
DISCLAIMER 

This report was prepared as an account of work sponsored by an 

agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor any of their employees, 

makes any warranty, express or implied, or assumes any legal liability 

or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents 

that its use would not infringe privately owned rights. Reference 

herein to any specific commercial product, process, or service by 

trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or 

favoring by the United States Government or any agency thereof. The 

views and opinions of authors expressed herein do not necessarily 

state or reflect those of the United States Government or any agency 

thereof.  Reference herein to any social initiative (including but not 

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits 

Plans (CBP); Justice 40; etc.) is made by the Author independent of 

any current requirement by the United States Government and does 

not constitute or imply endorsement, recommendation, or support by 

the United States Government or any agency thereof. 



Facial Named Entity Recognition by Attention-Based Graph
Convolutional Neural Network

Garret Obenchain
Sandia National Laboratories

gjobenc@sandia.gov

Cameron Rhea
Sandia National Laboratories

cmrhea@sandia.gov

Ryan Cooper
Sandia National Laboratories

rcooper@sandia.gov

1 ABSTRACT
In the realm of facial recognition and analysis, the ability to

accurately cluster large datasets of facial images stands as a corner-
stone for various applications, ranging from security surveillance to
user biometric identification. This project evolves a novel approach
to facial data clustering by embedding facial images into a high-
dimensional vector space using an advanced embedding model
trained on separate data and assumes a graph-like structure on the
high-dimensional vectors. We find our method works significantly
better than common shallow methods.

2 INTRODUCTION
Facial recognition technology has seen significant advancements

over the past decade driven by the increasing availability of large-
scale datasets and the advancement of machine learning algorithms.
This technology has a wide range of applications, from security
and surveillance, to user authentication and social media tagging.
However, one of the persistent challenges in this field is the ability
to accurately cluster and recognize faces in evolving and diverse
datasets. Common shallow clustering methods often struggle with
the complex and high-dimensional nature of facial data, leading to
suboptimal performance.

We evolve a previous approach [5] to facial named entity recog-
nition (NER) by leveraging an attention-based graph convolutional
neural network (GCN-A). Our method aims to address the limita-
tions of conventional clustering techniques by embedding facial
images into a high-dimensional vector space and assuming a graph-
like structure on these vectors. This approach allows us to capture
the intricate relationships between facial features and improve the
accuracy of clustering and recognition tasks.

Figure 1: An example of inputs for our pipeline which are
outputted from a bounding-box face detection algorithm.

3 MOTIVATION
The motivation behind this research stems from the need for

more robust and adaptable facial recognition algorithms. Tradi-
tional shallow clustering methods, such as K-Means, Gaussian Mix-
ture Models (GMM), and Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN), often make impractical assumptions
about data distribution. For instance, K-Means requires clusters
to be convex-shaped and the number of clusters to be specified
in advance, while GMM assumes that data points are generated
from a mixture of Gaussian distributions. DBSCAN, on the other
hand, assumes that clusters have relatively uniform density. These
assumptions can lead to poor performance when dealing with the
complex and non-linear nature of facial data.

Our proposed method addresses these challenges by utilizing
a graph-based approach. By embedding facial images into a high-
dimensional vector space and constructing subgraphs for each em-
bedded node, we can better capture the underlying structure of the
data. The use of graph convolutional networks (GCNs) allows us
to effectively propagate information across the graph and improve
clustering accuracy.

4 METHODOLOGY
We present a comprehensive overview of the methodology em-

ployed in our study, detailing the processes and techniques used to
achieve high-accuracy facial data clustering. The following subsec-
tions outline the datasets utilized, the embedding models selected,
and the detailed steps of our pipeline.

4.1 Data
In our experiments, we utilize three widely recognized datasets:

CASIA [7], DigiFace [1], and CelebA [6] where each contains widely
varying distributions and sample sizes.

Table 1: The number of images and subjects in each dataset.

CASIA [7] DigiFace [1] CelebA [6]

Number of Images 494,414 499,995 202,599
Number of Subjects 10,575 99,999 10,177

4.2 Preprocessing
In order to normalize the data before it is fed into the embedding

models we utilized the following preprocessing.
• All faces were resized to 112×112 pixels. This standardization
is necessary to maintain consistency across the datasets and
to match the input requirements of the embedding models.
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Figure 2: A visual representation of the stages of a GCN originally proposed by [5]. We embed faces into 512-dimensional
vectors so they exist as points in some embedding space. Then, construct sub graphs by looking at its closest neighbors. Finally,
apply graph convolution to each of the sub graphs.

• Pixel values of the images were normalized to a range of
[−1, 1]. We performed duplicate removal to ensure that each
face in the dataset is unique.

4.3 Embedding Model
Initially, three models were chosen to embed the image data

into high-dimensional vector space: two models, a ResNet50 (R50)
and ResNet100 (R100) trained on the MS1M-RetinaFace and Web-
Face datasets, respectively, and a model with an R100 backbone
trained on the Glint360K dataset [2]. In addition to greater per-
formance on multiple benchmarks reported by Guo et al. [3], the
decision to ultimately use the R100 Glint360K model was made
based on measures of the sparsity of embeddings. More sparsely
distributed embeddings in high-dimensional vector space generally
improve clustering performance since the distance between clusters
is greater, making clusters easier to distinguish from one another.
By measuring the pairwise Euclidean distance and cosine similarity
of all the embeddings from each model, averages were calculated
and showed that the R100 Glint360K model had the most sparse
embeddings as seen in Table 2.

Table 2: Average pair-wise euclidean distance and cosine sim-
ilarity for each embedding model

Model Euclidean Distance Cosine Similarity

R100 Glint360K 29.36 0.020
R50 WebFace 27.06 0.023
R50 MS1MV3 25.87 0.037

4.4 GCN
The GCN utilized in this study comprises a stack of six graph

convolution layers, each activated by the ReLU function and outputs
the linkage likelihood between two nodes. The objective function
used for optimization was the cross-entropy loss function following
the softmax activation. In practice, we backpropagate the gradient
exclusively for the nodes that are immediate neighbors, focusing
solely on the direct connections between a pivot and its immediate
neighbors. This approach significantly accelerates the process and
also enhances accuracy.

4.5 Our Pipeline
The following steps outline the detailed methodology of our

pipeline and is visualized in Figure 2.

• First, we embed every face in a dataset so that it becomes a
node 𝑥 where every 𝑥 ∈ R512.

• Then, we construct a subgraph 𝑆𝐺 for every embedded node
𝑥𝑛 by finding 𝑘 nearest neighbors so that 𝑥𝑛 is the center
node. We normalize the node features by subtracting 𝑥𝑛 from
every neighbor feature 𝑘𝑛 . We then represent the topograph-
ical structure of a 𝑆𝐺𝑛 by making an adjacency matrix 𝐴𝑛

for each edge in 𝑆𝐺𝑛 .
• Finally, given a 𝑆𝐺 and 𝐴 as input data, we apply graph con-
volution𝐺𝐶𝑁 (𝑆𝐺,𝐴) the network outputs a set of weighted
edges of the entire graph, i.e. the linkage likelihood of each
corresponding edge.

5 RESULTS
The following results were acquired during our experiments.
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Table 3: F1 score and Normalized Mutual Information com-
parison of experimented clustering methods for each dataset.
Entries marked with * took too long to compute for this ex-
periment.

CASIA [7] CelebA [6] DigiFace [1]
Method F1 NMI F1 NMI F1 NMI

K-means 0.731 0.779 0.732 0.871 0.438 0.730
DBSCAN 0.253 0.194 0.710 0.688 0.057 0.060
GMM 0.717 0.768 0.882 0.953 * *
Birch 0.791 0.816 0.928 0.971 0.684 0.884

GCN-M 0.966 0.957 0.977 0.942 0.842 0.872
GCN-A 0.971 0.954 0.963 0.949 0.868 0.892

GCN-M and GCN-A denote the aggregation methods we em-
ployed for each subgraph, representing mean-based aggregation
and attention-based aggregation respectively.

6 DISCUSSION
The results of our experiments demonstrate the efficacy of our

proposed attention-based graph convolutional neural network (GCN)
for facial named entity recognition (NER). In this section, we delve
deeper into the implications of our findings and propose some
discussion points.

6.1 Adaptability and Scalability
One of the most notable advantages of our approach is its adapt-

ability. Unlike traditional methods that require re-training when
new data is introduced, our graph-based method can dynamically
adapt to new labels and facial images. This makes our approach
particularly suitable for real-world applications where the dataset
is continuously evolving.

In terms of scalability, our method demonstrates robust per-
formance across datasets of varying sizes and distributions. The
ability to handle large-scale datasets without a significant drop in
performance is crucial for practical applications such as security
surveillance and biometric identification.

6.2 Limitations and Future Work
Despite the promising results, there are a few limitations to our

approach that could warrant further investigation:

• Computation: The initial embeddings and attention-based
GCN operations are computationally intensive, which may
pose challenges for real-time applications. Future work could
explore optimization techniques to reduce the computational
overhead.

• Generalization: While our method shows excellent perfor-
mance on facial datasets, its applicability to other domains
remains to be explored and solely depends on the embed-
ding model used. Additional embedding spaces would need
to be trained to create a sparse space similar to the facial
embedding space used in our method.

• Noisy Data: Although our method performs well on clean
datasets, its robustness to noisy or low-quality data has not
been thoroughly evaluated.

6.3 Real-World Applications
Our pipeline has several important implications for real-world

applications. Here are some of the potential impacts and benefits
of our approach in various domains:

• Security and Surveillance: In security and surveillance, the
ability to accurately cluster and recognize faces in real-time
is crucial. Our method’s adaptability to new data without
the need for re-training ensures that security systems could
remain up-to-date with minimal downtime in a cloud com-
puting environment.

• Social Media and Content Management: In social media
platforms and other information platforms, the ability to
automatically cluster and tag faces in images can greatly
enhance user experiences or enable the ability to collect fast
information about a given person.

• Biometrics Research: Biometric systems are increasingly
incorporating multiple modalities, such as facial recognition,
fingerprint scanning, and iris recognition, to enhance ac-
curacy and security. Our method could be integrated with
multimodal systems to provide a more comprehensive and
reliable identification process.

7 CONCLUSION
We successfully demonstrate the effectiveness of graph-based

clustering in comparison to popular shallow learners. Not only does
this algorithm outperform all of our other experiments, but it also
provides a means for not needing to retrain every time a new set
of nodes is introduced.
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