]T in
Figure 3. The HHL algorithm with n, = 5 gives the fastest convergence, which is smaller
than the default value, 6, from Equation (3).

5.1.3. Gate Counts and Depths of HHL Circuits.

Because the circuits from later iterations are in a similar resource demand, we only
look at the circuits in the first iteration. The depths and gate counts of HHL circuits are
the same across N-R iterations when n. is fixed. While HHL with n. = 5, 6,7 gives similar
convergence speed and accuracy, the required resources to run the circuits exponentially
increase as 71, increases based on Table 5. On the other hand, although gate fusion employed
in NWQSim does not mitigate these exponential trends, it maintains a constant proportional
performance across various HHL circuits: a 79% reduction in gate counts on all tested
circuits regardless of the value of n.
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Table 5. Depths and gate counts of HHL circuits for power flow problems at Iteration 1.

ng n. Depth Gates 2-Qubit Gates Gates After Fusion Reduction from Fusion
4 4 65824 86,262 30,651 18,060 79.06%
4 5 135986 178,180 63,315 37,283 79.08%
4 6 276,308 361,980 128,631 75,717 79.08%
4 7 556,950 729,534 259,247 152,570 79.09%

5.1.4. Resource Estimation in a Fault-Tolerant Scenario

Encoded by the surface code described in Section 4 along with a nearest-neighbor
connectivity constraint, we estimate the runtime of HHL circuits by the Azure Quantum
resource estimator and summarize the data in Figure 4. A strong and consistent linear
correlation between the number of clock qubits in QPE, n., and the runtime in log base 10
is displayed across qubit parameter sets and error budgets. Every extra clock qubit brings
10°-322 ~ 2,099 times longer runtime when the error budget is 0.1 and 1035 ~ 2.371 times
longer when the error budget is 0.01. This multiplier shows an increasing trend when the
error budget decreases. Similar correlations are also demonstrated in Figure 5a,b when
we further investigate how 7. affects the number of logical cycles for the circuit and the
number of T states. Generally, the exponential dependencies of runtime, number of logical
cycles, and number of T states on 1, match the relationship between the number of gates in
HHL circuits and n.. Note that the slopes of the fitted line in Figure 5a,b are not sensitive
to error budgets, different from the behavior in Figure 4. Error budgets affect the constant
multiplier of the growth of logical cycles and the number of T states more.

0.8 4.0
X Error budget = 0.01 (a) X Error budget =0.01 (b)
3 --- Fitiy=0.375x - 1.562,R?=0.994 --- Fitiy=0.375x + 1.614,R?=0.994
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# of Clock Qubits in QPE

Figure 4. The runtime in seconds as a function of the number of clock qubits in QPE under the qubit
parameter set (a) (ns, 107#) and (b) (us, 10#). The estimated circuits are HHL circuits for power
flow problems.

Table 6 summarizes the other factors of our interest. Those factors have the same
values in (ns, 107%) and (us, 10~%) settings. Note that there is a dramatic fall in the number
of physical qubits when the error budget is 0.01 and 7, raises from 4 to 5. Combined with
Figure 5¢,d, this reduction comes from a large drop in the number of physical qubits spent
on T factories, a dominant demand on physical qubits instead of the quantum algorithm
itself. The circuit requires 15 T factories when the error budget is 0.01 and n, = 4, but this
number is reduced to 12 when n, = 5. Recall the definition of the number of T factories in
Table 4, based on the fitted coefficients in Figures 4 and 5; we can see while the increase in
1, from 4 to 5 leads to 10°322 times more T states, the runtime becomes 10%37° times larger.
Since T factory duration and T states per factory are kept constant, the faster-growing
runtime reduces the number of T factories required, thus decreasing the overall number of
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physical qubits required. This phenomenon does not occur when the error budget is 0.1
because the growth of runtime and T-state count are at the same speed.

Table 6. Factors of interest for fault-tolerant HHL circuits in power flow problems.

Error Physical Qubits Logical Qubits Min. Logical Qubit Min. T State
Budget ¢ After Layout Pre- and After Layout Error Rate Error Rate

4 32,144 9to 28 3.977 x 1010 9.831 x 10~°

001 5 28,380 10 to 30 1.797 x 10710 4.762 x 1070
6 28,866 11 to 33 7.700 x 10~11 2236 x 1077
4 32,144 9to 28 4.406 x 107° 1.098 x 10~7

0.1 5 32,340 10 to 30 1.990 x 10~° 5.319 x 10~8
6 32,634 11 to 33 8.487 x 1010 2483 x 1078
6.4 6.4
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Figure 5. The number of (a) logical cycles for the algorithm, (b) T states, (c) physical qubits for the
algorithm after layout, and (d) physical qubits for the T factories as functions of the number of clock
qubits in QPE, respectively. The estimated circuits are HHL circuits for power flow problems. Both
qubit parameter sets (ns, 107#) and (us, 10~*) have the same values under the same error budget
for all four factors in the plots.

5.2. Heat Transfer Problem in Climate Projection

Linear solvers are deeply embedded in linear or non-linear differential equation solv-
ing through numerical methods such as the Carleman linearization and the finite difference
method [69]. Such methods discretize the domain of the problems into grids, and the
dimension of the formed linear system scales as the size of discretization. The number
of grid points scales polynomially with system size, while the demands for solving such
differential equations (DEs) are ubiquitous in science and engineering. Due to the expo-
nential speedup in problem dimension, the combination of quantum linear solvers and
these numerical methods has become an attractive direction [69-72]. For example, accurate
climate projection, one of the most scientifically challenging and socially urgent problems,
is cursed by high dimension and could be revolutionized by quantum computing. In this
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section, we explore the application of a quantum linear system solver to the heat transfer
equation that is important for atmospheric processes related to climate projection.

5.2.1. Settings of the Numerical Experiments

In this section, we examine the two-dimensional (2-D) heat diffusion equation in [73]
— =DV?T+F (5)

where T represents the temperature at a given 2-D point and time, D is the heat transfer
coefficient, and F is the forcing term consisting of arbitrary boundary and initial conditions.
Equation (5) is a linear partial differential equation. We discretize Equation (5) in space and
time into a system of ordinary differential equations using the finite difference method,

AT =F, (6)

where A is the resulting coefficient matrix. Take the square lattices with a lateral size of
three grid points and five grid points, and the resulting dimension of A is 9 x 9 and 25 x 25,
respectively. Such configurations require 4 qubits and 5 qubits to represent the RHS vectors

(heat,l)

(F term in Equation (6)) in both linear systems, respectively. Let A be the coefficient

matrix generated from I number of grid points; the entry values are

1+4r, p=q
A%eat,l): _r p=g+lororp=q=£l
0, otherwise

where p and g denote the index of the entries of A, and 7 is 0.00016 in the three-point case
and 0.00064 in the five-point case.

5.2.2. Performance and Resource Evaluations

The coefficient matrices are Hermitian by design, so we only need to expand the
dimension to the nearest power of 2, i.e., 16 and 32. After dimension expansion, the coeffi-
cient matrices have sparsity 82.81% and 88.28%, respectively. Both matrices have condition
number 1, and all of their eigenvalues are around 1.

When n; = 4, gate counts in Tables 5 and 7 have almost the same numbers of circuit
depths and gate counts. However, if we compare across different 1, in Table 7, significant
increases appear in depths and all gate counts. This situation reflects one of Aaronson’s
concerns in [74] about the efficiency and the cost of data reading in quantum linear solvers.
Furthermore, similar to the scenario in Section 5.1, the incremental of 7., despite being very
costly, has a limited contribution towards reducing errors, as shown in Figure 6.

Table 7. Depths and gate counts of HHL circuits for heat transfer problems.

Dim. #n; n, Depth # of Gates # of 2-Qubit Gates # of Gates After Fusion Reduction from Fusion
9%x9 4 3 30,742 40,290 14,315 8445 79.04%
9x9 4 4 65824 86,262 30,651 18,061 79.06%
9x9 4 5 135986 178,180 63,315 37,284 79.08%
9%x9 4 6 276,308 361,980 128,631 75,718 79.08%
25x25 5 3 133,966 175,253 62,546 37,147 78.80%
25x25 5 4 287,134 375,643 134,046 79,547 78.82%
25x25 5 5 593948 777,069 277,230 164,338 78.85%
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Figure 6. The errors of the solution states in log base 10 (labeled as “|x)”), || |x) — |x) ;yp1. |2, and the

121
X

errors of the solution vectors in log base 10 (labeled as “X”), ||¥ — Xy ||2, are presented as functions
of n. for two different numbers of grid points. The symbols X and |x), respectively, refer to the

solution vector and the normalized solution vector.

5.2.3. Resource Estimation in a Fault-Tolerant Scenario

Most of the observations from Figures 7 and 8 and Table 8 for both problem sizes are
analogous to the findings in Section 5.1.4, including the numerical values of the fitted-line
coefficients related to runtime, logical cycles, and the number of T states. The significant
influence brought by deeper data-loading modules for the five-point problem is parallel
shifts on longer runtime, more logical cycles, more T states, and more strict requirements
on the logical qubit error rate and T state error rate. More data-loading qubits do not affect
the growth speed of the logical cycle and the number of T states. Due to the limitation of
computational time in Azure Quantum cloud service, we cannot collect more data points to
understand this correlation better. However, from a theoretical perspective, this is expected
because the QPE costs of HHL circuits are the same with the same 7. in the power flow
and heat transfer problems.
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Figure 7. The runtime in seconds as a function of the number of clock qubits in QPE under the qubit
parameter set (a) (ns, 107#) and (b) (us, 10~#). The estimated circuits are HHL circuits for the heat
transfer problem.



Algorithms 2025, 18, 491

16 of 21

6.2 (a) (133)s
S 6.
[} 2
o /;:% L
- 6.0 L L
- - e ° e
- e hs ~ e
25,81 .7 v = P
< U |F X 8 ,»::/%
- il Pratad
5 5.6 £ 5.6
" % 5 X
$s5.4 L 554 L
> Lo e
(6] 5.2 /,:/ X na=4, Error budget = 0.01 : 5.2 :: s X na=4, Error budget = 0.01
- e ——- Fitzy = 0.330x +4.142,R2 = 0.999 " % ——- Fitiy =0.331x +4.193,R2 = 0.999
3 % X ng =4, Error budget = 0.1 X ng =4, Error budget = 0.1
5! 5.0 ——- Fit:y=0.331x +4.091, R2 = 0.999 5.0 ——- Fit:y=0.332x+4.137, R2=0.999
o ng=5, error budget = 0.01 ng =5, error budget = 0.01
- ng=5, error budget =0.1 ng=5, error budget=0.1
4.8 4.8
3 4 5 6 3 4 5 6
# of Clock Qubits in QPE # of Clock Qubits in QPE
4.2 (c) ©5.2 X na=4, Error budget = 0.01 (d)
o * 6 =<7 --- Fitiy= - 0.039x +4.594, R = 0.800
5"; o X na=4, Error budget =0.1
=) 4 0 - 5 0 - Fit:y=D.lZEx+3.755,R2=0.500
=" £ ng =5, error budget = 0.01
£ . ng=5, error budget =0.1
n 3.8 x "g 4.8
< i + )(— ________ w
£3.61° - 4.6 3
i , . K= Xl & S —1 X e X
8 3.4 FE < a4y e X
o -
3 ng =4, Error budget =0.01 L .5 -7
o 3.2 ->-< Fit:y = 0.126x + 2.991, R2 = 0.906 5 4.2 -
>-' X ng =4, Error budget = 0.1 (=4
£ 3.0 ——- Fit:y =0.039x + 3.275, R2 = 0.992 > 4.0 X
(-8 ng=5, error budget = 0.01 =
ng =5, error budget=0.1 [-%
2.8 3.8
3 4 5 6 3 4 5 6
# of Clock Qubits in QPE # of Clock Qubits in QPE

Figure 8. The number of (a) logical cycles for the algorithm, (b) T states, (c) physical qubits for the
algorithm after layout, and (d) physical qubits for the T factories as functions of the number of clock
qubits in QPE, respectively. The estimated circuits are HHL circuits for the heat transfer problem.
Both qubit parameter sets (ns, 107%) and (us, 107#) have the same values under the same error
budget for all four factors in the plots.

Table 8. Factors of interest for fault-tolerant HHL circuits in heat transfer problems.

Error Physical Qubits Logical Qubits Min. Logical Qubit Min. T State
(ng, nc) y 4 S

Budget - ¢ "¢ After Layout  Pre- and After Layout Error Rate Error Rate
4,3) 31,850 8 to 25 1.01 x 1072 222 x 1078

4,4) 32,144 9to 28 3.97 x 10710 9.81 x 10~?

0.01 (4, 5) 28,380 10 to 30 1.80 x 1010 4.77 x 107
’ (4, 6) 28,866 11 to 33 7.69 x 10~11 223 x 1077
5,3) 28,056 9to0 28 2.05 x 10710 5.11 x 1072

(5,4) 28,380 10 to 30 853 x 1071 227 x 107°

4,3) 13450 8 to 25 1.12 x 108 2.50 x 10~7

(4,4) 32,144 9to 28 440 x 107° 1.10 x 1077

01 (4,5) 32,340 10 to 30 2.00 x 107? 5.33 x 10~8
' (4, 6) 32,634 11 to 33 8.47 x 10710 248 x 1078
(5,3) 32,144 9to 28 227 x 1077 5.70 x 10~8

(5,4) 32,340 10 to 30 9.39 x 10710 252 x 1078

6. Discussion

This paper evaluates and analyzes the performance and resources required for the
HHL algorithm in various scientific and engineering problems. There are still multiple
points we need to address in future work. The foremost limitation in this work is the data-
loading module in the HHL circuit generation. While the data-loading algorithm in [55]
can encode an arbitrary vector into a quantum circuit, the circuit depth of this module is
exponential in the number of qubits. Thus, this first part of the circuit severely damages
the potential quantum speedup from HHL. We mitigate this drawback by comparing
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the outcomes from problems of different sizes to isolate the influence of the data-loading
module. An important future direction is incorporating an efficient data-loading scheme
into our analysis framework, like block-encoding in [8]. A different data-loading method
could have a different accuracy, so it is necessary to investigate how data-loading accuracy
and condition number of coefficient matrices collectively affect the solution accuracy.
This future direction illustrates the second drawback of this study. That is, our tested
coefficient matrices are all well-conditioned. Because our experiments do not utilize
randomly generated test cases, we have less control over the matrix properties, including
condition number and sparsity. A potential source of ill-conditioned test cases is the
methods that naturally have ill-conditioned matrices, such as the Newton systems produced
by the interior-point method in optimization problems [13]. Thus, to solve those systems,
iterative refinement with the HHL algorithm [9] and a variant of the HHL algorithm in [15],
accompanied by the sparse approximate inverse preconditioner, is in our outlook. Limited
by the single-job running time in the Azure Quantum cloud server, we cannot process large
HHL circuits, mainly limited by the number of gates. This restricts the number of clock
qubits in the QPE and the number of data points in each plot in Section 5. This is why we
only discuss the correlations whose coefficients of determination are almost 1. In future
studies, we will dismantle the whole HHL circuit into different modules and evaluate the
resource cost separately.

Some additional research can be conducted to further enhance our understanding of
the application of quantum algorithms in scientific problems. An important direction is
understanding the implication of various noise models on the HHL algorithm. We plan
to conduct those experiments with the high-precision noise simulator in [75]. We can
also include the quantum algorithms that address similar scientific applications into our
resource analysis framework, such as quantum differential equation solvers in [76,77] and
quantum optimizers in [78,79].

7. Conclusions

In this paper, we investigate the practical applications and scalability of the HHL
algorithm in solving quantum linear systems associated with scientific problems like power
grids and heat transfer problems. Through the NWQSim package on high-performance
computing platforms, we highlight the benefits of the utilization of low-accuracy QPE in
HHL for both iterative and non-iterative methods in practice: low-accuracy QPE can expo-
nentially reduce the gate counts and circuit depth in an HHL circuit, while keeping the same
solution accuracy in iterative methods like the Newton—-Raphson method and maintaining
a similar level of accuracy in a non-iterative method like the finite difference method.

Furthermore, with the Azure Quantum resource estimator, we evaluate the resource
requirements of HHL circuits in our experiments under two settings that simulate super-
conducting and trapped-ion qubits. The correlations between QEC-related criteria and
the input HHL circuits have been thoroughly studied. The runtime, number of logical
cycles, and number of T states have exponential dependencies on the number of clock
qubits in QPE. However, this relation is not necessarily inherited by the number of physical
qubits demanded. In our experiments, we find that even as n, increases and the error
budget reduces, it is possible that T factory demand also decreases. More specifically, if the
runtime growth is faster than the required amount of T states, the circuit needs fewer T
factories and thus fewer physical qubits to prepare T factories. Since the growth of runtime
is sensitive to the error budget, it is possible to reduce the physical qubit requirement if a
low error budget is achievable on early fault-tolerant quantum devices.

Our study provides pivotal insights into the operational requirements of quantum
linear system algorithms, paving the way for further empirical studies. We propose future
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research on the applications of quantum linear system solvers and iterative refinement on
high-fidelity quantum computers for small-scale experiments. For large-scale experiments,
we suggest using noise-modeled simulators on high-performance platforms. In the context
of QEC and early fault-tolerant quantum computing, we believe it is crucial to focus on
controlling the resource cost of T factories by considering the runtime and error budget.
These research directions hold promise for bridging the gap between theoretical potential
and practical usability in quantum computing. All the code in this research will be hosted
in a public repository (https://github.com/pnnl/nwqlib, accessed on 4 August 2025).
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