

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

SANDIA REPORT

SAND2025-10874

Printed August 2025

Sandia
National
Laboratories

User Guide: A Curated Dataset of Regional Meteor Events with Simultaneous Optical and Infrasound Observations

Elizabeth A. Silber, Peter G. Brown*, Emerson Brown, Andrea Thompson, Vedant Sawal

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: <http://www.osti.gov/scitech>

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: <https://classic.ntis.gov/help/order-methods/>

ABSTRACT

This user guide supports a curated dataset of 71 meteor events recorded between 2006 and 2011 in Southwestern Ontario, Canada. Each event was simultaneously observed by ground-based optical cameras and an infrasound array, providing a rare opportunity to examine meteor trajectories and acoustic signals from the same atmospheric entry events. The dataset includes raw and processed optical data, meteor trajectories, photometric light curves, infrasound waveforms, and atmospheric specifications relevant for acoustic modeling. The archive is structured to support reproducible research in meteor physics, atmospheric acoustics, and shock wave analysis. It is organized following transparent file naming conventions and structured folders to facilitate scientific reuse, comparison, and integration across research domains. The dataset is freely available on Zenodo, doi: 10.5281/zenodo.15868512.

ACKNOWLEDGEMENTS

The authors acknowledge support provided by Sandia's Laboratory Directed Research & Development (LDRD) program, project number 229346.

This dataset is intended to support open, reproducible research in meteor physics, atmospheric infrasound, and planetary science. If you use any component of this dataset, please cite the Zenodo record (doi: 10.5281/zenodo.15868512) and associated publications listed in Section 8.

*PGB is affiliated with the Department of Physics & Astronomy, Western University, London, ON, Canada.

CONTENTS

Abstract	3
Acknowledgements.....	4
Acronyms and Terms.....	7
1. Introduction.....	9
2. Directory Structure Overview.....	10
2.1. Top-Level Directories:	10
3. Optical Data.....	12
3.1. Astrometry Raw Files	12
3.2. Astrometry Solutions.....	12
3.3. Light Curves	12
4. Infrasound Data	13
4.1. CSS3 Format.....	13
4.2. miniSEED Format	13
5. Atmospheric Profiles	14
5.1. G2S Atmospheric Specifications.....	14
5.2. Legacy Atmospheric Profiles	14
6. Timestamps and File Naming	15
7. Software Compatibility.....	16
8. Related publications.....	17
References.....	18
Distribution.....	20

LIST OF FIGURES

Figure 1. Diagram depicting the folder structure	10
--	----

This page left blank

ACRONYMS AND TERMS

Acronym/Term	Definition
CSS3	Center for Seismic Studies Version 3
CSV	Comma Separated Values
ECEF	Earth-centered Earth-fixed coordinate system
ELFO	Elginfield Infrasound Array
G2S	Ground-to-Space
HWM	Horizontal Wind Model
LC	Light Curve
miniSEED	A compact version of the Standard for the Exchange of Earthquake Data
NCPA	National Center for Physical Acoustics
PNG	Portable Network Graphics
SOMN	Southern Ontario Meteor Network
UKMO	United Kingdom Met Office
UTC	Coordinated Universal Time
WMPG	Western Meteor Physics Group
ZMILI	A file format

This page left blank

1. INTRODUCTION

Understanding the atmospheric entry of meteoroids and the associated generation of infrasound requires high-quality, simultaneous optical and acoustic measurements [1]. While many meteoroid events are detected globally by individual sensors or networks, few datasets exist where both optical and infrasound observations are available for the same events, particularly at regional ranges (<300 km) where acoustic waveforms retain source-specific characteristics.

This curated dataset [2, 3] addresses that observational gap by providing structured access to a comprehensive archive of 71 meteor events produced by \sim cm-sized meteoroids that were simultaneously detected by the Southern Ontario Meteor Network (SOMN) all-sky camera system [4-6] and the nearby Elginfield Infrasound Array (ELFO) [1]. These observations were collected between 2006 and 2011 during a coordinated campaign organized by the Western Meteor Physics Group (WMPG) at Western University in London, Ontario, Canada.

Each event in the dataset includes optical recordings, astrometric and trajectory solutions, and, in many cases light curve data characterizing the meteor's brightness profile. In parallel, infrasound waveform data were collected using ELFO and stored in both CSS3 (Center for Seismic Studies Version 3) and miniSEED (a compact version of the Standard for the Exchange of Earthquake Data) formats to ensure long-term compatibility. Two sets of atmospheric profiles are included: a legacy compilation based on models available at the time of initial analysis, including data from the UK Met Office (UKMO) [7] and the Horizontal Wind Model (HWM) [8], and a more recent set based on the Ground-to-Space (G2S) framework [9, 10].

This dataset is organized to support open, reproducible analysis. It is structured into well-documented directories, adheres to standardized naming conventions, and is compatible with commonly used research tools. It provides a foundation for the empirical evaluation of meteor-generated shock wave generation and infrasound propagation. In addition to supporting empirical studies, the dataset is well suited for methodological work involving acoustic signal detection, classification, and multi-sensor integration. It may also serve as a reference resource for planetary defense applications.

This user guide provides an overview of the dataset's organization and content, offering guidance on technical structure, file types, and usage considerations.

2. DIRECTORY STRUCTURE OVERVIEW

The dataset is organized into major subdirectories, each corresponding to a specific sensor type or data product: optical data, infrasound recordings, and atmospheric specifications. Within each of these, data are grouped by individual meteor events.

Each top-level directory (e.g., `/Optical_Data/`, `/Infrasound_Data/`, `/Atmospheric_Profiles/`) contains these timestamped subfolders for each event. The naming convention is consistent across all data types, allowing users to easily cross-reference data products associated with the same event.

`README` files are included in each main folder to describe the contents, file formats, and usage considerations for that data type. These provide documentation to support reuse of the data.

2.1. Top-Level Directories:

The dataset is organized into the top-level folders shown in Figure 1, each containing a distinct category of data products. A `README` file is included in each main folder to explain its structure, contents, and usage.

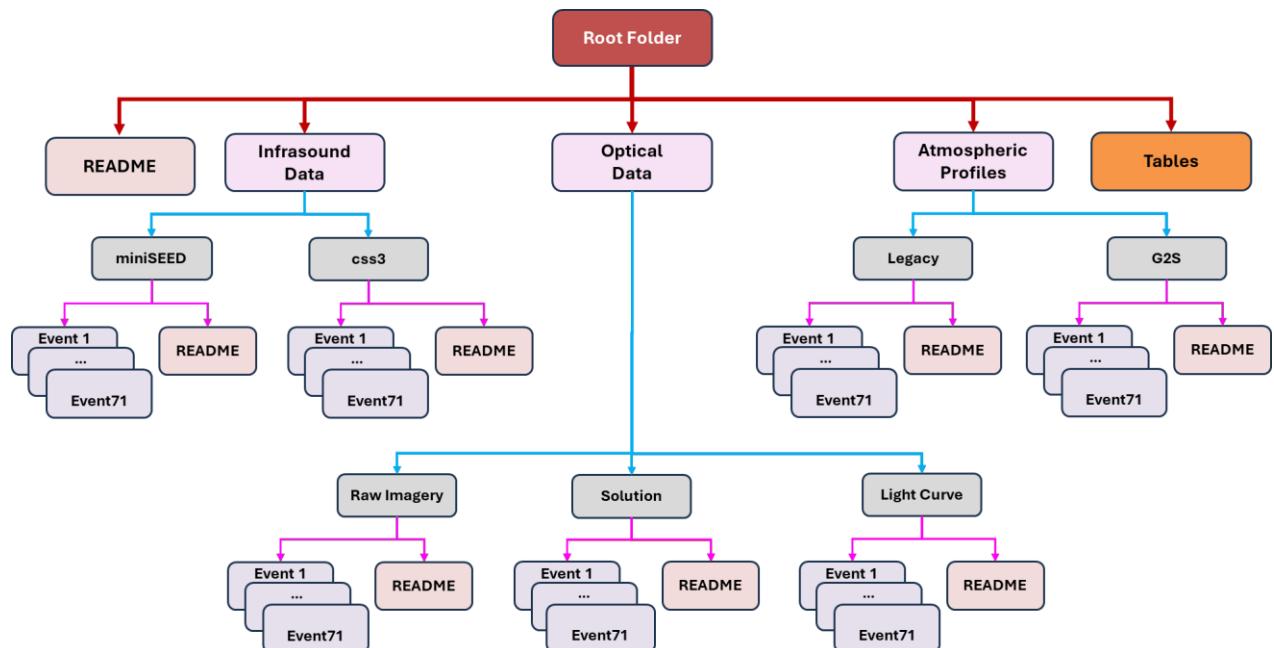


Figure 1. Diagram depicting the folder structure

A brief description of the folders is as follows:

- `/tables`: Summary tables with derived parameters for all events, including trajectory, acoustic arrival times, and energy-related information
- `/Optical_Data/Raw_imagery`: Raw optical imagery, plate files, and metadata from SOMN camera stations
- `/Optical_Data/Solutions`: Reduced trajectory and orbital solutions with supporting diagnostics

- **/Optical_Data/Light_Curves**: Published light curves with classification based on the meteor infrasound taxonomy proposed in Silber and Brown [1] (text and image formats)
- **/Infrasound_Data/Infrasound_CSS3**: Infrasound waveform data and metadata in CSS3 format (**.w**, **.wfdisc**, **.site**)
- **/Infrasound_Data/Infrasound_mseed**: Infrasound waveform data in **miniSEED** format (**.mseed**)
- **/Atmospheric_Profiles/Atmosphere_G2S**: High-resolution, event-specific atmospheric profiles in G2S format
- **/Atmospheric_Profiles/Atmosphere_Legacy**: Legacy profiles used in earlier analyses (text, CSV, and optional plots)

3. OPTICAL DATA

3.1. Astrometry Raw Files

Located in `/Optical_Data/Raw_imagery/`, this folder contains the original optical data captured during each meteor event. Files include raw video frames, still images, text logs, and plate solution files. These raw records support independent reprocessing and reanalysis of astrometric solutions.

Folder structure:

`/raw_files/yyyymmdd_hhmmss/`

File types include `.txt`, `.dat`, `.png`, `.avi`, `.m2v`, and `.plt`

3.2. Astrometry Solutions

Found in `/Optical_Data/Solutions/`, this directory contains the trajectory and orbital solutions derived from the raw imagery. Products include position vectors, velocity fits, trajectory reconstructions, orbital elements, and diagnostics.

Representative file types:

- `obs.dat` – raw vectors (ECEF format)
- `milig.txt`, `smets.txt` – trajectory/orbit solutions
- `zmili`, `ZMILI.DAT` – refined or final solutions
- `*.png` – diagnostic plots (e.g., residuals, timing, deviation)

3.3. Light Curves

Stored in `/Optical_Data/Light_Curves/`, this subdirectory includes calibrated light curve data (in `.txt` format) for a subset of events published in Silber et al. (2015), and normalized plots (in `.jpg` format) with infrasound source classifications:

- Green = cylindrical line source
- Red = fragmentation
- Yellow = indeterminate

Folders:

- `/LCs/` – raw light curve data (`ev*.txt`)
- `/figures/` – normalized plots (`*.jpg`)

4. INFRASOUND DATA

4.1. CSS3 Format

Located in `/Infrasound_Data/Infrasound_CSS3/`, this directory contains waveform recordings in CSS3 format. Each waveform file typically represents one hour of digitized array data starting from the time indicated in the filename.

4.2. miniSEED Format

Located in `/Infrasound_Data/Infrasound_mseed/`, this directory contains the same infrasound waveform data as CSS3, but in miniSEED format. This modern format is widely supported in acoustic and seismic analysis platforms. Each .mseed file contains one hour of data, typically covering one hour before and two hours after each meteor event.

5. ATMOSPHERIC PROFILES

5.1. G2S Atmospheric Specifications

Located in `/Atmospheric_Profiles/Atmosphere_G2S/`, these profiles were generated using the Ground-to-Space (G2S) model [8] developed by the National Center for Physical Acoustics (NCPA) [9]. Profiles are provided at 1-, 3-, or 6-hour intervals depending on availability.

Each `.dat` file contains:

- Altitude [km]
- Temperature [K]
- Pressure [mbar]
- Zonal/meridional wind components [m/s]
- Density [g/cm³]

Naming format: `g2s_yyyymmdd_hh.dat`

5.2. Legacy Atmospheric Profiles

Stored in `/Atmospheric_Profiles/Atmosphere_Legacy/`, these profiles were used in the original studies [1, 11, 12]. Each folder contains:

- `.txt` – profile with detailed header
- `.csv` – same profile in spreadsheet format
- `.png` – optional profile plots (temperature and wind vs. altitude)

These legacy files provide temperature, wind, and pressure structure and remain useful for replicating earlier works [1] and comparison or sensitivity studies.

6. TIMESTAMPS AND FILE NAMING

Each meteor event is indexed using a timestamp based on Coordinated Universal Time (UTC). The naming format used for each event folder is: `yyyymmdd_hhmmss`, where:

- `yyyy` = 4-digit year (e.g., 2006)
- `mm` = 2-digit month (01–12)
- `dd` = 2-digit day of the month (01–31)
- `hh` = 2-digit hour (00–23, in UTC)
- `mm` = 2-digit minute (00–59)
- `ss` = 2-digit second (00–59)

For example, the folder `20060419_042128` corresponds to a meteor event that occurred on April 19, 2006 at 04:21:28 UTC.

All data products use a common UTC-based timestamp:

- Folder names: `yyyymmdd_hhmmss`
- File names: Vary by data type, but typically follow `yyyymmdd_hh0000` to denote the start of a 1-hour data window

7. SOFTWARE COMPATIBILITY

This dataset is compatible with a wide range of scientific software platforms. Examples include:

- **ObsPy** (Python): For reading and processing waveform data and seismic metadata
- **MATLAB**: For numerical modeling, signal processing, data visualization, and working with waveform, trajectory, or atmospheric data
- Excel, Python (**pandas**, **NumPy**, etc.): For handling tabular data, summary files, and custom analysis
- **InfraGA** and other acoustic propagation tools: For modeling wave propagation using atmospheric specifications

These tools are provided as representative examples; users may employ any software that supports the included file formats. No proprietary software is required to access or analyze the dataset.

8. RELATED PUBLICATIONS

Users of this dataset are expected to cite at minimum this user guide (along with the Zenodo repository) and the associated data descriptor paper [3]. These references provide essential context for the structure, processing, and scientific relevance of the dataset. Additional peer-reviewed publications that informed the design and methodology of the archive are listed below for reference and may be cited where relevant.

Required citations:

- Data descriptor paper: Silber, et al. [3], doi: <https://doi.org/10.3390/data10090138>
- This report: Silber et al., SAND2025-10874
 - Also available at: <https://doi.org/10.5281/zenodo.15868512>
- Dataset: Silber, et al. [2], <https://doi.org/10.5281/zenodo.15868512>

Additional supporting publications (optional):

- Silber and Brown [1], <https://doi.org/10.1016/j.jastp.2014.07.005>
- Silber, et al. [12], <https://doi.org/10.1002/2014JE004680>

REFERENCES

- [1] E. A. Silber and P. G. Brown, "Optical observations of meteors generating infrasound—I: Acoustic signal identification and phenomenology," *Journal of Atmospheric and Solar-Terrestrial Physics*, vol. 119, pp. 116-128, 2014, doi: 10.1016/j.jastp.2014.07.005.
- [2] E. A. Silber, P. G. Brown, E. Brown, A. Thompson, and V. Sawal. *A Curated Dataset of Regional Meteor Events with Simultaneous Optical and Infrasound Observations*, doi: 10.5281/zenodo.15868512.
- [3] E. A. Silber, E. Brown, A. R. Thompson, and V. Sawal, "A Curated Dataset of Regional Meteor Events with Simultaneous Optical and Infrasound Observations (2006–2011)," *Data*, vol. 10, no. 9, doi: 10.3390/data10090138.
- [4] P. Brown, R. J. Weryk, S. Kohut, W. N. Edwards, and Z. Krzeminski, "Development of an All-Sky Video Meteor Network in Southern Ontario, Canada: The ASGARD System," *J. IMO*, vol. 38, pp. 25-30, 2010.
- [5] W. N. Edwards, P. Brown, R. J. Weryk, and D. O. ReVelle, "Infrasonic observations of meteoroids: Preliminary results from a coordinated optical-radar-infrasound observing campaign," *Earth Moon Planets*, vol. 102, pp. 221-229, 2007.
- [6] R. J. Weryk and P. G. Brown, "Simultaneous radar and video meteors—I: metric comparisons," *Planetary and Space Science*, vol. 62, no. 1, pp. 132-152, 2012.
- [7] R. Swinbank and A. A. O'Neill, "Stratosphere-troposphere data assimilation system," *Monthly Weather Review*, vol. 122, pp. 686-702, 1994. [Online]. Available: [http://dx.doi.org/10.1175/1520-0493\(1994\)122<0686:ASTDAS>2.0.CO](http://dx.doi.org/10.1175/1520-0493(1994)122<0686:ASTDAS>2.0.CO).
- [8] D. P. Drob, J. M. Picone, and M. Garces, "Global morphology of infrasound propagation," *Journal of Geophysical Research*, vol. 108, no. D21, 4680, pp. 1-12, 2003, doi: 10.1029/2002JD003307.
- [9] *The NCPAG2S command line client*. (2024). [Online]. Available: <https://github.com/chetzer-ncpa/ncpag2s-clc>
- [10] D. P. Drob *et al.*, "An empirical model of the Earth's horizontal wind fields: HWM07," *J. Geophys. Res.*, vol. 113, no. A12, p. A12304, 2008, doi: 10.1029/2008ja013668.
- [11] E. A. Silber, "Observational and theoretical investigation of cylindrical line source blast theory using meteors," PhD Thesis, Physics and Astronomy, Western University, London, ON, Canada, 2014.
- [12] E. A. Silber, P. G. Brown, and Z. Krzeminski, "Optical observations of meteors generating infrasound: Weak shock theory and validation," *Journal of Geophysical Research: Planets*, vol. 120, no. 3, pp. 413-428, 2015.

This page left blank

DISTRIBUTION

Email—Internal

Name	Org.	Sandia Email Address
Daniel Gonzales	6752	dgonza2@sandia.gov
Kyle Jones	8911	krjones@sandia.gov
Technical Library	1911	sanddocs@sandia.gov

This page left blank

This page left blank

**Sandia
National
Laboratories**

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.