

How to use stochastic devices in probabilistic calculations

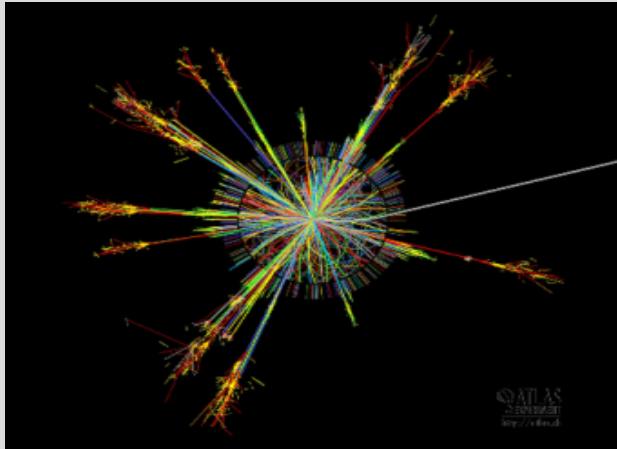
SAND2024-11637C

The authors acknowledge financial support from the DOE Office of Science (ASCR / BES) for our Microelectronics Co-Design project COINLFIPS. SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525. This paper describes technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government

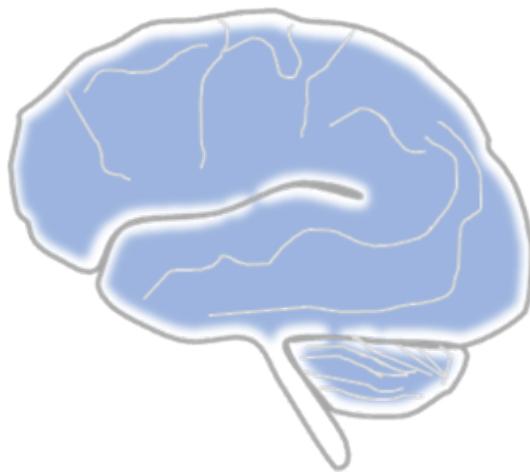
Shashank Misra¹, Christopher R. Allemand¹, Christopher D. Arose¹, Brady G. Taylor², Andre Dubovskiy³, Ahmed Sidi El Valli³, Laura Rehm³, Andrew Haas³, Andrew D. Kent³, Leslie C. Bland⁴, Suma G. Cardwell¹, J. Darby Smith¹, J. Bradley Aimone¹

¹Sandia National Laboratories ²Duke University ³New York University ⁴Temple University

Probabilistic computing



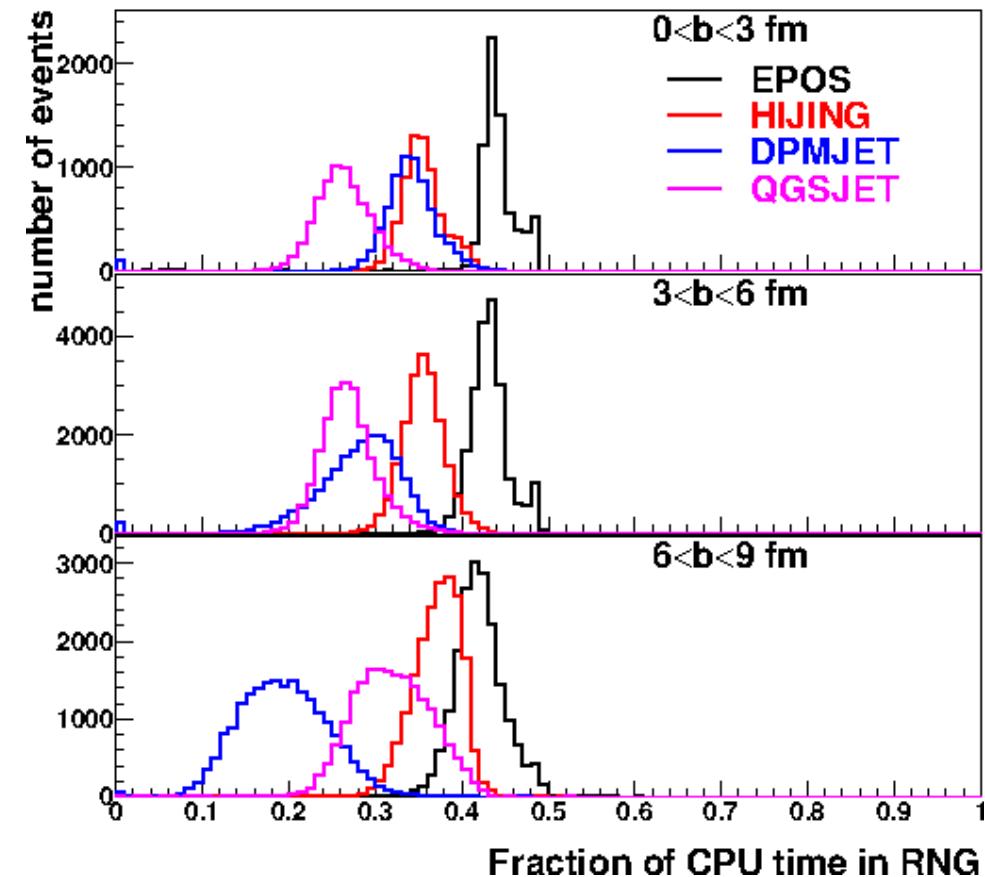
Modeling and Simulation



~20 W
~ 10^{15} events / second
Fully stochastic

COINFLIPS: Codesign stochastic devices
and brain-inspired approaches to scientific
problems

Event generator for cosmic rays



Some calculations consume
random numbers faster than they
can be produced

Unrealized advantage of switching to stochastic hardware

Potentially three orders of magnitude efficiency moving from pseudo random number generator to a true random number generator...

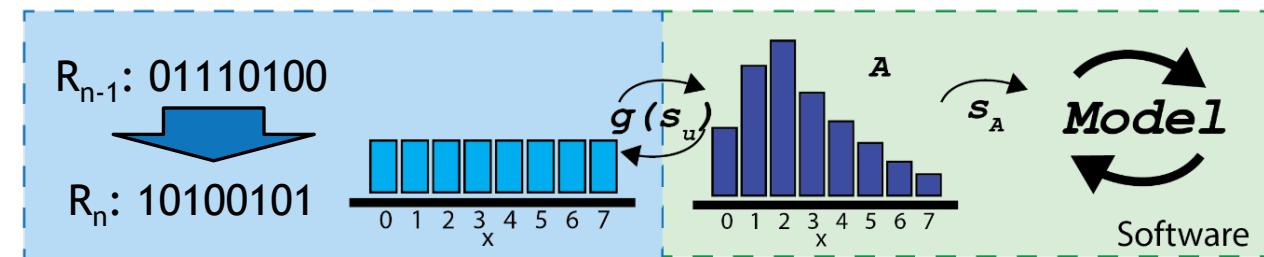
- PRNGs: ~ 1 nJ
- TRNG (MTJ): < 1 pJ

Djupdal, CARRV (2023)
A. Shukla, IEEE ISQED (2023)

... but unclear how to use TRNGs in practice.

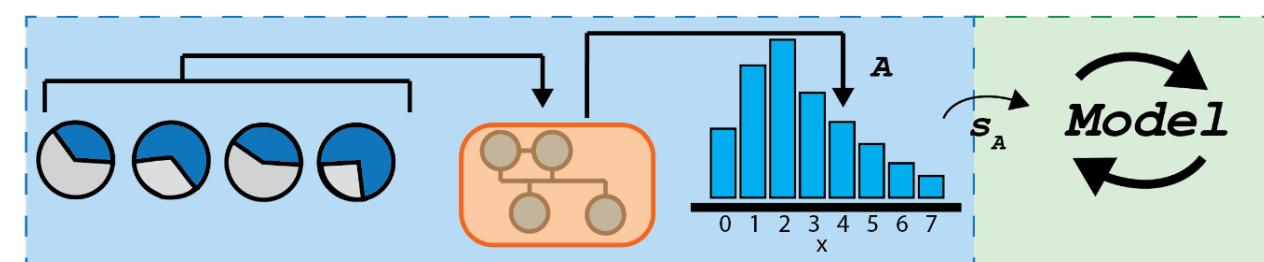
How this is done now:

- CPU generates a uniform pseudo-random number
- Numerical transformation to distribution needed

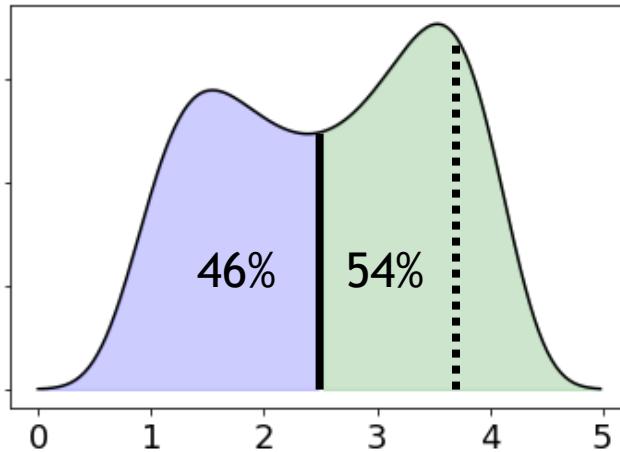
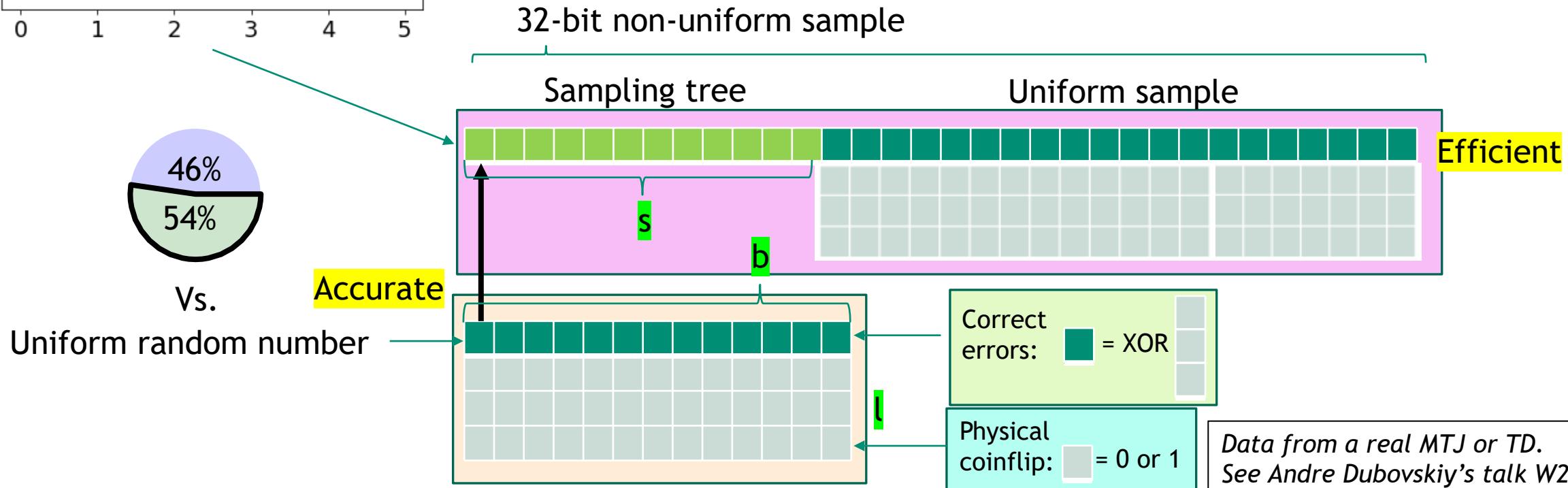


This talk:

- TRNG directly samples distribution

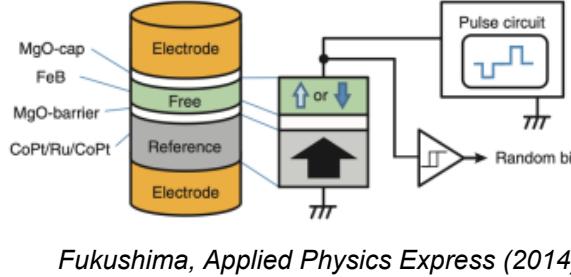


What does this system look like?

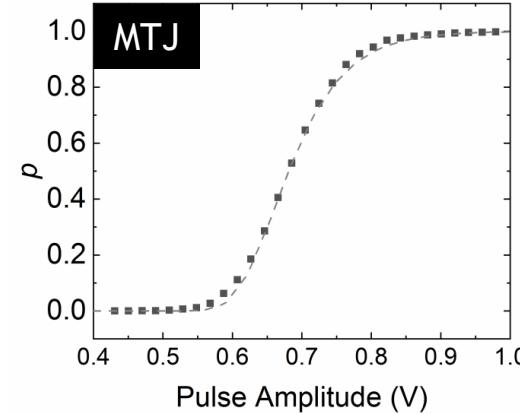


How to evaluate device bitstreams

Use magnetic tunnel junction (MTJ) or tunnel diode (TD) to generate random bitstream



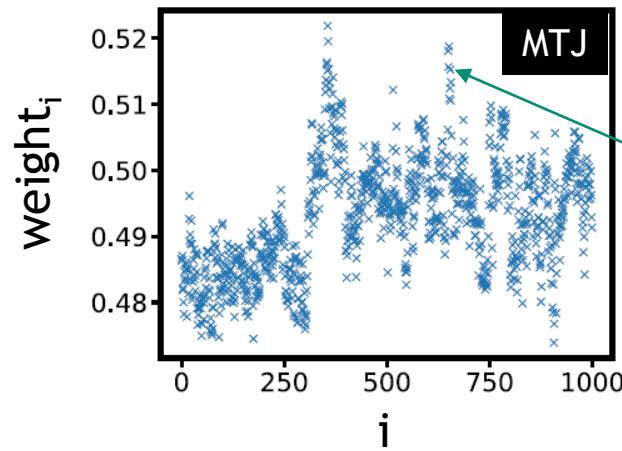
Fukushima, Applied Physics Express (2014)



L. Rehm, Phys. Rev. Applied (2023)

How fair (weight close to 0.5) can we tune MTJ and TD bitstream devices?

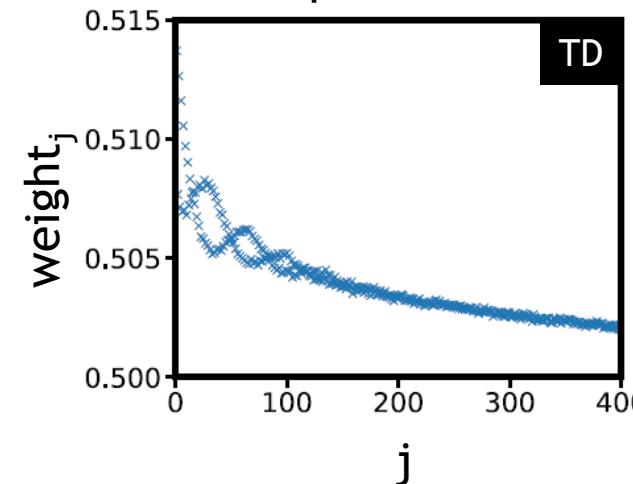
Weight drift



Each point is the
average of 10^8
coinflips

Infidelity
 $\delta_i = w_i - 0.5$

Dependence

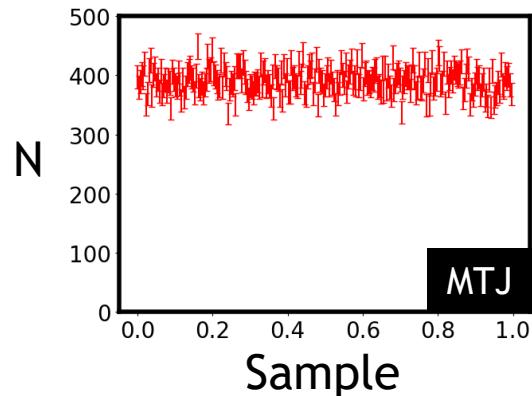


If the 0th coinflip is a
1, what is the weight
of the j^{th} flip

Dependence
 $\varepsilon = w_1 - 0.5$

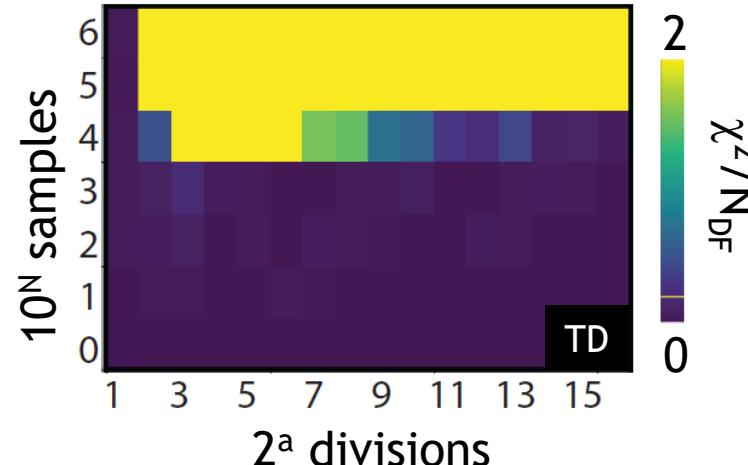
δ and ε impact sampling a uniform distribution

Discretized uniform random sample



Test uniform sample with χ^2 fit.

How much does ε matter?



Heuristic:
 $N \max(\delta, \varepsilon)^2 \sim 1$

N uniform samples
 δ infidelity
 ε dependence

Sample distribution is significantly different from uniform for just 10000 samples when infidelity or dependence are 1%

Can we improve accuracy?

infidelity δ
dependence ε

First	Second	Raw	XOR2	XOR3
1	1	$\frac{1}{4} - \frac{\varepsilon}{2} + \frac{\delta}{2}$	$\frac{1}{4} + \frac{\varepsilon}{2} - \delta^2$	$\frac{1}{4} - 2\varepsilon\delta$
0	1	$\frac{1}{4} + \frac{\varepsilon}{2} + \frac{\delta}{2}$	$\frac{1}{4} + \frac{\varepsilon}{2} - \delta^2$	$\frac{1}{4} - 2\varepsilon\delta$
0	0	$\frac{1}{4} - \frac{\varepsilon}{2} - \frac{\delta}{2}$	$\frac{1}{4} - \frac{\varepsilon}{2} + \delta^2$	$\frac{1}{4} + 2\varepsilon\delta$
1	0	$\frac{1}{4} + \frac{\varepsilon}{2} - \frac{\delta}{2}$	$\frac{1}{4} - \frac{\varepsilon}{2} + \delta^2$	$\frac{1}{4} + 2\varepsilon\delta$

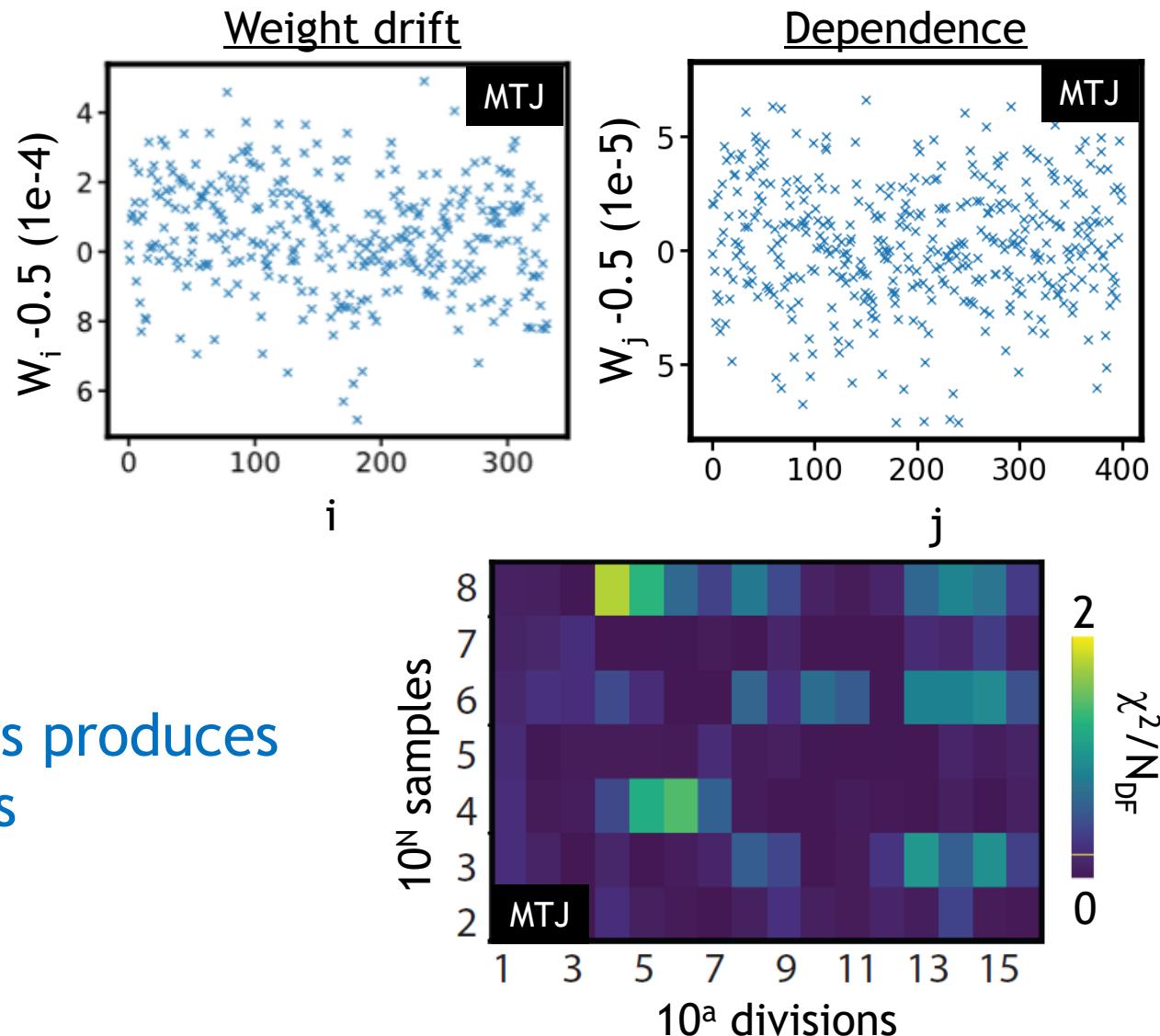
Logical exclusive or of 3 consecutive bits produces low error rates, allows for more samples

= 0 or 1

= XOR

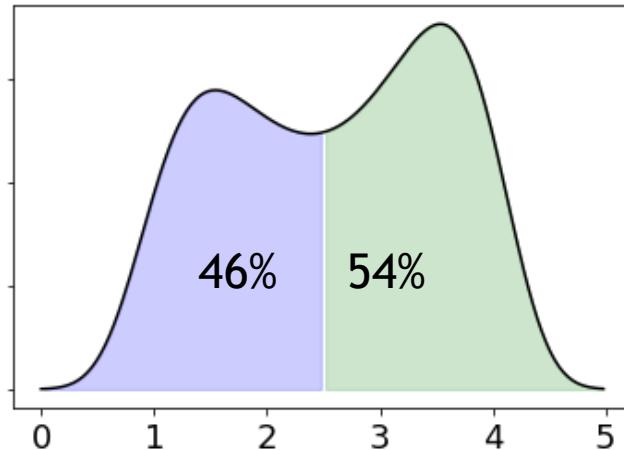
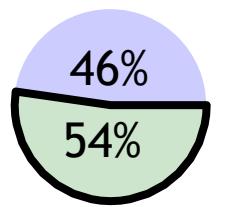
ε

$l=3$

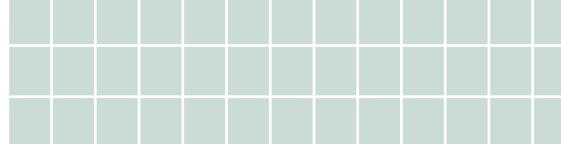


How to sample a non-uniform distribution

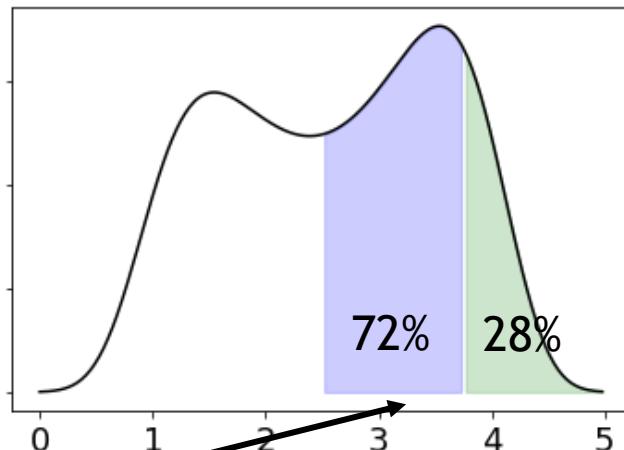
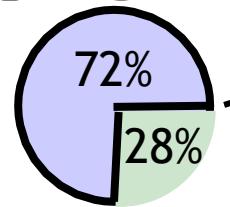
Top half or bottom half?



Uniform random sample



Top quarter or 3rd quarter?



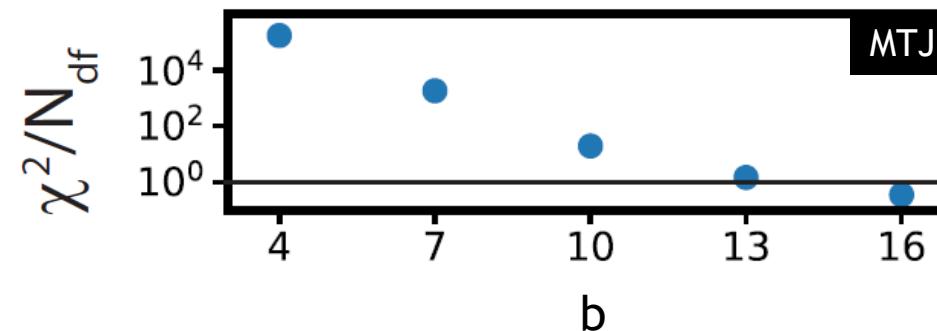
...

Problem: Say we want 10^8 samples - requires $\delta, \varepsilon \sim 10^{-4}$

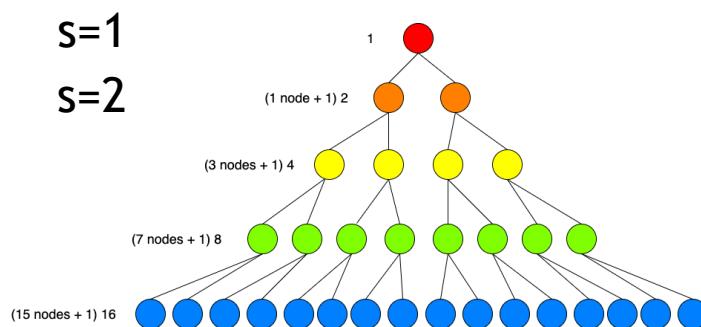
Impractical for a weighted coinflip device.

Solution: use fair coins to draw a uniform random sample with 13 bits of precision

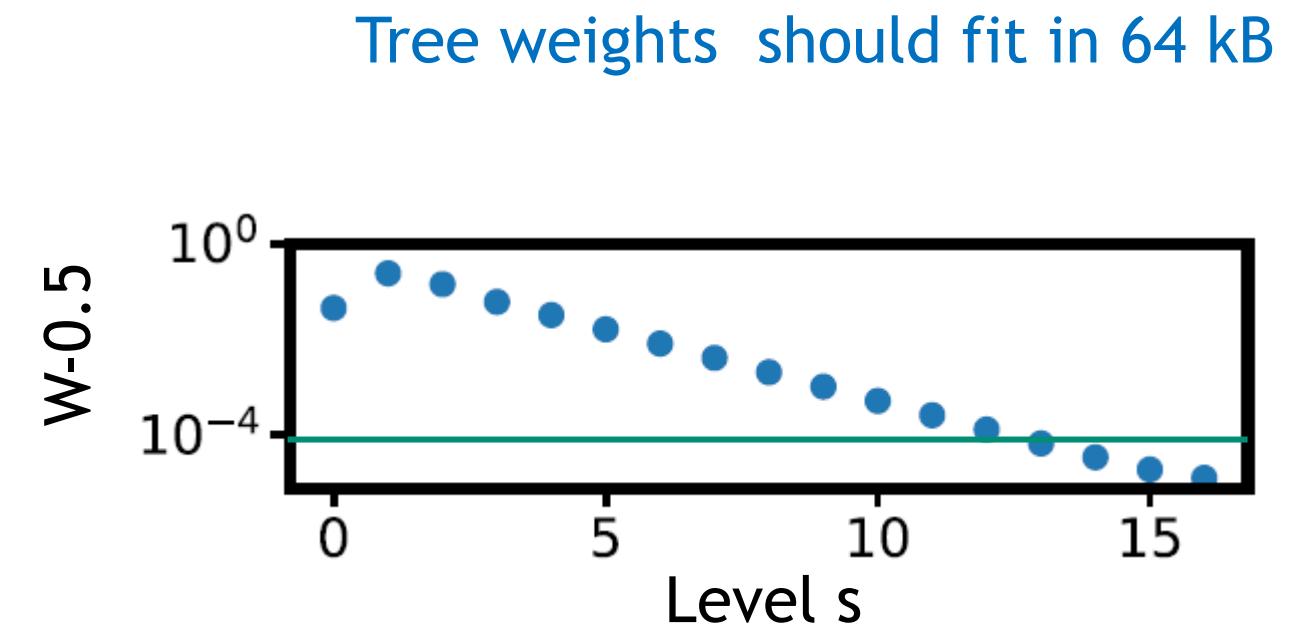
Heuristic:
 $N \max(1/2^b)^2 \sim 1$



Cutoff sampling tree for efficiency



Only need sampling tree for top 12 bits - remaining bits can be uniform random sample



How well does this actually work?

Uniform distribution

PRNG

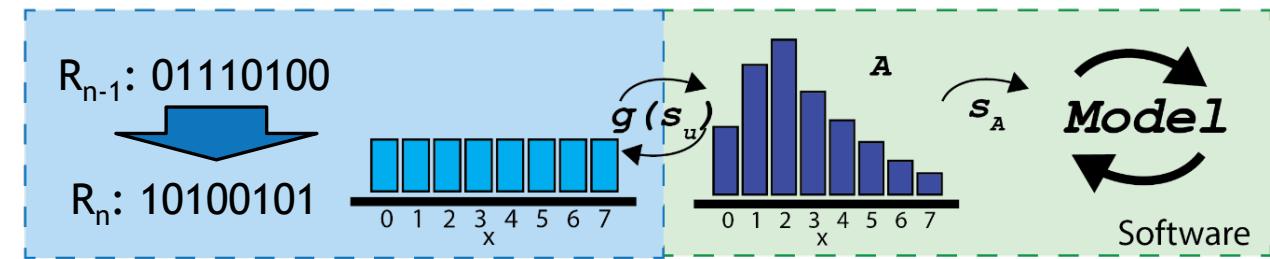
10 simple operations

TRNG

96 coinflips

2 simple operations

5x advantage



Non-uniform distribution

PRNG (rejection)

10 operations/ PRNG

100 operations acceptance

1 conditional

2x executed on average

TRNG (tree)

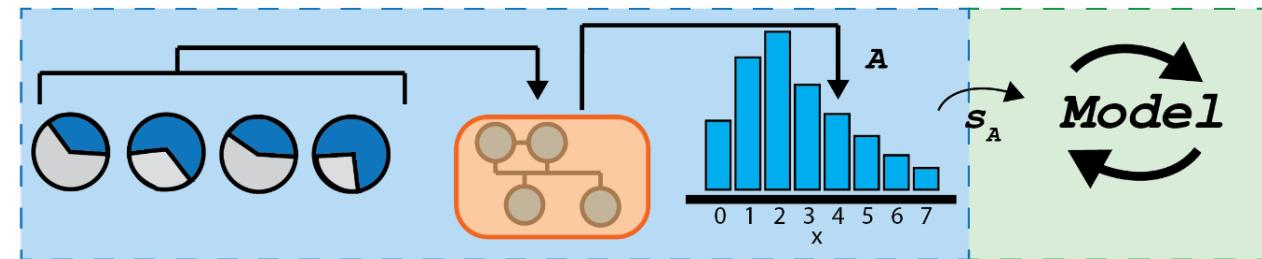
526 coinflips

26 XOR

12 conditionals

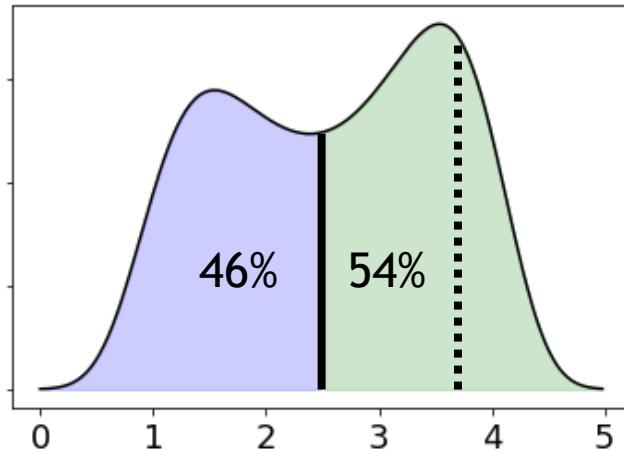
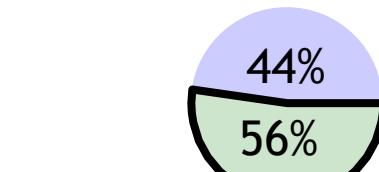
12 cache access

4x advantage



To have real application impact, we need to engage on how to move more of model into sampling, and requirements for accuracy

Conclusion



Vs.
Uniform random number

Hardware random number generators can be used to sample non-uniform distributions efficiently

Looking to talk to people about their applications

