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Artificial Intelligence

Bayesian neural 
networks are 
appealing yet often 
computationally 
intractable

Modeling and Simulation

Many applications are 
inherently stochastic in their 
physics and are best modeled 
using probabilistic methods

Statistical computations and the hardware lottery

~20 W
~1015 events / second
Fully stochastic 

~400 W
~1013-1014 FLOPS
Fully deterministic
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Exemplar problem

Misra, Adv. Mater. (2022)

Some calculations consume random numbers faster than they can be produced

Pythia – event generator used here to simulate 
particle showers from high energy cosmic rays

Profile amount of time used by the pseudo-
random number generator (PRNG)

Uniform random sample converted to sample 
other distributions using elementary functions
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How can we use noisy devices? 
Potentially three orders of magnitude efficiency moving from pseudo random number generator 
(PRNG - software) to a true random number generator (TRNG - hardware)… 

… but unclear how to use TRNGs in practice. 

Djupdal ,CARRV (2023)
A. Shukla, IEEE ISQED (2023)• PRNGs: ~ 1 nJ • TRNG (MTJ, TD): < 1 pJ

Fair vs. weighted? Accelerator vs. integrated?

Misra, Adv. Mater. (2023)
Misra & Aimone, IEEE EMD (2023)
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Outline

1. Hardware bitstreams
2. Sampling distributions
3. System implications
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Coinflip device - a random bitstream generator

Composite free layer

Reference layer

SAF

MgO

SAF layer 1

SAF layer 2

Stochastic magnetic actuated 
random transducer (SMART)

Rehm, Phys. Rev. Appl. (2023)

Tunnel diode
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Why?
• Output states are well-resolved
• Input pulse controls probability of ‘high’ output
• Easy to understand simple case with uniform sampling using fair coin



How do we evaluate the bitstream (1)?

Define infidelity di= wi-0.5

weighti

i

MTJ

Each point is the average of 108 coinflips

Infidelity drifts with external factors – e.g. temperature

NIST tests are useful litmus test, but 
provide little insight into sampling

How well can we set the weight?

infidelity
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How do we evaluate the bitstream (2)?
If the 0th coinflip is a 1, what is the weight of the jth flip?

Define dependence e = w1-0.5

w
ei

gh
t j

j

TD

Are the coinflips independent of 
one another?

Dependence can be intrinsic (heating from last pulse), or extrinsic (pickup)

This approaches 
0.5 once you get 
to ~ 2000 coinflips
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Can we improve accuracy?

First Second Raw XOR2 XOR3

1 1

0 1

0 0

1 0

infidelity d 
dependence e

d i
 (1

e-
4)

i

MTJ

Weight drift (XOR3)

Logical exclusive or of consecutive bits: 
XOR2 vs. XOR3

j

TD

Dependence (XOR2)

= 0 or 1 = XOR l=3

w
ei

gh
t j
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Outline

1. Hardware bitstreams
2. Sampling distributions
3. System implications
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Sampling 

x

P(x)
Rejection sampling:
- Random number between 0 and 5  x
- Random number between 0 and 1  accept/reject

46% 54%
72% 28%

46%
54%

Top half or bottom half? Top quarter or 3rd quarter?

72%

28%

Sampling tree
- Weigted decision determines successive bits
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Gryzka, Periodica Mathematica Hungarica (2021)



Sampling a uniform distribution12

Statistical uncertainty of sqrt(Ni) 
How you sum c2 is important. 

Discretized uniform random sample

c2 statistics tests whether the sample and target distributions are distinguishable

Sample

N

MTJ

0/1 Uniform random sample



d and e impact sampling a uniform distribution13

2a divisions

10
N
 s

am
pl

es

Heuristic: N max(d,e)2 ~ 1

How much does e matter?

TD

c
2/N

DF

0

2

MTJ

2a divisions

10
N
 s

am
pl

es

XOR3 improves sampling



Rejection sampling14

MTJ

b=13

b bits

x

P(x)

Rejection sampling:
- Random number between 0 and 5  x (32 bits)
- Random number between 0 and 1  accept/reject (b bits)

Problem: Say we want 108 samples - requires d, e ~ 10-4

Heuristic: N max(1/2b)2 ~ 1

Physical 
coinflip: = 0 or 1

Correct 
errors: = XOR 

l=3



Sampling tree15

46% 54%
72% 28%

46%
54%

Top half or bottom half? Top quarter or 3rd quarter?

…

72%

28%

Problem: Say we want 108 
samples - requires d, e ~ 10-4

Impractical for a weighted 
coinflip device.

Solution: use fair coins to draw a uniform 
random sample with 13 bits of precision

Physical 
coinflip: = 0 or 1

Correct 
errors: = XOR 

l=3

Logical weighted coinflip



Cutoff sampling tree for efficiency16

|W
-0

.5
|

Level s

s=1
s=2

Need to store 232-1 sixteen bit weights in memory, 
but nearly all of the weights are 0.5 (after s=12)

2a divisions
Le

ve
l s

c
2DF /N

DF

0

3

Only need sampling tree for top 
12 bits – remaining bits can be 
uniform random sample



Scheme17

44%
56%

46% 54%

Physical 
coinflip: = 0 or 1

Correct 
errors: = XOR 

b=13

l=3

Vs.
Uniform random number

Accurate

Efficient

s=12

32-bit non-uniform sample

Sampling tree Uniform sample

Misra, in preparation
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1. Hardware bitstreams
2. Sampling distributions
3. System implications



What device is better?19

Component Description Technology Power 
consumption # Needed Reference

Vin
Square wave generator using

operational transconductance amplifiers 
130 nm 
CMOS 457 µW Potentially 

1 [4]

Current 
Mirror

High-compliance ultra-high output 
resistance with positive shunt feedback

130 nm 
CMOS 570 µW @ 96 µA 1/TD [5]

Tunnel Diode Three-terminal silicon surface junction 
tunneling device 1 µm CMOS ~1 nW in “tails”

~1.75 nW in “heads” 1/TD [6]

Comparator Low-noise, low-power, dynamic latched 
comparator using cascode

130 nm 
CMOS 100 µW 1/TD [7]

XOR 2-input pass-transistor XOR 130 nm 
CMOS 231 pW Potentially 

1/RN [8]

At a few ns timing, device (aJ - fJ) < circuit (pJ) < INT (nJ)
• Device is irrelevant
• Have flexibility at the circuit level to incorporate, e.g., analog feedback
• It is not that integer operations (INT) need to get more efficient… you just want to minimize them



Is TRNG better than PRNG? What sampling scheme is 
better? 
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PRNG TRNG

10 INT 96 coinflips
2 XOR

Uniform distribution

2 RNG
100 INT acceptance
1 conditional
2x executed on average

13 RNG
12 conditionals
12 cache access

Rejection Tree

Non-uniform distribution

Minimize integer operations (INT)

TRNG PRNG
Rejection 202 242
Tree 24 154

Misra, in preparation

Codesign matters



A vision for probabilistic computation

Today

Future

Misra, Adv. Mater. (2023)

Sampling is expensive (time, energy)
Sampling < 50% of CPU time

Goal: Make sampling cheap 
(devices, circuits)

Move more of computational 
burden from deterministic 
computations into sampling 
(new algorithms, 
architecture, etc.)
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