SAND2024-11420C

@ lﬁe?&%%éries . | |
EVALUATING GATHER AND
SCATTER PERFORMANCE ON
CPUS AND GPUS

Or: The Spatter Benchmark

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy,
Aaron Vose, Daniel Ernst

Originally Presented at MEMSYS '20

October 3, 2023, Alexandria, VA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

INTRODUCTION

PURPOSE

Spatter’s goal is to represent a large
class of irregular memory access
patterns with a simple encoding that

can be machine generated or written by
hand.

For each input memory pattern, Spatter
reports the rate at which data was
read or written

We compare these numbers to the
STREAM-bandwidth to understand how
much of the available bandwidth is
utilized by an architecture when
running different patterns

Src

|

N\

%/// D F H

idx: |0 |2|4]|6

0 I93I

.

dst: |[A|CIE]G]

Gather Kerne

stride Bandwidth(MB/s)

1 217498.729807
2 94488.415153
4 48114.707001
8 24105.660703

E.g. Intel 6430 (SPR)

USE CASES

- Evaluate the effect of vectorized
instructions on available memory Compiler developers
bandwidth

- Compare how different architectures
handle sparse and irregular access
* Measure how bandwidth utilization has Architects, system
improved across processor generations designers

« Measure how CPUs and GPUs differ in
their utilization

- Easily share application-derived memory
access patterns System designers

IMPLEMENTATION
DETAILS

IMPLEMENTATION

Frontend

Specify inputs by hand or batch inputs with JSON

Backends

CPU

Serial
OpenMP

GPU Backend
CUDA

Tuning

OpenMP - work per thread
CUDA - block size, work per thread (in progress)

NVIDIA.
CUDA

OpenMIP

11

IMPLEMENTATION

- Kernels frc
« Spatter has two kernels, one for Gather and

one for Scatter H %//é B %" E|F H
 The Gather kernel reads into the same buffer 5 \ v
on each loop to avoid generating writes © idx: |0]|2|4]|6
* Vice versa for Scatter
Gather example:
- Pattern agks Indlex =0, 2, 4, 6]
. - Delta =1
« A memory access pattern is specified by:
Gath yS « P P y frc + delta Count =2
° ather or >catter

* Index buffer 2 c E G
« Delta

* Number of gathers/scatters to perform

T I193I

dst:

12

INPUT FILE EXAMPLE

amg.json

[

{
"delta": 1,
"kernel": "Gather",
"pattern": [0, 2, 4, 6],
“count": 2

|

{
"delta": 1,
"kernel": "Scatter",
“pattern”: [1, 1, 5, 5],
"count": 1

}

13

OUTPUT EXAMPLE

. Read all patterns (kernel, idx, delta)
from a JSON file

Determine maximum memory
required and allocate data

For each pattern:

1. Run the specified gather or
scatter kernel N times,
measuring the time it took (and
optionally, PAPI counters)

Print out the timing and bandwidth
for each pattern, and stats
aggregating the performance of all
patterns

$./spatter -pFILE=amg.json

Running Spatter version 0.4

Compiler: icc ver. 19.0.0.20190206
Compiler Location: /opt/intel/bin/icc
Backend: OPENMP

Aggregate Results? YES

Run Configurations
[{'kernel':'Gather', ‘pattern’:
[0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,901],
'delta':3, 'length':83333333, 'threads':24},
.. (2 more omitted)]

config time(s) bw(MB/s)

0 0.05971 178631

1 0.184 173873

2 0.03706 172690

Min 25% Med 75% Max
172690 172690 173873 178631 178631
H.Mean H.StdErr

175027 1469.4

14

EXPERIMENTAL
RESULTS

RESULTS

10° - Gather

Uniform Stride

104

{

- We run gathers and scatters at power of

Bandwidth (MB/s)

. —e— BDW
2 strides L L
—o— Naples
- Utilization drops as we are not using all D
of the data being brought into cache O A N TR R

Stride (Doubles)
- Even past a stride of 8, where we would

use one element for every cache line,
bandwidth continues to drop on some
architectures

10° 1 Scatter

0
an)]
=
— 10% > -
s N Y
s M
©
5 —e— BDW
@ 03] = KNL
—o— Naples
4= SKX

TX2

20 21 22 23 4 5 26 o7
Stride (Doubles)

16

RESULTS

Uniform Stride - Serial vs OpenMP Backend

Some architectures have more bandwidth
available when using vectorized loads

Surprisingly, some have less bandwidth
available

Broadwell had issues exposing the full
bandwidth to scatter instructions

Percent Improvement

1001

801

Percent Improvement

—201

60 -

40-

201

—e— BDW
= KNL
—o— Naples
—4— SKX

— TX2

20 21 22
Stride (Doubles)

23 24 25 26 7

—e— BDW
—»— KNL
—o— Naples
—4— SKX
TX2

20 21 22

23 24 25 26 D7

Stride (Doubles)

AN
AN

N

Gather \

Scatter

Improvement of scatter and gather compared to
scalar loads and stores

19

RESULTS

« We collected patterns from several

.. Platform | AMG (n=36) Nekbone (n=6) Lulesh PENNANT STREAM
mini-apps GB/s GB/s GB/s GB/s GB/s
] (H-Mean) (H-Mean) (H-Mean) (H-Mean)

- We compared thg performance with — o e " p "
STREAM to see if it was correlated SKX 328 309 12 35 %
CLX 315 287 14 41 94
« For CPUs, we have a low R-value for Naples 140 323 3 1 7
. .. TX2 270 247 232 28 241
the Pearson correlation coefficient, so KNL 201 190 19 4 249

they are nOt Correlated R-value 0.15 -0.04 0.50 -1
K40c 108 99 88 14 193
« For GPUs, there is some correlation TitanXP | 496 320 175 21 443
. P100 703 673 165 19 541

Pennant and Lulesh are still hard to R-value 0.66 0.62 0.62 0.57

predict

20

RESULTS

Uniform Stride Bandwidth vs PENNANT Patterns

Selected Gather Patterns Y

- We can rank systems in two ways &
+ Absolute performance 2 |
- Percent of bandwidth utilization)
« This plot does both!
« Pattern bandwidth as a function of a4
maximum bandwidth £ 6
- Avertical (dashed) line representsa ¢ &
single system a
- Trace a colored line to see how that &
pattern performs on different ST
L1 & 7 o
systems O N N N . .
~ 1GB/s 10 GB/s 100 GB/s 1 TB/s

Stride-1 DRAM Bandwidth

21

CONCLUSIONS

CONCLUSIONS AN

100

1. Spatter gives us a compact representation g"” ER Dagn
of a large class of memory access patterns £” v - °
z S 20
2. We can compare memory systems with R S N
metrics beyond total bandwidth, such as * w o
how different architectures handle irregular T uide Doubles) "7 Guide doubles)
and sparse access Ot S et P et
3. We can write patterns by hand to o
investigate microarchitectural details 5 ~Ten
such as prefetcher behavior : N
4. System designers easily share patterns : 3
from real applications with vendors Nl
> é;tridf(DozLI:blesz)'s z o R |

23

NEW COLLABORATORS

Georgia Tech
« James Wood
Sudhanshu Agarwal
« Vincent Huang
 Julio Augustin Vaca Valverde

LANL
Galen Shipman

+ Jered Dominguez-Trujillo
Kevin Sheridan

Gr Georgia
Tech.

o

Los Alamos

NATIONAL LABORATORY

25

NEW FEATURES

flag, static_2d: FP Gather/Scatter Average Bandwidth per Rank (skylake-gold-bind)
11000

—&— Pattern 0
—&— Pattern 1
—e— Pattern 2
—e— Pattern 3

10000 ~

« MPI
« Weak scaling results’

9000 A

8000 +

7000 +

« Multiple indirection
e MultiGather, MultiScatter

« Target[i] = Source[idx1[idx2[i]]]

6000

5000 ~

Average Bandwidth per Rank (MB/s)

4000 A

« Concurrent Gather/Scatter

« Target[idx1[i]] = Sourcel[idx2[i]] ° 10 s ©
° G e n e ra | u Sa b | | |ty u pd ateS flag, static_2d: Non-FP Gather/Scatter Average Bandwidth per Rank (skylake-gold-bind)
- Binary pattern input o Lo etz
10000 - —e— Pattern 2

« Improved testing
- Standard suite of benchmarks
« GettingStarted.ipynb
« Uniform Stride and BW-BW plots

—&— Pattern 3
—&— Pattern 4
‘1‘:.\ —-®- Pattern 5
S~ -®- Pattern 6
-@®- Pattern 7

<~
<.
<,

~8

9000 +

8000 A

7000 A

Average Bandwidth per Rank (MB/s)

« GS-Patterns
« Spatter-patterns repo (Coming soon!) oo
« Share your patterns with other researchers 0 10 20 B p

Ranks

Patterns collected with gs_patterns
m [1] https://usrc.lanl.gov/emc3-project-deep-codesign-amt.php Image source: LANL'

26

LEARN MORE
PUBLICATIONS

- Spatter
« Evaluating Gather and Scatter Performance on CPUs and GPUs (MEMSYS "20)

« github.com/hpcgarage/spatter

« LANL
« MPI Results

« https://usrc.lanl.gov/emc3-project-deep-codesign-amt.php
* (Or search Google for “LANL Spatter”)

http://github.com/hpcgarage/spatter
https://usrc.lanl.gov/emc3-project-deep-codesign-amt.php

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Award #1710371.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National

Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-000R22725

This research was supported in part by the Laboratory Directed Research and Development program at Sandia
National Laboratories under contract DE-NA-0003525. Disclaimer: The views, opinions, and/or findings
contained in this document are those solely of the author(s) and should not be interpreted as representing the
official views or policies of any of its funding sources.

. .

Sandia
National _
Laboratories

Exceptional service in the national interest

EVALUATING GATHER AND
SCATTER PERFORMANCE ON
CPUS AND GPUS

Or: The Spatter Benchmark

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy,
Aaron Vose, Daniel Ernst

Originally Presented at MEMSYS '20

October 3, 2023, Alexandria, VA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Table 5: Listing of Patterns

Gather Pattern | Index Delta Type
PENNANT-GO [2,484,482,0,4,486,484,2,6,488,486,4,8,490,488,6] 2

PENNANT-G1 [0,2,484,482,2,4,486,484.,4,6,488,486,6,8,490,488] 2

PENNANT-G2 [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 2 Stride-4
PENNANT-G3 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 2

PENNANT-G4 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 4 Broadcast
PENNANT-G5 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 4

PENNANT-G6 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 480

PENNANT-G7 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 482

PENNANT-G8 [2,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0] 129608

PENNANT-G9 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388852 Broadcast
PENNANT-G10 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast
PENNANT-G11 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast
PENNANT-G12 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408
PENNANT-G13 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408
PENNANT-G14 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 1036816
PENNANT-G15 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 1882384 Broadcast
LULESH-GO0 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 1 Stride-1
LULESH-G1 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 8 Stride-1
LULESH-G2 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8
LULESH-G3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-G4 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 4 Stride-24
LULESH-G5 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24
LULESH-G6 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-G7 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 41 Stride-1
NEKBONE-GO0 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 3 Stride-6
NEKBONE-G1 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6
NEKBONE-G2 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6
AMG-GO0 [1333,0,1,36,37,72,73,1296,1297,1332,1368,1369,2592,2593,2628,2629] 1 Mostly Stride-1
AMG-G1 [1333,0,1,2,36,37,38,72,73,74,1296,1297,1298,1332,1334,1368] 1 Mostly Stride-1
Scatter Pattern | Index Delta Type
PENNANT-SO | [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 1 Stride-4
LULESH-S0 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8
LULESH-S1 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-S2 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24
LULESH-S3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 0 Stride-24

31

PLATFORMS
System description Abbreviation System Type STREAM BW (MB/s) Power (W) Threads/Backend
Broadwell BDW 12-core Intel CPU 37,164 105 12 threads, OMP, OCL
Cavium ThunderX2 ThunderX?2 28-core ARM CPU 120,000 175 112 threads, OMP
IBM Power8 Power8 8-core IBM CPU 25,389 190 64 threads, OMP
Kepler K40c K40c NVIDIA GPU 193,855 293 CUDA, OCL
Knight’s Landing KNL Intel Xeon Phi 64,060 215 128 threads, OMP
Pascal P100 P100 NVIDIA GPU 541,835 250 CUDA, OCL
Quadro GV100 GV100 NVIDIA GPU 591,350 300 CUDA
Sandy Bridge SNB 4-core Intel CPU 17925 80 4 threads, OMP, OCL

Titan XP Titan XP NVIDIA GPU 443,533 250 CUDA, OCL

32

