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MODERN COMPUTING LANDSCAPE

DIGITAL ANALOG
COMPUTING COMPUTING
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« Discrete-valued « Continuous-valued

« Deterministic  Stochastic

« High-Precision * Lower-Precision

« Simple(r) building blocks « Complex building blocks
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SINGLE NEURON COMPLEXITY

Biological Neurons have rich dynamics

Hodgkin
Huxley
Neuron

Single Neuron Biological Complexity
(Nonlinear Dynamics, Learnable parameters, etc.)

Perceptron Leaky
«1 Inputs Output Intzglzfate
and Fire
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ENERGY CONSUMPTION OF MODERN Al SYSTEMS
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NEUROMORPHIC COMPUTING

TAKING INSPIRATION FROM BRAINS

Human

Functionality Brain

+ Solves ill-structured problems with little training

* Online learning

+ Transfer learning
« Continual learning

Attributes

Single
Neuron

6:8:-0

TMMAC/(s)/p
W

« Computational Memory/In-memory computing

* More complexity and computation/ single unit

 Self-organizing/ Reconfigurable
- Spiking/event-driven communication

« Sub-threshold computation

 Stochasticity as a feature

- Average
« Dense local connectivity TITIT CPU

TMMAC/(s)/mW Hasler 2016

* Massively parallel computation



NEUROMORPHIC COMPUTING

Varied solutions proposed spanning digital, mixed-signal and beyond-CMQOS

DIGITAL CMOS ANALOG/ BEYOND-CMOS
MIXED-SIGNAL

4 N

\/

NVM, Analog, Sub- Memristors,
\_ threshold  / FeFETs, MT]s etc.
« Scaledto 1.15B/ 2B « Scaledto1 M « Large focus on in-memory

neurons _ computing

Analog/ Stochastic
Deterministic . « Analog/ Stochastic

« Low-Precision

High-Precision * Low-precision

e |nteeration with CMOS 6



NEUROMORPHIC BUILDING BLOCKS

Neuromorphic offers computational richness

In-memory Computing Sensory Processing Neural Processing
With Synapses

L
I\ ¥ 1 e 19
- b | bt ] L] Silicon Retina/ Event Sensor Dendrites, Learning,
% Silicon Cochlea etc. Multi-modal
APPLICATIONS

' : o\
i AN
fis v

Brain-Inspired Scientific Edge High Performance
(ANN, SNN) Algorithms Computing Computing Computing -




NEUROMORPHIC SUPERCOMPUTER

Neuromorphic systems with billions of neurons

* SNL hosts Intel's Hala Point, which utilizes the
Loihi 2 chips to realize one of the largest
neuromorphic supercomputers in the world.

- 1.15 Billion neurons and trillions of synapses
with a total power consumption of only 2600 W

- The Hala Point system incorporates 1,152 Loihi 2
processors, each of which can simulate a million
neurons.

- Capable of 15 TOPS-per-watt at 8-bit precision
and does not require extensive data-processing
or batching in advance.




NEUROMORPHIC COMPUTING FOR PERFORMANCE

Next-generation Neuromorphic Architectures for HPC and Edge

Key attributes we need: © ]
] 10" + &
* Increase ;omplex¢y to get more | BRAINS "M -+
computational/unit e c :
h . . £ @ 103} E =z % Al/ML with f
» Leverage stochasticity as a feature : %g S CONVENTIONAL ,
‘1 . g 107 4
- Scalability and Complexity = =4 £ DIGITAL
w 1nll O 2 + |
. g 1o - X @) O + GPT-3-Training E
 Codesign across scales : . DO g
10 — = 2 E
- Software tools for Codesign ol Less Power
° Application SpECiﬂC Solutions 108%* LOIHI-!:J LARGETr‘ANSFOHME;'-;raining f
* Design of Heterogeneous L0 e S D
Architectures Power (Wats)

Cardwell et al., Neuromorphic IOP 2024
Under Review



OPPORTUNITIES
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NEUROMORPHIC
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SCALABILITY VS. COMPLEXITY

NEUROMORPHIC COMPUTING NEEDS BOTH!

o « We need to increase computational
Human Brain efficiency as well as computational
© (100 Billion) density for neuromorphic systems.

Mouse Brain
100 Million Neurons

« We can improve the complexity of a
single neuron.

Dragonfly Brain
1 Million Neurons

© » Novel devices and materials can help
Intel Hala Point

o (Loihi 2) bridge this gap but codesign is a

!1.15 Billion neurons challenge,
O i

I_\IG_UFOGrid Intel Loihi
1 Million Neurons 100 Million neurons

@) IBM TrueNorth
=== 1 Million

Biological Complexity
(Nonlinear Dynamics, Learnable parameters,

T Neuron, 21 HH Biological neurons have rich
dynamics and a lot more
Scalability (# of Neurons) computational power.

n



DENDRITES IMPROVE COMPUTATION WITHIN A SINGLE NEURON

SIMPLE NEURONS

- Simpler neuron models requires larger neural

networks.

= Power hungry ANNSs
= Inefficient scaling
= |nefficient hardware implementations

= Focus only on synapses and

-

Our Current Research \

Dendrites supporting shunting Inhibition

« Pattern Recognition (NICE 2023, ICONS 2023)

« Direction-Selective (ICONS 2024)
Software library for analog hardware-based
dendrites (NeurlIPS workshop, NICE 2023)
DEND-NET: SNN with dendrites (Neuro |IOP 2024 -
In Review)

Neuromorphic Design Space Exploration with

SANA-FE tool in collaboration with UT Austin. /

COMPLEX NEURONS

- Active Dendrites improves performance of

Artificial Neural Networks

= More energy efficiency (“Neural Network within
a neuron”), non-linear filtering

Heterogeneity in

= Heterogeneity Dendrites

= More computations/unit &, ;

= Better Connectivity and fan-in (3D
architectures)

= Scalable with CMOS+X approaches.

 Plastic Synapses Segev, Nature 1998

* Learning Mechanisms

_ Analog devices
Synaptic Inputs W)

w2 Raial and circuits well
Vmembrane ——M—/— M suited to model

dendrites
&% % efficiently in
hardware.

DENDRITE CABLE 12


https://github.com/SLAM-Lab/SANA-FE

COMPUTATION USING THE DENDRITES

Dendrites are not just wires!

- Over 70% of the neuron’s volume (Stuart . b c
2016) 7

- Great diversity of dendrites within a single A
brain and across animal species.

* Insights from neuroscience are
foundational to the pursuits of
neuromorphic computing.

- Biological dendrites are known for their
complex physical structures that
incorporate significant fan-in (~10,000
inputs).

Segev, Nature 1998

13



DENDRITIC TOOLKIT FOR COMPUTATION AN

A @ ¥
Dendrites are tree-like structures that connect neur "7 3 ,\K /
s ; : :’»’1 SN
: : : AAK N .
- Dendrites are not just wires! M\ %y Dendrites
« They can perform interesting computation like: 77RN
* Coincidence Detection Increased Connectivity and
= Current Summation Computation
= Directional selectivity Viren . wn MW - z:{ceitsci)srtgirrcuit
. . 1 J1 J1I°P
= Non-linear filtering —
Rieak Cleak
= Amplification of Synaptic inputs
Vaxial Dendrites using

London 2005, Poirazi 2020 4 R 4 4 Transistors
Vmem ] axia [

Vieak —of — — — —_
Rleak Cleak




NEUROMORPHIC ARCHITECTURES WITH DENDRITES

Dendrites have been modeled to different degrees in neuromorphic hardware.

Active Dendrites with Calcium and NMDA channels:
H (o BrainScales

|
I
°

Floating-gate based active dendrites: Georgia Tech Neuron
Chips

Dendrocentric Learning with mult-gate FeFETS (Boahen 2020)

DenRAM: Dendrites with Resistive RAM (Payvand 2024)

Gate 1

| ) (|

| P -

3 @

- | /N IR FONNAC] RN RN (TR § ¥}

riif

TS =59 o
—u Network

RARARARMRAPAR I
VRNV VE VRARREY

IN, "
Hodgkin Huxley NN i 9] _Lg,)u
Neurons with ) | . TSI -5 Neuron
Active Dendrites Sourceor cra Sermiconductr
Ramakrishnan, 2013 NanoDendrite Proposed Dendrite DenRAM with RRAM

Multi-gate FeFET 3D Architecture dendrites
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ACTIVE DENDRITES

Using shunting inhibition for gain modulation

/\ Excitatory
l Input
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DENDRITES FOR DIRECTION SELECTIVITY

Experimental Demonstration using analog circuits

Dendrite Circuit FPAA 2.9V
e ™~
. e rCS® 1]
........... w 02O 1]
AL i o OS® 1]
OV i GO | 1
\ L / | Null ™

270°

Parker et. al IEEE
ICONS 2024



DENDRITES FOR DIRECTION SELECTIVITY

Dendrites for pattern and velocity estimation

—_—
—_—
—_—

Super-Pixel

'-:_'-I

| 7

i S P L

A i

i : w22
FiEiE i 21

HE : W

Pl 1

CLar ] o,

kT X

Pl

':-.--.--.:_-.--.--.--.--.--.--.--.--.--'.--.--.--.--.--.--.-
1

%
--.--.--.:-:-.--.':-.--.--.--.--.--.--.--'.--.--.--.--.--.--.-

L
]

e e e e e e L oty

e L e e L e e e e L Lo
N T e T e e A LT LT A
o

I.-I.-I.-.I-.-I.-I.-I.-ll-.l-.l-.l-.l-.l.-.l-.l-.l-.l-.l-.l-.l-.l-.l-
a:

1 wnl wn2 wn3

@ 4 Q) @
1

— m— - — —

Image Sensor Feature Complex
(NXM pixels) Extraction Features



DRAGONFLY WITH DENDRITES

Using shunting inhibition for gain modulation

Cardwell et al. In Review

Sensorimotor
Dendrites

Sensorimotor Motor
Neurons Neurons

*- Prey
-©- Orginal Dragonfly Network

_6_Dragonﬂy with Dendrites and
Pruned Connections to Motor

I(x)
fi R
o(y) (x)g(y) s¥) Y
|(r?trﬁlcr;alti%rr?%?rncﬁ¥t Dragonfly NN with Comparison with original
P Dendrites interception circuit

(Chance 2020)
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CO-DESIGN IS CHALLENGING

Software tools are critical for design and co-optimization

Application/ System Architecture
Algorithm Design Design
4 ) 4 )
pnnnns
o Q)
gnnnnn
- J - J
~ . ~
J Codesign K
[ | Prog. Circuits [ \ [
. -
UEIBEF3 e
I |E[ezz2a] O/
- J -

Circuits/ System Design Materials/Device Design
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DENDRITES IN SPIKING NEURAL NETWORKS

Comparing networks with LIF and LIF +Dendrites

256 / 16 Signals to LIF Neuron

(@) e g e
. [ \ 5 MSE Of LIF and Dendritic
P c
'g Broadcast OUtpUtS Neuron /Me/mb\rane Potential¥ g Networks
) 2 g 0.0600
»| Neuron ? 0.0529
Hidden Layer
0.0500
0.0400
16 Signals to LIF Neuron
e 0.0300
D1e—» HF o 0.0200
1T O
y O Membrane | o
=1 D16 —> ! :é’_). S _ Potential o 0.0100 S
S — Broadcast LIF ———a» Output ~.Y 0.0021 0.0031 0.0032
= i -2 Neuron = ' Q0NN
16 Chains » .8 g,_ 0.0000 I — /= I
: ) > - -
D16—> |;|g L T ) MSE - SQRT MSE - MISH
N \1/ ! W 256 Hidden LIF m 16 Hidden LIF  m 16 Hidden Dendrite LIF
Hidden Layer 21



DENDRITE ENABLED SPIKING NEURAL NETWORKS

Leveraging inherent properties of dendrites

Implemented a “Dendrite Pooling
Layer” for use in ANN

Trained ResNet18 on CIFAR-10 for

= ResNet + Dendrite layer took
significantly longer to train

= Simplified ODE layer adds state
2nd 100ps Pooling Layer Hardware

Digital Nvidia Jetson 504.41 uj
Dendritic pooling 0.265 uJ

3x3 Conv, 256

3x3 Conv, 64
3x3 Conv, 512
3x3 Conv, 512

Found accuracy to be comparable

Dendritic pooling has potential in
ANNs

Plagge et al., IEEE ICRC 2024
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DENDRITE ENABLED SPIKING NEURAL NETWORKS

* Implemented Torch library with a dendritic chain =

= Simplified version of the complex ODE Lambda  “Spatial” constant:
dendrite solution. Represents Distance
= Wrapped dynamics into a set of constants Tau “Temporal” constant:
and parameters. Capacitance and Resistance
_ o Leak Signal loss for each tap
» Dendrites support SNNTorch & Non-Spiking
Input Increases or Decreases

[orch. i
Weight
* Provides a trainable 1-D chain of dendrites

signal strength

fl £2 Vaxial
H 0 rdwa e .A_ Roaxial _&
Constraints Vmembrane 1 =
Dy 4—>§ D, 2.0 | N |
Vieak —d |: — —o |: —
Dllk DQZk Lea rned Rieak Cleak
Parameters . :

Plagge et al., IEEE NICE 2024
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CHALLENGE: NOVEL CODESIGN TOOLS

SANA-FE: Specialized tool to explore novel neuromorphic architectures

H F{Eal:)i(j t&l Easst:ir1ﬂléat:ee F)€3|f1:()lﬂr1ﬂléa'ﬂlc:ea c)f: !i“l\t“":‘;: S;iITTllICItiTTQ{A/|¢1|/¢1I1¢:€?¢1'l\’é?ll’12’71()f19l1i(f
: : : Architectures for Fast Exploration
neuromorphic architectures for design-

space exploration
Architecture Description

= General & extensible spiking H/W simulator _
Simulator Kernel
. . ui architecture Ej[j Ej[:
= Model functional behavior & track tnitiatise necwork 00 M 00
performance vty
for all tiles:
= Schedule messages & intra-core interactions * process meaon Mapped Spiking Neural
send messages etwor
= Calibrate simulator to real-world systems write results
= Accurately predicts latency & energy of
gesture categorization spiking neural
network (SNN)

J. Boyle et al. ICONS 2023

24



© 2024 A.Gerstlauer

DVS GESTURE RECOGNITION APPLICATION

,_
=
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* Predict energy & performance for larger real- ~~ mmesgemies e
. . . incoming events
world neuromorphic applications N

= SNN trained on DVS gesture data-set [Massa'20]
= 18,678 neurons across 6 layers

= Mapped to 45 Loihi6%0res out of 128

i = Measured on Loihi
50 3 — — SANA-FE predictions
40 4 === Event-based predictions !

. ‘ .
30 . H l 3 Ir1|
- ! ‘ : ' | ' . ‘ =Y .' A l ol
| | lvv W‘v‘ v" {\ l"\q ol A N

20 - ! .
1 N ISR

10 = 'w\\“f\\
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1 2 3 4 0 20 40 60 80 100 120
Simulated Energy (uJ) Time-step

Measured Energy (uJ)
N
|

Time-step Latency (us)
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© 2024 A.Gerstlauer

DVS GESTURE DESIGN SPACE EXPLORATION

+ Design-space exploration using DVS gesture application

= Loihi-based designs, traded-off core count (c) vs neurons per core (n)

6

= Optimum design had 170 cores, 21% faster than Loihi (128 cores)

= Design-space sweep took 29 s

0.5
frame accumulation  Ayerage = 04 _E W Energy -8 &
o Pooling e U4 3 B Latency - £
incoming events = . o 6 ©
o 3 0.3 = - E
@ . - E‘
D 0.2 2 . 2
Doy L 2 0.1 - - 2 lg
\time)‘ A_Channels 0.0 _: o 0
Image reproduced from [Massa,'20] 6’(\7 — &0.7 4'6% 6\}(\7 66(\7

M\ 'I- (\
R A Q2 o or
A0 o A T 40 Cr C o
RSN CAl LN LN 2507 o

Design Configuration
26



© 2024 A.Gerstlauer

SIMULATOR SPEED RESULTS

- Compared to existing discrete-event based spiking simulator

(NeMo)
% 25
o 9.2 B NeMo
S 20 19. | mm SANA-FE
o
GJ
E 15
3 10
)
5
o 2.1
£ 0.1 7%
32/8k 64/16k  128/32k  256/64k  512/128k 1024/256k

TrueNorth Core Count / Total Neurons

® Simulating IBM TrueNorth architecture
©® Randomized SNN with 80% of spikes intra-core, 20% spikes between cores

> Over 20x faster than NeMo for 1024 cores 'IW'

27



DENDRITES IN NEUROMORPHIC ARCHITECTURE

 Further develop links with Dendrite-SNN

hardware simulations - SanaFe >anafe - Hardware Simulator

- Work on a spiking self-attention network

with dendrites: E -;.-=;'-_f:= E
- Dendritic attention layer (Temporal e N
coherence and context) “a"a el En""E 8 __an*"s T
- Dendritic pooling layers (More efficient erthala % b foaassl
summary layer) — Ly ey K
- Other compelling network designs E BN B B
» Release as stand-alone library or as
SNNTorch add-on An in-progress tool to estimate timing

and energy of neuromorphic systems.
Currently supports Loihi.
Analog components are WIP

28



HETEROGENEOUS ARCHITECTURES

Embracing Heterogeneity

« Move past general-purpose
solutions and only use them for

prototyping

- Heterogeneous and
reconfigurable systems

+ Get the best performance based
on system needs.

-+ System designed with application
in mind for optimization

- Near-sensor processing

Computational

Efficiency

Neuromorphic

Computing Emerging
Heterogeneous Memory
Architectures
Powerwall (10GMAC/Watt) -~ ___.

CPUS GPUs

Conventional = =

Digital Systems = =

==

Time

‘Truly Heterogeneous Computing’,
Cardwell et al., SMC 2020

29



APPLICATION SPECIFIC SOLUTIONS

We are in the “golden-age of computer architectures” - Patterson

- NI EEE EEN EEN EEN EEN EEN EEN EEN EEN EEE EEN EEN EEN EEN EEN EEN EEN EEN BEN EEN NN BEN BEN SEN NEN NN NN MEN GEN BN NN NN NN BN BN BN NN NN BN BEN GEN BN BN BN BN BN BN NN BN BN BN M BN BN BN BN B MEN BN BN BN B NN M M M ey,

I, Global Optimization N\
AV
: @aterial/ Device/ Circuit Design System/ Architecture Design Application/Algorithm Desigr> I
|
|
==k 4 (OO0 ~ N
| T ‘) D [ G0 el «)9. :
| - - | Ny o |
| 0806000 — - = ‘.--—""' ¥ 4 I
: Local Optimization BD=4-4-6-4-4-0- 0 = E = I
I \ \ nnnnnn :
\ Al-GUIDED FULL-STACK FRAMEWORK )

1. Cuietal. arXiv 2024

2. Karki et al. Journal of

Materials Research 2024 30



PROBABILISTIC NEURAL SYSTEMS: COINFLIPS

CO-DESIGN APPROACH ON NEW

§§E' INSPIRATION/MOTIVATION

We have deterministic computing
covered...We need probabilistic
computing technologies

Every synapse in the
brain is a stochastic

“coinflip”

ENERGY-EFFICIENT MICROELECTRONICS

Co-design is proving invaluable in developing a
novel paradigm for microelectronics

175}
-d
S.
=8
i
< W
=\

SOISAHA

RESEARCH THRUST AREAS

COINFLIPS

Probabilistic Neural
Theory & Algorithms

Particle Physics .
Tunable Stochastic

Demonstration g
Devices

Probabilistic
Circuits &
Architectures

OBJECTIVE: Leverage stochasticity in computing by exploiting the underlying physics of emerging
random number generator (RNG) devices to build probabilistic neural architectures.

Collaborators: NYU, ORNL, Temple University, UT-Austin and UT-Knoxville, USA
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TRUE RANDOM NUMBER GENERATION (TRNG)

APPLICATION: HIGH ENERGY PHYSICS RNG TODAY

+ Current PRNG Methods take 40—50% of [ﬂh]h:/\‘ " Expensive

CPU compute time.

Desire Non- Umform Accept / Reject

» TRNGs leveraging stochastic devices can

Draw Umform
lead to significant energy and latency [[[i]]:h
savings.

Sample Non-Uniform

Detector response

. R COINFLIPS APPROACH

/ v,
- [ﬂ]]]]:h/\ Efficient

Q<— —®
Desire Non- Umform O O OO

@ L —J v e B I:[| Flip Biased Coins /\é¥
Hadron Detector

Pierog et al., Phy Rev. 2022

Sample Non- Umform .
Misra et al., Adv. Materials 2022
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Al TO ACCELERATE CODESIGN FOR EMERGING COMPUTING

Al-Guided Tools a force multiplier for large design space

Application/ System Architecture
. Computing demands are Algorithm Design Design
constantly increasing. 4 A 4 TIIIL A
: . . \ ~—~ = =
- Emerging computing techniques .. K() EEE
can alleviate these challenges. = ——
. . \_ J \ J
* However, the design space is ey . Py
huge and optimization is needed J ‘(‘:';g:;?ge:
across the stack.
. . [ [ Prog. Circuits | \ r
* Al-guided techniques can f || EE== —
alleviate these challenges. §§ K()
\ . \

Misra et al., Adv. Materials 2022 Circuits/ System Design Materials/Device Design .



Al-GUIDED METHODS FOR EMERGING COMPUTING

EVOLUTIONARY OPTIMIZATION REINFORCEMENT LEARNING

 Evolutionary algorithms -« Trains agent to make optimal decisions in
an environment to maximize rewards.

= LEAP: Library of Evolutionary Algorithms

in Python = Agent trained on PPO policy
= EONS: Evolutionary Optimization for = Environment: Physics-based Device
Neuromorphic Systems model
Random Ordered Population . ACTIONS
nitialization i opulation @
Q Materials Parameters
2
R
V5 i AGENT/POLICY ENVIRONMENT
PPO MTJ Models
Metrics of Interest
REWARDS

Other Al Approaches: Physics-aware machine learning, Generative Al, Neural ODEs

34



EA FOR CIRCUITS: MULTI-OBJECTIVE OPTIMIZATION

FITNESS FUNCTION

2 2
fw,p1,p2,91,92) = W1KL(p1,P2, q1,92) + wz(lei —0.5] + Zlqz — 0.5]) + W3EN (p1,02,91,92)

KL Divergence

i=1 1=1
Kullback-Leibler Difference of weight Energy of a
Divergence from a fair coin coinflip
MT]-SHE Device Model _ MTJ-SHE Device Model 0,008 MTJ-SHE Device Model -
013 ¢ 7000 0.12 | 0007 0.12 - 45
6000 40
0.10 - 010 0006 010 4
5000y u 35
0.08 2000 E"J % 0.08 0.005 E, % 0.08 10 E.
0.06 1 l - é 0.06 1 0004 E % 0,06 | l 25 £
0.04 - 2000 0.04 p.oo3 0.04 1 15
0.02 1 1000 0.02 - et | NP . noo 0.02 - G ® | NS . 1o
600 601 602 603 604 605 600 601 602 603 608 605 500 601 602 603 604 605
Energy Usage le-13 Energy Usage le—-13 Energy Usage le—-13
SHE: Spin Multi-objective optimization of weights w1, w2, w3 for optimal  Cardwell etal,
Hall .Eﬁ‘l"oect KL divergence and energy usage of MTJ-SHE devices 138 5I0C 2
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REINFORCEMENT LEARNING FOR DEVICE CODESIGN

Discover best device and material characteristics for TRNG

Device « RL agent trained using PPO policy to find best device
Check and material configuration.
ACTIONS  Device validity checked.

m - Best configuration found normalizing for energy and

Materials Parameters .
KL-divergence.
AGENT’POLICY ENVIRONMENT \ PDF Comparison (w/ Normalizatioi ——
PPO MTJ) Models 0.010 - ‘\ --- Expected PDF

Rewards Based on 0.008 -
Metrics of Interest Metric Best config

Ener 2.568x1014 0.006
REWARDS gy (J) X

K 0.0532
Divergence

Normalized

0.004

Metrics: Energy,
KL Divergence 00021

Cardwell et al., IEEE ISCAS 2024 0 % 100 150 200 250

Generated Number
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DEVICE PERFORMANCE TRADEOFFS

TRAINING RL AGENT BENCHMARKING TRNGS

- Agent had to balance both energy and KL- « Comparing CMOS pRNG, tRNG, memristor
divergence for optimization which seemed tRNG and MTJ tRNG
to have an inverse relationship.

- Reward schema is extremely important. Tudr ‘ ,(\:,,'rn?ﬁsto,

- MTJ-based

le—12

-6

Energy/bit
IEVEEE]

N
KL Divergence

=3
©
e
T

2g0esn

Energy (Joules)
o — N
{

i - Faster ogerationI

Y 1 L i n N 1 ]
Time Steps 1kHz TMHz 1GHz
Bitrate

Energy and KL-Divergence
Cardwell et al., IEEE ISCAS 2024 Maicke et al., IOP Nano 2024
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NEXT-GENERATION NEUROMORPHIC ARCHITECTURES

Re-think how we design computer architectures

We need more dynamics and complexity per
computational unit.

Leverage Stochasticity as a feature not a bug.

We need systems that do not just process,
but can learn, adapt and reconfigure.

Novel integration: 3D architectures, wafer
scale etc. for scaling and dense connectivity

Many areas where neuromorphic can have
impact from HPC to edge.

Codesign tools can accelerate design space
exploration and lead to creative solutions.

Al/ML
Edge
(ANN, SNN) Computing

N
e

Brain-Inspired High Performance

Algorithms Computing
a
E’é%
Scientific Probabilistic

Computing Computing
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AlTRENA

(ANALYTICAL TOOL TO EVALUATE HETEROGENEQUS

NEUROMORPHIC ARCHITECTURES)

= ATHENA will quickly

evaluate performance [

Input problem description, Hardware configurations

)
J

metrics of analog
architectures

Analytical [

Tools

(Approximate [
Modeling)

= Developed as part of a
larger ecosystem

— Tools to enable next-
generation hardware design

. Cycle-A t
orototyping ycle-Accurate

_______ ~ Mapping
] | ATHENA |
_\
| Cost Model ‘
ASIT
] ‘[_ S— l[_ —— _,*‘ﬁnosssm |__ T
ATHENA-SST
T T T T TR it R Integration Tool
| I-ﬁ Structural Simulation | niegration 100
| Toolkit I
e D |

o o o O T T S S S S S e e e .

Plagge et al., International Conference on

Tools
Digital Accelerators Novel Computing
raé.r-;
Hardware ﬁ TEE.E _-——
Backend — v]\}hji
Leillzr Neuromorphic Analog/ o

Accelerator Beyond- CMOS

Rebooting Computing (ICRC) 2022
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-ATHENA — HARDWARE PERFORMANCE

Energy (pJ)

Hardware
[ | SONOS Tile
I Eyeriss Accelerator
[ | NVDLA Like
I Memris istor-Based Crossbar

Shufflenet v2 AlexNet Inception v3 DenseNet 201
Network

Plagge et al., International Conference on
Rebooting Computing (ICRC) 2022

)
AsSC

ATHENA was used to compare
the performance of multiple
hardware devices against
various deep learning networks

The SONOS tile-based
architecture performed well
across networks, with one
notable exception: the Inception
v3 network

This performance difference
could be explored - showing
ATHENA's potential for codesign
work



ANN NETWORK APPLICATIONS - RESNET18

Working with a graduate student intern at SNL

Implemented a “Dendrite Pooling Layer” for use in Al
ML

Replaced traditional pooling layer with Dendrite Layer

Trained ResNet18 on CIFAR-10 for 300 epochs

— ResNet + Dendrite layer took significantly longer to train

— Simplified ODE layer adds state and loops

Found accuracy to be comparable

— Dendritic pooling has potential in ANNs

CIFAR10: ResNet18 / DendNet18
Accuracy
300 Epochs

0.850123763 0.847032726

DendNet Validation Accuracy ResNet Validation Accuracy

Working with Priyam Mazumdar
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ML NETWORK APPLICATIONS - RESNET18

= ResNet18 - Was slower to train with a dendritic layer

— In hardware however, dendrites will be highly efficient

= Rough estimate of efficiency based on
— Energy = C(Vpem — Ek)Vyq = 500f]
o C=10pF
o Vyu=2.5V
o Viem — Ek = 100mV

Pooling Layer on Digital Nvidia Jetson 504.41 Micro Joules

Dendritic pooling 0.265 Micro Joules

— Nvidic

Rodrigues, Crefeda Faviola, Graham Riley, and Mikel Lujén.
"Energy predictive models for convolutional neural networks on mobile platforms.”
arXiv preprint arXiv:2004.05137 (2020).
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