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MODERN COMPUTING LANDSCAPE

DIGITAL 
COMPUTING

ANALOG 
COMPUTING

• Discrete-valued

• Deterministic

• High-Precision

• Simple(r) building blocks

• Continuous-valued

• Stochastic

• Lower-Precision

• Complex building blocks 
(neurons)

CPU, GPU, FPGA Brain , FPAA
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SINGLE NEURON COMPLEXITY

Biological Neurons have rich dynamics
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ENERGY CONSUMPTION OF MODERN AI SYSTEMS

4

1T
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Neuromorphic Computing gives a path forward for power 
efficiency scaling and meeting future computing needs.  



Functionality

• Solves ill-structured problems with little training

• Online learning

• Transfer learning

• Continual learning

Attributes

• Computational Memory/In-memory computing

• More complexity and computation/ single unit

• Self-organizing/ Reconfigurable

• Spiking/event-driven communication

• Sub-threshold computation

• Stochasticity as a feature 

• Dense local connectivity

• Massively parallel computation
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NEUROMORPHIC COMPUTING

TAKING INSPIRATION FROM BRAINS

1MMAC/(s)/p
W

1MMAC/(s)/mW

Single 
Neuron

Average 
CPU

Human 
Brain

Hasler 2016
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NEUROMORPHIC COMPUTING

Varied solutions proposed spanning digital, mixed-signal and beyond-CMOS

DIGITAL CMOS ANALOG/ 
MIXED-SIGNAL

CPU, GPU, FPGA NVM, Analog, Sub-
threshold

BEYOND-CMOS

Memristors, 
FeFETs, MTJs etc.

• Scaled to 1.15 B/ 2B 
neurons

• Deterministic

• High-Precision

• Scaled to 1 M

• Analog/ Stochastic

• Low-Precision

• Large focus on in-memory 
computing

• Analog/ Stochastic

• Low-precision

• Integration with CMOS
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NEUROMORPHIC BUILDING BLOCKS

Neuromorphic offers computational richness

In-memory Computing
With Synapses

Sensory Processing

Silicon Retina/ Event Sensor
Silicon Cochlea etc. 

Scientific 
Computing

AI/ML 
(ANN, SNN)

Brain-Inspired 
Algorithms

Edge 
Computing

High Performance 
Computing

Neural Processing

Dendrites, Learning, 
Multi-modal 

APPLICATIONS
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NEUROMORPHIC SUPERCOMPUTER

Neuromorphic systems with billions of neurons

• SNL hosts Intel’s Hala Point, which utilizes the 
Loihi 2 chips to realize one of the largest 
neuromorphic supercomputers in the world. 

• 1.15 Billion neurons and trillions of synapses 
with a total power consumption of only 2600 W

• The Hala Point system incorporates 1,152 Loihi 2 
processors, each of which can simulate a million 
neurons. 

• Capable of 15 TOPS-per-watt at 8-bit precision 
and does not require extensive data-processing 
or batching in advance.



Key attributes we need:

• Increase complexity to get more 
computational/unit

• Leverage stochasticity as a feature

• Scalability and Complexity

• Codesign across scales

• Software tools for Codesign

• Application specific Solutions

• Design of Heterogeneous 
Architectures
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NEUROMORPHIC COMPUTING FOR PERFORMANCE

Next-generation Neuromorphic Architectures for HPC and Edge

BRAINS

AI/ML with

CONVENTIONAL

DIGITAL
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OPPORTUNITIES 
IN 

NEUROMORPHIC 
COMPUTING
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• We need to increase computational 
efficiency as well as computational 
density for neuromorphic systems.

• We can improve the complexity of a 
single neuron.

• Novel devices and materials can help 
bridge this gap but codesign is a 
challenge.
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SCALABILITY VS. COMPLEXITY 

NEUROMORPHIC COMPUTING NEEDS BOTH!

Scalability (# of Neurons)

Intel Loihi

100 Million neurons

IBM TrueNorth

1 Million

NeuroGrid 

1 Million Neurons

Dragonfly Brain

1 Million Neurons

Mouse Brain

100 Million Neurons

Human Brain

(100 Billion)
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with dendrites

Intel Hala Point 

(Loihi 2)

1.15 Billion neurons

Biological neurons have rich 
dynamics and a lot more 

computational power.



SIMPLE NEURONS
• Simpler neuron models requires larger neural 

networks.

▪ Power hungry ANNs

▪ Inefficient scaling

▪ Inefficient hardware implementations

▪ Focus only on synapses and 

COMPLEX NEURONS
• Active Dendrites improves performance of 

Artificial Neural Networks

▪ More energy efficiency (“Neural Network within 
a neuron”), non-linear filtering

▪ Heterogeneity

▪ More computations/unit

▪ Better Connectivity and fan-in (3D 
architectures)

▪ Scalable with CMOS+X approaches.

• Plastic Synapses

• Learning Mechanisms
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DENDRITES IMPROVE COMPUTATION WITHIN A SINGLE NEURON

Our Current Research
• Dendrites supporting shunting Inhibition

• Pattern Recognition (NICE 2023, ICONS 2023)
• Direction-Selective (ICONS 2024)

• Software library for analog hardware-based 
dendrites (NeurIPS workshop, NICE 2023)

• DEND-NET: SNN with dendrites (Neuro IOP 2024 -
In Review)

• Neuromorphic Design Space Exploration with 
SANA-FE tool in collaboration with UT Austin.

Synaptic Inputs
Raxial

Rleak Cleak

Vmembrane

w1 w2 w3

DENDRITE CABLE

Segev, Nature 1998

Heterogeneity in 
Dendrites

Analog devices 
and circuits well 
suited to model 

dendrites 
efficiently in 
hardware.

https://github.com/SLAM-Lab/SANA-FE


• Over 70% of the neuron’s volume (Stuart 
2016)

• Great diversity of dendrites within a single 
brain and across animal species.

• Insights from neuroscience are 
foundational to the pursuits of 
neuromorphic computing.

• Biological dendrites are known for their 
complex physical structures that 
incorporate significant fan-in  (~10,000 
inputs).
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COMPUTATION USING THE DENDRITES

Dendrites are not just wires!

Segev, Nature 1998



• Dendrites are not just wires!

• They can perform interesting computation like:

▪ Coincidence Detection

▪ Current Summation

▪ Directional selectivity

▪ Non-linear filtering

▪ Amplification of Synaptic inputs

DENDRITIC TOOLKIT FOR COMPUTATION

Dendrites are tree-like structures that connect neurons synapses to its soma.

London 2005, Poirazi 2020

Increased Connectivity and 
Computation

Rleak Cleak

Vmem

Raxial

CleakRleak

Vmem

Vleak

Vaxial Dendrites using 
Transistors

Resistor 
Capacitor Circuit

Dendrites



• Active Dendrites with Calcium and NMDA channels: 
BrainScales

• Floating-gate based active dendrites: Georgia Tech Neuron 
Chips

• Dendrocentric Learning with mult-gate FeFETS (Boahen 2020)

• DenRAM: Dendrites with Resistive RAM (Payvand 2024)
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NEUROMORPHIC ARCHITECTURES WITH DENDRITES

Dendrites have been modeled to different degrees in neuromorphic hardware. 

Hodgkin Huxley 
Neurons with 

Active Dendrites
Ramakrishnan, 2013 NanoDendrite

Multi-gate FeFET
Proposed Dendrite 

3D Architecture

DenRAM with RRAM 
dendrites
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ACTIVE DENDRITES

Using shunting inhibition for gain modulation

peak input (A)

o
u

t 
(V

)

Shunt Input out

Excitatory 
Input

Raxial

Cleakage
Rleakage

Vmem

Vleakage

Vaxial



DENDRITES FOR DIRECTION SELECTIVITY

Experimental Demonstration using analog circuits

Dendrite Circuit

Parker et. al IEEE 
ICONS 2024

FPAA 2.9V
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DENDRITES FOR DIRECTION SELECTIVITY

Dendrites for pattern and velocity estimation

w11 w12 w13

w21 w22 w23

wn1 wn2 wn3

Image Sensor 
(NXM pixels)

…

Super-Pixel

Feature  
Extraction

Complex
Features
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DRAGONFLY WITH DENDRITES

Using shunting inhibition for gain modulation

Original Dragonfly 
Interception Circuit 

(Chance 2020)

Dragonfly NN with 
Dendrites

Comparison with original 
interception circuit

Cardwell et al. In Review
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CO-DESIGN IS CHALLENGING

Software tools are critical for design and co-optimization

Materials/Device DesignCircuits/ System Design 

Codesign

Application/ 
Algorithm Design

System Architecture 
Design



•
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DENDRITES IN  SPIKING NEURAL NETWORKS

Comparing networks with LIF and LIF +Dendrites

0.0021 0.0031

0.0529

0.0081

0.0011
0.0032

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

MSE - SQRT MSE - MISH

MSE Of LIF and Dendritic 

Networks

256 Hidden LIF 16 Hidden LIF 16 Hidden Dendrite LIF

256 / 16 Signals to LIF Neuron

16 Signals to LIF Neuron



• Implemented a “Dendrite Pooling 
Layer” for use in ANN

• Trained ResNet18 on CIFAR-10 for 
300 epochs

▪ ResNet + Dendrite layer took 
significantly longer to train

▪ Simplified ODE layer adds state 
and loops

• Found accuracy to be comparable 

• Dendritic pooling has potential in 
ANNs
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DENDRITE ENABLED SPIKING NEURAL NETWORKS

Leveraging inherent properties of dendrites

Plagge et al., IEEE ICRC 2024
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Pooling Layer Hardware Energy

Digital Nvidia Jetson 504.41 uJ

Dendritic pooling 0.265 uJ



DENDRITE ENABLED SPIKING NEURAL NETWORKS

• Implemented Torch library with a dendritic chain

▪ Simplified version of the complex ODE 
dendrite solution.

▪ Wrapped dynamics into a set of constants 
and parameters.

• Dendrites support SNNTorch & Non-Spiking 
Torch.

• Provides a trainable 1-D chain of dendrites

23

Value Type

Lambda ”Spatial” constant:
Represents Distance

Tau “Temporal” constant:
Capacitance and Resistance

Leak Signal loss for each tap

Input 
Weight

Increases or Decreases 
signal strength

Learned 
Parameters

Hardware 
Constraints

Plagge et al., IEEE NICE 2024



▪ Rapidly estimate performance of 
neuromorphic architectures for design-
space exploration 

▪ General & extensible spiking H/W simulator

▪ Model functional behavior & track 
performance

▪ Schedule messages & intra-core interactions

▪ Calibrate simulator to real-world systems

▪ Accurately predicts latency & energy of 
gesture categorization spiking neural 
network (SNN)

24

CHALLENGE: NOVEL CODESIGN TOOLS

SANA-FE: Specialized tool to explore novel neuromorphic architectures

SANA-FE: Simulating Advanced Neuromorphic 
Architectures for Fast Exploration

J. Boyle et al. ICONS 2023

Simulator Kernel

build architecture

initialize network

for all timesteps:

get external inputs

for all tiles:

for all cores:

process neuron

send messages

write results

Configuration & Input Spikes
Architecture Description

Performance Estimates

Mapped Spiking Neural 

Network



DVS GESTURE RECOGNITION APPLICATION

© 2024 A.Gerstlauer
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Image reproduced from [Massa,’20]

• Predict energy & performance for larger real-
world neuromorphic applications

▪ SNN trained on DVS gesture data-set [Massa’20]

▪ 18,678 neurons across 6 layers

▪ Mapped to 45 Loihi cores out of 128



DVS GESTURE DESIGN SPACE EXPLORATION

• Design-space exploration using DVS gesture application

▪ Loihi-based designs, traded-off core count (c) vs neurons per core (n)

▪ Optimum design had 170 cores, 21% faster than Loihi (128 cores)

▪ Design-space sweep took 29 s

26

© 2024 A.Gerstlauer

Image reproduced from [Massa,’20]



© 2024 A.Gerstlauer
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SIMULATOR SPEED RESULTS

• Compared to existing discrete-event based spiking simulator 
(NeMo)

 Simulating IBM TrueNorth architecture
 Randomized SNN with 80% of spikes intra-core, 20% spikes between cores

➢ Over 20x faster than NeMo for 1024 cores



• Further develop links with Dendrite-SNN 
hardware simulations – SanaFe

• Work on a spiking self-attention network 
with dendrites:

• Dendritic attention layer  (Temporal 
coherence and context)

• Dendritic pooling layers (More efficient 
summary layer)

• Other compelling network designs

• Release as stand-alone library or as 
SNNTorch add-on

28

DENDRITES IN NEUROMORPHIC ARCHITECTURE

An in-progress tool to estimate timing 
and energy of neuromorphic systems. 

Currently supports Loihi. 
Analog components are WIP

SanaFe – Hardware Simulator



• Move past general-purpose 
solutions and only use them for 
prototyping

• Heterogeneous and 
reconfigurable systems

• Get the best performance based 
on system needs.

• System designed with application 
in mind for optimization

• Near-sensor processing

29

HETEROGENEOUS ARCHITECTURES

Embracing Heterogeneity

‘Truly Heterogeneous Computing’, 
Cardwell et al., SMC 2020
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APPLICATION SPECIFIC SOLUTIONS

We are in the ”golden-age of computer architectures” - Patterson

1. Cui et al. arXiv 2024

2. Karki et al. Journal of 
Materials Research 2024 

1
1

2
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PROBABILISTIC NEURAL SYSTEMS: COINFLIPS

OBJECTIVE: Leverage stochasticity in computing by exploiting the underlying physics of emerging 
random number generator (RNG) devices to build probabilistic neural architectures. 

Collaborators: NYU, ORNL, Temple University, UT-Austin and UT-Knoxville, USA



APPLICATION: HIGH ENERGY PHYSICS

• Current PRNG Methods take 40—50% of 
CPU compute time. 

• TRNGs leveraging stochastic devices can 
lead to significant energy and latency 
savings. 

RNG TODAY

32

TRUE RANDOM NUMBER GENERATION (TRNG)

Pierog et al., Phy Rev. 2022

COINFLIPS APPROACH

Expensive

Efficient

Misra et al., Adv. Materials 2022



• Computing demands are 
constantly increasing.

• Emerging computing techniques 
can alleviate these challenges.

• However, the design space is 
huge and optimization is needed 
across the stack.

• AI-guided techniques can 
alleviate these challenges.

33

AI TO ACCELERATE CODESIGN FOR EMERGING COMPUTING

AI-Guided Tools a force multiplier for large design space

Application/ 
Algorithm Design

System Architecture 
Design

Materials/Device DesignCircuits/ System Design 

AI-Guided 
Codesign

Misra et al., Adv. Materials 2022



EVOLUTIONARY OPTIMIZATION

• Evolutionary algorithms

▪ LEAP: Library of Evolutionary Algorithms 
in Python

▪ EONS: Evolutionary Optimization for 
Neuromorphic Systems

REINFORCEMENT LEARNING

• Trains agent to make optimal decisions in 
an environment to maximize rewards.

▪ Agent trained on PPO policy

▪ Environment: Physics-based Device 
model

34

AI-GUIDED METHODS FOR EMERGING COMPUTING

Other AI Approaches: Physics-aware machine learning, Generative AI, Neural ODEs
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EA FOR CIRCUITS: MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization of weights ω1, ω2, ω3 for optimal 
KL divergence and energy usage of MTJ-SHE devices

𝑓(𝑤, 𝑝1, 𝑝2, 𝑞1, 𝑞2) = ω𝟏𝐾𝐿 𝑝1, 𝑝2, 𝑞1, 𝑞2 +ω𝟐(෍

𝑖=1

2

𝑝𝑖 − 0.5 +෍

𝑖=1

2

𝑞𝑖 − 0.5 ) + ω𝟑𝐸𝑁 (𝑝1, 𝑝2, 𝑞1, 𝑞2)

Kullback-Leibler
Divergence

Energy of a 
coinflip

Difference of weight 
from a fair coin

FITNESS FUNCTION

Cardwell et al., 
IEEE ICRC 2022SHE: Spin 

Hall Effect



• RL agent trained using PPO policy to find best device 
and material configuration.

• Device validity checked.

• Best configuration found normalizing for energy and 
KL-divergence.

36

REINFORCEMENT LEARNING FOR DEVICE CODESIGN

Discover best device and material characteristics for TRNG

Metrics: Energy, 
KL Divergence

Device 
Check

Metric Best Config

Energy (J) 2.568x10-14

KL-

Divergence
0.0532

Cardwell et al., IEEE ISCAS 2024



TRAINING RL AGENT

• Agent had to balance both energy and KL-
divergence for optimization which seemed 
to have an inverse relationship. 

• Reward schema is extremely important.

BENCHMARKING TRNGS

• Comparing CMOS pRNG, tRNG, memristor 
tRNG and MTJ tRNG

37

DEVICE PERFORMANCE TRADEOFFS

Energy and KL-Divergence

Maicke et al., IOP Nano 2024Cardwell et al., IEEE ISCAS 2024



• We need more dynamics and complexity per 
computational unit.

• Leverage Stochasticity as a feature not a bug.

• We need systems that do not just process, 
but can learn, adapt and reconfigure.

• Novel integration: 3D architectures, wafer 
scale etc. for scaling and dense connectivity

• Many areas where neuromorphic can have 
impact from HPC to edge.

• Codesign tools can accelerate design space 
exploration and lead to creative solutions.

38

NEXT-GENERATION NEUROMORPHIC ARCHITECTURES

Re-think how we design computer architectures

Scientific 
Computing

AI/ML 
(ANN, SNN)

Brain-Inspired 
Algorithms

Edge 
Computing

High Performance 
Computing

Probabilistic 
Computing



SGCARDW@SANDIA.GOV

39

THANK YOU!

Sandia National 
Laboratories

NEUROMORPHIC



BACKUPS

40



ATHENA 
(ANALYTICAL TOOL TO EVALUATE HETEROGENEOUS 
NEUROMORPHIC ARCHITECTURES) 

41

▪ ATHENA will quickly 
evaluate performance 
metrics of analog 
architectures

▪ Developed as part of a 
larger ecosystem

⎼ Tools to enable next-
generation hardware design 
prototyping

Digital Accelerators Novel Computing

Plagge et al., International Conference on 
Rebooting Computing (ICRC) 2022



ATHENA – HARDWARE PERFORMANCE

• ATHENA was used to compare 
the performance of multiple 
hardware devices against 
various deep learning networks

• The SONOS tile-based 
architecture performed well 
across networks, with one 
notable exception: the Inception 
v3 network

• This performance difference 
could be explored – showing 
ATHENA’s potential for codesign 
work

42

Plagge et al., International Conference on 
Rebooting Computing (ICRC) 2022



ANN NETWORK APPLICATIONS – RESNET18

▪ Working with a graduate student intern at SNL

▪ Implemented a “Dendrite Pooling Layer” for use in AI 
ML

▪ Replaced traditional pooling layer with Dendrite Layer

▪ Trained ResNet18 on CIFAR-10 for 300 epochs

⎼ ResNet + Dendrite layer took significantly longer to train

⎼ Simplified ODE layer adds state and loops

▪ Found accuracy to be comparable 

⎼ Dendritic pooling has potential in ANNs

43

0.850123763 0.847032726

DendNet Validation Accuracy ResNet Validation Accuracy

CIFAR10: ResNet18 / DendNet18 

Accuracy

300  Epochs

Working with Priyam Mazumdar



ML NETWORK APPLICATIONS – RESNET18

▪ ResNet18 – Was slower to train with a dendritic layer

⎼ In hardware however, dendrites will be highly efficient 

▪ Rough estimate of efficiency based on 

⎼ Energy = 𝐶 𝑉𝑚𝑒𝑚 − 𝐸𝑘 𝑉𝑑𝑑 = 500𝑓𝐽

o C = 10pF

o 𝑉𝑑𝑑=2.5V 

o 𝑉𝑚𝑒𝑚 − 𝐸𝑘 = 100mV

⎼ Nvidia Jetson values from Rodrigues, et. al

44

Pooling Layer on Digital Nvidia Jetson 504.41 Micro Joules

Dendritic pooling 0.265 Micro Joules

Rodrigues, Crefeda Faviola, Graham Riley, and Mikel Luján. 
"Energy predictive models for convolutional neural networks on mobile platforms."

arXiv preprint arXiv:2004.05137 (2020).
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