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ABSTRACT: General proteomics research for fundamental MARLOWE Workflow
science typically addresses laboratory- or patient-derived samples ‘ " ‘ ( l ’
of known origin and composition. However, in a few research areas, ‘ ‘ ‘ ‘ J ‘ ‘ ‘

such as environmental proteomics, clinical identification of
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for taxonomic characterization and/or identification using bottom-
up proteomics. Most such tools identify peptides via database
search, and many rely on organism-specific peptides as markers.
Our group recently introduced MARLOWE, a software tool for
taxonomic characterization of unknown samples based on de novo peptide identification and signal-erosion-resistant strong peptides,
which are shared peptides distributed in a taxonomy-dependent manner. In the current work, we further characterize the utility of
MARLOWE using publicly available proteomics data from forensically-relevant samples. MARLOWE characterizes samples based on
their protein profile, and returns ranked organism lists of potential contributors and taxonomic scores based on shared strong
peptides between organisms. Overall, the correct characterization rate ranges between 44 and 100%, depending on the sample type
and data acquisition parameters (with lower numbers associated with lower-quality data sets). MARLOWE demonstrates successful
characterization of true contributors and close relatives, and provides sufficient specificity to distinguish certain microbial species.
MARLOWE demonstrates its ability to provide insight into potential taxonomic sources for a wide range of sample types without
prior assumptions about sample contents. This approach can find utility in forensic science and also broadly in bioanalytical
applications that utilize proteomics approaches for taxonomic characterization.
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B INTRODUCTION

Source attribution of biological samples remains an important
part of bioforensics, yet there are few tools that utilize the

assumptions about the unknown samples, which may not
always be justified nor forensically defensible.

Typical bottom-up proteomics approaches, such as for
fundamental science studies, rely on database search to identify
peptides, where the database contains protein sequences from
organisms known to be present in the sample, e.g., because the
samples were generated as part of the experiment. This method

protein profile to make this determination when the sample is
completely unknown. Classification and identification for
forensic applications necessitate use of proteomics methods

when DNA is absent, compromised, or when proteins—not
nucleic acids—are the agent of interest, such as for protein
toxins. For example, characterization of the protein toxin ricin
from castor seeds is a common application in forensic
proteomics, and extensive work has been performed to
establish criteria for identifying ricin.'~* Other applications
of class-based forensic identification include identification of
other toxins™® and species identification, such as for the
presence of pathogens.” ' Much of the work towards
classification in bioforensics using proteomics approaches has
utilized conventional proteomics data acquisition and analysis
approaches. However, these conventional approaches make
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of database selection assumes that the user-defined database
contains protein sequences from the true contributor(s) of the
sample, which may not always be the case,'’ especially in
forensic samples. Other applications, such as metaproteomics,
utilize a broader database that typically contains the protein
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sequences of hypothesized contributors where possible. After
performing the database search with a user-defined database,
identification of “unique” peptides attributed to specific
organisms, where “unique” peptides are only observed in a
specific, single organism, then allows for taxonomic source
attribution. However, this method of determining taxonomic
origin suffers from signal erosion, in which continued
sequencing of organism genomes reduces the probability that
“unique” peptides will remain as such over time. Pfrunder and
co-workers illustrate an example of signal erosion in their
approach to identify characteristic peptides for distinction of
Bacillus cereus group members.'” Between May and October
20185, characteristic peptides for each of the 7 species examined
were reduced by roughly 46% on average, and for some
species, the actual number of “unique” peptides was <8."* In
this case, use of “unique” peptides to identify members within
this superspecies may not be statistically robust. For forensic
applications where samples may be complex mixtures, more
robust methods are needed to confidently characterize samples
of unknown taxonomic origin.

Although organism classification and identification for
forensically relevant use cases has a distinct goal from
metaproteomics, some published metaproteomics approaches
address the limitations associated with identifying unique
markers from organism subsets. For example, MetaProteo-
meAnalyzer (MPA)'* and UniPept Metaproteomics Analysis
provide taxonomic source information from peptides identified
in a sample. UniPept Metaproteomics Analysis matches sample
peptides to in silico tryptic peptides in their database, which
then map to proteomes of organisms in the UniProt database,
to make lowest common ancestor determinations.'> However,
assignment to lowest common ancestor may provide limited
taxonomic specificity, and their lowest common ancestor
approach relies on equal weighting of all peptides, which
inflates the weight of nonspecific peptides. MPA provides
various approaches to infer taxonomy from peptides by
applying different combinations of peptide and protein
similarity rules and accounting for peptide sequence variations,
and returns either the lowest common ancestor or most
specific taxonomy from the set of identified peptides,'*"
enabling greater taxonomic specificity compared to UniPept’s
algorithm. However, despite moving away from targeting
“unique” markers, both MPA and UniPept rely on broad
database searches.

Other tools have more specifically focused on taxonomic
characterization. TCUP, a workflow for characterizing bacterial
mixtures presented by Boulund et al,, utilizes a similar strategy
but then only considers peptides with lowest common ancestor
determinations at the strain level for taxonomic source
assignment in samples.'® As described above, using only
taxonomically distinct peptide markers suffers from signal
erosion. A leading tool in organism identification, MiCld, uses
shared peptides, with their contribution to organism
identification weighted by the inverse of the number of
clusters in which that peptide appears.'"'”'® A recent software
tool called SPIN, designed for use with mammalian bone
fragments, uses a database of only bone proteins. Identified
peptides are scored against a series of pairwise species
sequence differences, and the species that wins the most
pairwise comparisons is the overall winner.'"® Finally, the
phylopeptidomics approach uses “taxon-spectrum matches,”
assigning peptides to all the taxa to which they match.*
However, despite moving away from targeting “unique”

peptide markers to determine taxonomic origin, these tools
still require peptide identification through database searching,
which as mentioned above, is a type of targeted data analysis
that assumes that the source organism proteomes are included
in the database, which may not always be true for complex
mixtures such as those potentially encountered in forensic
applications. As such, there is a need for an untargeted
organism identification/classification tool to characterize
unknown samples that can be encountered in forensic
evidence.

We previously demonstrated utility of an organism
identification/classification tool to characterize unknown
samples in an untargeted manner, which we call MARLOWE
(after the fictional detective introduced by author Raymond
Chandler) (Jenson et al).’ MARLOWE is intended to
provide insight into the taxonomy/identity of organisms that
contribute protein to unknown forensic samples, including but
not limited to whole organisms. The goal of MARLOWE is to
provide sufficient taxonomic resolution to provide investigative
leads and identify appropriate follow-on studies (for example,
confirmatory database searches, targeted mass spectrometry
assays, or toxin detection). Its purpose is thus similar, but not
identical, to other proteotyping tools such as those described
above. MARLOWE matches de novo peptide sequence tags,
which include peptide precursor information, to in silico tryptic
peptides from the KEGG database, assigns these matches to
organisms through protein inference, and weights the tag-
peptide matches based on how frequently these peptides are
found in multiple organisms. To our knowledge, de novo
peptide sequence information has not been used towards
characterizing microbial samples, but can be a valuable,
unbiased source of proteomic information for taxonomic
origin attribution. Johnson and co-workers** have used de novo
peptide identification to evaluate the suitability of a database
from a closely related organism, but did not address the
problem of assigning taxonomic origin of a completely
unknown sample. As a proof-of-concept study, MARLOWE
successfully characterized pure and binary mixtures of bacterial
cultures (Jenson et al.).”' Here, we extend characterization to a
wide range of forensically-relevant sample types.

This research aims to benchmark MARLOWE’s character-
ization performance for analysis of forensically-relevant
biological samples and provide insight into interpreting such
taxonomic characterizations for different sample types.
Specifically, the ability for MARLOWE to correctly character-
ize multiple-contributor mixtures, characterize components in
ground seed extracts, demonstrate characterization specificity
for closely related mammalian samples, and characterize
contributors in degraded samples such as archeological and
historical artifacts were examined using publicly available mass
spectrometry data sets and an in-house data set. We find that
MARLOWE correctly characterizes most contributors of
microbial samples at the species level and, though with less
accuracy, can characterize closely related mammalian samples.
Successful characterization hinges on having high-quality,
intact samples and high mass spectrometry data quality,
which may be slightly more challenging for degraded and
ancient samples. MARLOWE further provides insight into
proteome diversity of organisms and their close relatives, which
may not be reflected in their assigned taxonomy.
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B METHODS

Ground Seed Extract Preparation and Mass Spectrometry
Data Acquisition

Castor seeds (Ricinus communis), jequirity peas (Abrus
precatorius), soybeans (Glycine max), and peanuts (Arachis
hypogaea) were ground into mash using a glass beaker and a
microspatula as described in Wunschel et al.”’ Mash was
extracted by grinding with a micropestle in the presence of
phosphate buffered saline (PBS) buffer. Extracts were
centrifuged at 4 °C to remove insoluble material and oil, and
heated at 100 °C for 1 h to inactivate toxins. Samples were
prepared and digested using a proteomics protocol described
in Merkley et al." Briefly, following inactivation, extracts were
denatured and reduced using 8 M urea and 5 mM
dithiothreitol at 60 °C for 1 h, and alkylated with 15 mM
iodoacetamide for 1 h in the dark at 37 °C. Samples were
digested overnight at 37 °C with trypsin at a 1:50 w/w trypsin/
protein ratio in the presence of 1 mM calcium chloride and
desalted using solid phase extraction with C18 resin.

Protein digests were separated on a Waters nanoAcquity
liquid chromatograph (Milford, MA) using in-house fused
silica capillary columns packed with Jupiter C18 stationary
phase (Phenomenex, Torrance, CA). Five uL injections were
performed to load samples onto the trapping column (4 cm x
150 pm id., S um particle size) at a flow rate of 3 uL/min.
Chromatographic separation was achieved at a flow rate of 300
nL/min on the analytical column (70 cm x 75 gm i.d., 360 ym
o.d., 3 um particle size) using mobile phases A (0.1% formic
acid in water) and B (0.1% formic acid in acetonitrile), and the
following gradient: 2% B at 0 min, 8% B at 2 min, 12% B at 20
min, 30% B at 75 min, 45% B at 97 min, 95% B at 100 min,
95% B at 110 min, 1% B at 115 min, and 1% B at 150 min,
followed by a “sawtooth” gradient wash to mitigate carryover.

Mass spectra were acquired on a Q Exactive HF (Thermo
Scientific, San Jose, CA) mass spectrometer in data-dependent
tandem mass spectra (MS/MS) mode. Nanoelectrospray
ionization was performed at 2300 V and mass spectrometry
data were collected between 15 and 115 min of the
chromatographic gradient. Full MS spectra were acquired at
a resolution of 60,000 and the top 12 most abundant ions were
selected for MS/MS. Precursor ions were fragmented at a
normalized collision energy of 30 using higher-energy collision
induced dissociation (HCD). Tandem mass spectra were
acquired at a resolution of 15,000 and an isolation window of 2
Da. Dynamic exclusion was set to 30 s. Raw mass spectra were
then converted to MGF format using ThermoRawFileParser.

Publicly Available Raw Mass Spectrometry Data

Raw spectrometry data files were downloaded from Proteo-
meXchange, from the following projects: PXD004321,
PXD018933, PXD008103, and PXD001029, and can be
accessed via the ProteomeXchange online repository” ">
(http://proteomecentral.proteomexchange.org). Metadata for
data files in PXD004321 were obtained from Boulund and co-
workers (personal communication). These data sets were
converted to MGF format using ThermoRawFileParser.

De Novo Peptide Sequencing

MARLOWE relies on output from de novo peptide sequencing

as input. From tandem mass spectrometry data, de novo
. . . 26

peptide sequencing was performed using Novor.” Each data

set contains different types of samples and matrices, and were

acquired on different Orbitrap instruments. Appropriate de

novo sequencing parameters, such as fragment mass error
tolerance and fixed and variable modifications, were set to align
with the different sample type, matrix, and data acquisitions per
data set (Supporting Table S1). Output from de novo peptide
sequencing via Novor was obtained for each mass spectrom-
etry data file as input to MARLOWE. Filtering of Novor
peptide-spectrum matches to obtain sequence tags is described
in detail in the next section, but in brief, a tag is defined as a
unit with at least S consecutive residues with local confidence
scores of 80 or greater, from a peptide-spectrum match with an
average local confidence score of 50 or greater.

MARLOWE Architecture and Analysis

The statistical concepts underlying MARLOWE have been
described in detail in Jenson et al.”' Briefly, MARLOWE
includes an SQL database containing in-silico-generated tryptic
peptides from the proteomes of all organisms in the KEGG
Genome database Release 91.0 (https://www.genome.jp/
kegg/genome/; downloaded July 1, 2019) and takes in output
from de novo peptide sequencing. These outputs are formatted
into lists of de novo sequence tags to use as query input to the
SQL database. Results of these queries manifest as ranked lists
of organisms, with associated taxonomic scores, that are
potential contributors based on matching de novo tags to
strong peptides belonging to each organism.

From output files generated by Novor, de novo peptides were
filtered to include only highly-confident regions known as
sequence tags, typically those peptides with an overall
(average) local confidence score of SO and at least S
consecutive residues with amino acid local confidence scores
greater than 80. Note that local confidence scores range
between 0 and 100, with higher scores denoting high
confidence in residue assignment.”® Supporting Table S1
includes specific threshold values for each data set for
MARLOWE.

Two concepts underlying MARLOWE are strong peptides
and taxonomic groups. Strong peptides are in silico fully tryptic
peptides without missed cleavages that are found in fewer than
approximately 5% of organisms in the database, as determined
at the genus level.® Strong peptides occur much more
frequently in one genus compared to all other genera. These
strong peptides could be unique peptides, which are only
found in a single organism, or they could be shared among
organisms, likely from the same genus, but occur in less than
approximately 5.3% of organisms’ proteomes. (Note that this
value is a result of applying a 0.95 threshold value to the
peptide strength equation.) Jarman et al.® and Jenson et al.”!
provide much more detailed explanations on the theory of the
strong peptide calculation. Here, the pairwise peptide strength
adaptation is utilized, as described in Jenson et al.”' This
implementation considers the frequency of a peptide within
each genus, and defines a peptide as strong if (1) its presence
within the genus where it occurs most frequently is at least
95% and (2) it is found in S% or fewer species at the genus
where the peptide occurs second most often. At a high level,
peptide strength is a probabilistic concept that while a newly
sequenced organism’s proteome might contain an otherwise
unique peptide, thus rendering the peptide not unique, it is
much less likely that the presence of a strong peptide in that
same newly sequenced organism’s proteome would result in
that strong peptide being present at 5% or greater of all
sequenced organisms’ proteomes; the strong peptide remains
strong. When present and detected, strong peptides serve as
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Table 1. Characterization Summary of MARLOWE for Each Dataset with Known True Contributors

characterization rate (% top 1/top2/topS)”

number of

data set samples family genus
TCUP 42 pure: 100/—/— Pure: 100/—/—
mixtures: 72/78 Mixtures: 56/78
(top 4/top S) (top 4/top S)

primate 20 44/75/81 44/56/56

teeth
seeds 11 100/—/— 100/—/—

data set
species taxonomic group reference
Pure: 100/—/— Pure: 100/—/— Boulllgnd et
Mixtures: Mixtures: 72/78 al
50/78 (top 4/top S) (top 4/top S)
44/56/56 56/81/81 Fror§17ent et
al.
100/—/~— 100/—/~

“Correct characterization is based on hit to true contributor as the top N-ranked result for taxa included in KEGG.

evidence for presence of the organism or organisms that
contain them, regardless of the formal taxonomy of those
organisms. Aggregated strong peptide counts become strong
evidence for their source organisms. Even though strong
peptide presence criteria were defined at the genus level, this
categorization of strong peptides does not align with any
formal taxonomic ontology (in contrast to family-specific
peptides or genus-specific peptides), as the set of strong
peptides is determined based on the set of all theoretical
peptides from considered organisms’ proteomes. MARLOWE’s
taxonomic groups comprise organisms that all share at least
40% of their theoretical peptides with each other, formed using
a leader clustering algorithm based on number of shared tryptic
peptides. MARLOWE’s taxonomic groups do not necessarily
align with any specific taxonomic ontology (e.g, family,
species), as they are based on proteomic and thus genomic/
phylogenetic similarity. This grouping presents an alternative
to formal taxonomic ontology, of which its issues in relation to
genomic similarity are well-known.

The list of de novo sequence tags, which consists of pairs of
tag sequence and peptide precursor monoisotopic mass, is used
as a query and matched to all in silico peptides in the SQL
database within a mass error tolerance of +15 ppm. To limit
protein inference, candidate proteins inferred from these tag-
peptide matches are filtered to include only those that have
had a minimum of two peptide assignments, one of which must
be from a strong peptide. The tag-peptide matches are then
pruned to include only those whose peptides are strong, as
defined at the genus level, and then assigned to organisms
whose proteomes contain those in silico strong peptides. An
optional tag-strong peptide match filter can be applied at this
stage to remove matches to peptides in contaminants, given as
a fasta file. After these filters, tag-strong peptide matches are
tabulated for each organism and taxonomic group, respectively,
and this latter count is transformed into taxonomic score.

Taxonomic score, the primary metric generated by
MARLOWE, is a weighted count of the number of tag-strong
peptide matches assigned to each taxonomic group. The
weighting, using a non-negative least-squares model, exploits a
reward/penalty function based on the similarity between
taxonomic groups using shared strong peptides, such that
similar taxonomic groups should have similar number of tag-
strong peptide matches (Jenson et al.)*' Scores that align with
this correlation are positively weighted (elevated), and
negatively weighted (diminished) if not. For each sample,
MARLOWE returns a list of organisms with associated number
of tag-strong peptide matches and taxonomic score.

Data Analysis

From organism lists returned by MARLOWE, results were
further filtered to include only taxa that received a minimum of

2 tag-strong peptide matches. For ease of comparison across
samples, taxonomic score was then normalized to the total
taxonomic score per sample, such that normalized score ranges
between 0 and 1. Organisms at the species level were then
ranked by decreasing taxonomic score and decreasing tag-
strong peptide matches. Ranked organism lists were then
compared across samples to assess MARLOWE’s character-
ization performance.

B RESULTS AND DISCUSSION

In this paper, we seek to evaluate an organism identification/
classification approach that utilized de novo peptide identi-
fication combined with the concept of peptide strength. De
novo peptide identification is well-understood, and has been
used somewhat in the related field of metaproteomics.'”"*
However, peptide strength is newer, and for readers not
familiar with the relevant publications, we briefly describe it
here. Peptide strength describes the nonuniformity of
occurrence of a peptide sequence across (in this case) genera
within a database of organisms using weight-of-evidence
statistical concepts that are common in forensics.””' Strong
peptides are not simply taxon-specific peptides; they are shared
peptides. However, because they are shared in a nonuniform
way across taxa, they serve as pointers, not to a single organism
or taxon, but to a group of taxa. The MARLOWE algorithm
aggregates this data by evaluating all the organisms to which all
observed strong peptides point and providing a ranking.

We demonstrate MARLOWE's performance using publicly
available data sets that represent some of the scope of samples
that could be encountered in forensic evidence. Samples of
interest include multiple-contributor mixtures, mammalian
samples, and archeological and historical artifacts that have
met with some degree of degradation. To that end, we
examined five data sets to address the following questions:

1. Can MARLOWE characterize components from multi-
ple-contributor mixtures?

2. Can MARLOWE characterize components in archeo-
logical and historical artifacts?

3. How does MARLOWE’s performance compare between
microbial and mammalian samples?

4. Can MARLOWE characterize components extracted
from plant material, specifically, ground seeds?

Using de novo peptide sequencing as query inputs,
MARLOWE returns a list of potential organisms for each
sample and associated taxonomic scores. Organisms are then
ranked by highest taxonomic score and the greatest number of
tag-strong peptide matches. Potential organisms and their
ranks can then be compared to true contributors for
quantifying characterization success. Table 1 summarizes
MARLOWE’s characterization performance for each data set,
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Figure 1. (A) Raw and (B) normalized taxonomic score distributions from ranked lists returned by MARLOWE, for pure (single) bacterial samples
and 4-species mixtures. Different sample compositions (i.e., microbial species in single samples and ratios of different microbial species in mixtures)
are delineated by color. Taxonomic score distributions within each sample enable distinction of pure samples and mixtures, as the taxonomic score
associated with the true contributor for pure samples is substantially higher than scores for all other taxa. In contrast, taxonomic scores for true
contributors in most mixtures are lower, yet still distinct from other taxa.

at the family, genus, species, and taxonomic group levels, where
true contributors are known. Family-level characterization was
included since the KEGG database, on which MARLOWE’s
SQL database relies, may not contain all sequenced organisms
to date, including some at the genus level. Characterization
rate is defined as correct characterization of the true
contributor as the top-ranked organism, and rates are listed
for correct characterization at the top 1, 2, and S ranks. For
mixtures, characterization rate is the correct characterization of
all true contributors as the top 4- and S-ranked organisms.
Deeper examination of MARLOWE'’s characterization per-
formance for each data set, including those where true
contributors are not known, is described in the sections
below, through comparisons of raw taxonomic scores,
normalized taxonomic scores, and tag-strong peptide matches.

Analysis of Multiple-Contributor Samples: TCUP

Previous work describing MARLOWE’s characterization
performance focused on single-contributor and simulated
binary mixtures of bacterial cultures (Jenson et al.).”' Here,
we challenged MARLOWE to correctly characterize all
components of 4-species mixtures. Complex mixtures from
multiple taxonomic sources may be encountered in forensic
evidence, such as in urine, and the goal of the forensic analysis
may be to identify specific contributors in complex mixtures.
This data set comprises three different ratios of two sets of 4-
species mixtures. The first set of mixtures include Escherichia
coli, Staphylococcus aureus, Streptococcus pneumoniae, and
Pseudomonas aeruginosa, while the second set, which simulates
the environment in a coinfected respiratory tract sample,
contains Staphylococcus aureus, Streptococcus pneumoniae,
Haemophilus influenzae, and Moraxella catarrhalis.'® We
compare MARLOWE’s performance in correct character-

ization of pure and complex mixtures, and discuss
interpretation of taxonomic scores, including the effects of
different sample compositions and concentrations on taxo-
nomic scores and distinction of potential contributors from all
other taxa.

MARLOWE correctly characterized all components in pure
samples as the top-ranked organism and within the top S
organisms in most 4-species mixtures at the species level. As
expected, for pure bacterial samples, the correct organism was
returned as the top hit, with the highest taxonomic score and
the greatest number of tag-strong peptide matches. MAR-
LOWE returned all 4 contributors in most 1:1:1:1, 1:2:2:4, and
4:2:2:1 mixtures as within the top S hits (Table 1). However,
even when true contributors are correctly characterized as the
top-ranked organisms, there are some differences in their
taxonomic scores, which depend on sample composition and
concentration.

Pure (single-species) samples typically yield higher taxo-
nomic scores for the top-ranked organism compared to
mixtures owing to higher concentrations, but scores also
depend on the potential source organisms. Figure 1 displays
raw and normalized taxonomic score distributions for each
sample. Whereas most top-ranked sources in pure samples
have taxonomic scores ranging between 500 and 5000
(normalized taxonomic score >0.60), scores for top-ranked
organisms in mixtures are lower, ranging between 500 and
1500 (normalized score between 0.10 and 0.50) (Figure 1).
However, among the different true contributors, taxonomic
scores for E. coli in both pure samples and mixtures are much
lower. Though still included within the top 6 for the majority
of E. coli-containing mixture replicates, taxonomic scores and
the number of tag-strong peptide matches to E. coli are
generally low (i.e., on average, 0.008 + 0.005 (s.d.) normalized

https://doi.org/10.1021/acs.jproteome.3c00477
J. Proteome Res. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00477?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00477?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00477?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00477?fig=fig1&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00477?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Proteome Research

pubs.acs.org/jpr

Organism Ranking

mixture

Streptococcus pneumoniae{ 3 3 3 3 3 3

Staphylococcus aureus 2 1

=
N
N
N
N
N

Pseudomonas aeruginosa
Moraxella catarrhalis -
Haemophilus influenzae

Escherichia coli{ 5 5

2 2 4 4 4 3 3 3 4 4 4

Species Taxa

16 10 5 6 4
———— — T Normalized
- - Score
S. pneumoniae S. pneumoniae
S. aureus S. aureus 075
P. aeruginosa M. catarrhalis
E. coli H. influenzae i 050
0.25
I single

Streptococcus pneumoniae {.

Staphylococcus aureus A
Pseudomonas aeruginosa
Moraxella catarrhalis -
Haemophilus influenzae

Escherichia coli- 11

Spne Saur

Eco1

Paer Eco2 Eco3 Mcat Hinf

Dataset

Figure 2. Heatmap of taxonomic scores (color scale) and ranking (numbers) for correctly characterized organisms returned by MARLOWE for
pure (single) bacterial samples and mixtures. MARLOWE correctly characterized organisms in pure samples as the top hit, and within the top S

organisms for most 4-species mixtures.

taxonomic score and 4 + 2 (s.d.) matches) (Figure 2). This is
apparent when comparing the normalized taxonomic scores for
E. coli across pure samples and in mixtures. On average,
taxonomic scores for E. coli are 190.8 + 90.6 (s.d.) for pure
samples and 11.6 + 3.6 (s.d.) for mixtures. However, for other
taxa such as P. aeruginosa, taxonomic scores in both pure
samples and mixtures are substantially higher (i.e., on average,
874.6 + 216.6 (s.d.) and 557.8 + 183.8 (s.d.) for pure samples
and mixtures, respectively). Lower taxonomic scores for E. coli
compared to other taxa result from having few strong peptides
that are representative of the taxonomic group containing E.
coli, owing to the presence of a large number of highly similar
proteomes from related genera in other taxonomic groups.
Because taxonomic scores derive from tag-strong peptide
matches, having few strong peptides for E. coli limits the
number of possible tag-strong peptide matches. However,
despite the lower taxonomic score, MARLOWE returns E. coli
as a potential contributor in all pure samples and all but one
mixture, with a minimum taxonomic score of 7.9.

Notably, taxonomic scores can provide insight into whether
the sample contains one component or derives from multiple
contributors, and comparison of score distributions within
each sample permit distinction of contributors and non-
contributors. Thus, far, we have not applied any thresholds to
taxonomic score to distinguish hits to potential contributors

from all other taxa. MARLOWE returns a ranked organism list
based on all de novo sequence tags that match to strong
peptides per organism, and organisms have been assembled
into taxonomic groups. As such, this list comprises not only
true contributors, but also any taxa that share nonspecific tag-
strong peptide matches. But because taxonomic score depends
on the number of tag matches to strong peptides and the
relatedness of taxa, organisms that are not true contributors
will have low numbers of tag-strong peptide matches and low
taxonomic scores, compared to those for true contributors. In
this manner, the distribution for normalized taxonomic scores
in pure samples is such that there is a distinctly high taxonomic
score for the true contributor and low taxonomic scores for all
other taxa (Figure 1). In contrast, higher taxonomic scores for
each contributor in the mixtures are observed, and when
normalized, the taxonomic scores of each of the contributors is
smaller than their pure sample counterparts, yet still distinct
from all other noncontributor taxa (Figure 1).

Given that MARLOWE returns low taxonomic scores for E.
coli as a contributor, as discussed above, the distinction
between true contributor and noncontributors for E. coli is
slightly more ambiguous, even in pure E. coli samples (Figure
1). Further, some noncontributors may be highly similar to E.
coli and organized into the same taxonomic group as E. coli,
resulting in identical taxonomic scores. Indeed, this is the case
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for pure E. coli samples, where the second ranked organism in
all replicates was Shigella dysenteriae (specifically strain 1617),
an organism in the same Enterobacteriaceae family and the
same MARLOWE taxonomic group as E. coli. The proteomic
similarity between Shigella species and E. coli has also been
noted by Boulund and co-workers, who removed sequences of
Shigella species from their organism reference database within
TCUP.'® This selection of organisms in the reference database
enables better distinction of E. coli in samples, but introduces
bias into the data analysis process. In contrast, MARLOWE
retains these sequences and hits to both S. dysenteriae and E.
coli can be observed, albeit with lower taxonomic scores than
for other organisms. In these cases, characterization of
organisms at the taxonomic group level provides valuable
insight into taxonomic sources of unknown samples that can be
used in subsequent data analysis steps, such as selecting
relevant protein databases for database searching of tandem
mass spectral data, toward more confirmatory source
attribution.

Compared to TCUP, very limited quantitative information
can be obtained for components in these mixtures from
MARLOWE because organism scores are identical for
organisms in the same taxonomic group and are weighted by
peptide strength among organisms, which dissociate any
abundance information specific to each organism. However,
with 100% correct characterization, MARLOWE outperforms
the true positive rates reported by Boulund and co-workers on
replicates of single-species E. coli, P. aeruginosa, S. aureus, and S.
pneumoniae cultures.'® Further, correct characterization for
mixtures other than those containing E. coli was also very
successful, demonstrating MARLOWE's ability as a qualitative
tool to characterize complex mixtures.

Analysis of Archeological and Historical Artifacts: Danish
Peat Bog Burial Site Artifacts, Plague Manuscript Pages

We examined MARLOWE’s performance on the Danish peat
bog and plague papers data sets, which derive from samples
that have undergone some degree of degradation. These data
sets represent yet another sample type that could be
encountered in forensics, that is, unknown samples with
some degradation that are of historical and/or archeological
value and whose true contributors are not known. The Danish
peat bog data set contains archeological skin samples obtained
from §arments discovered at three different peat bog burial
sites.”” Characterization of the organisms (sources) that were
used to create these garments provides insight into the
agricultural significance and evolution of livestock and
domesticated species over time. The plague papers data set,
on the other hand, comprises protein extracts lifted from death
registries in Milan created during the bubonic plague in 1630,
which was caused by the etiological agent Yersinia pestis.”’
Analysis of these data sets was intended to provide insight
into taxonomic origin of truly unknown samples, however,
MARLOWE returned lists of potential contributors with
extremely low taxonomic scores (on average, 34 + 3.1
(s.d.)). Of notable results for the plague papers data set,
MARLOWE returned hits to Mus musculus in two samples
(Supporting Figure S1), which align with results described by
D’Amato and co-workers.”” However, Y. pestis was not
returned as a potential organism in any of the samples
(Supporting Figure S1), a departure from reported results. In
this case, MARLOWE'’s characterization may have been
adversely affected by low numbers of de novo peptides and

of highly confident de novo tags. Deeper examination of raw
mass spectrometry data indicated that spectral quality was low,
as quantified by local confidence scores of de novo peptides
generated by Novor (Supporting Figure S2). Local confidence
scores measure the confidence of de novo peptide sequencing,
and highly confident sequence tags are needed for
MARLOWE. For the plague papers data set, it is likely that
low spectral quality stems from the insufficient time spent
acquiring each MS/MS scan during data acquisition, as the top
40 most intense pezptides were selected for fragmentation per
precursor ion scan,” as opposed to the more typical top 12—
20 scans for the Thermo Fisher Orbitrap Fusion instrument
used in this study. We note that the top 40 acquisition method
was performed using an ion trap mass analyzer in the Orbitrap
Fusion instrument, and the mass resolution that is achievable
with an ion trap is substantially less than with an Orbitrap mass
analyzer, thus leading to lower quality MS/MS spectra. This in
turn may have affected de novo peptide sequencing, as on
average, 8022 + 4849 (s.d.) peptides were identified from each
sample, with an average local confidence score of 30.5 + 5.0
(s.d.), below MARLOWE’s threshold score of 50. Compara-
tively, the average number of de novo peptides identified in the
TCUP data set was 20,954 + 8963 (s.d.), with an average local
confidence score of 63.1 + 5.8 (s.d.) (Supporting Figure S2).
This disparity in characterization success suggests that
MARLOWE requires high spectral data quality. While overall
low taxonomic score distributions can arise from various
reasons, such as taxonomic skew within the database, as in the
case of E. coli in the TCUP section above, or low data quality
in this case, the combination of low Novor scores and low
taxonomic scores are a good indicator that the lists of returned
organisms represent spurious hits rather than potential sources.

Similarly for the Danish peat bog data set, few ancient skin
samples yielded successful characterization by MARLOWE.
The modern skin samples from Ovis aries (sheep), Capra hircus
(goat), and Bos taurus (cattle), on the other hand, yielded
correct characterization at the species level despite high genetic
similarity between sheep and goat, suggesting MARLOWE’s
ability to distinguish skin samples from domesticated animals.
However, only one replicate of ancient skin samples found at
the Haraldskaer site returned C. hircus as a potential
contributor and three different skin samples (found in
Mogelmose, Haraldskaer, and Huldemorose, respectively)
returned B. taurus as potential contributors (Supporting Figure
S3). The majority of the ancient skin samples returned
ambiguous results from MARLOWE, whose organism lists do
not include any of the potential contributors. Of the three
ancient skin samples that yielded any characterization to
potential contributors, only two align with the mass
spectrometry-based characterization performed by Brandt et
al.*® Interestingly, the three potential contributors share the
same family (Bovidae) and are assembled into the same
taxonomic group. Even the modern skin samples contain tag-
strong peptide matches to the other organisms within the same
taxonomic group, though with substantially fewer tag-strong
peptide matches than the correctly characterized organism.
This observation indicates that the proteomes of goat, sheep,
and cattle are very similar, which makes distinguishing among
the three organisms more challenging. As such, it is not
unexpected that ancient skin samples from these organisms,
which have undergone degradation and may not be of the
highest sample quality, add an extra layer of complexity to the
analysis.
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Figure 3. Heatmap of organism ranking of all taxa with taxonomic score >8 for each primate tooth sample, grouped by true contributor genera.
Cells are colored by normalized taxonomic score, normalized to the total taxonomic score per sample. Values in each cell represent the organism

rank, based on taxonomic score and the number of organism hits.

Results of these two data sets underscore the importance of
sample and mass spectrometry data quality for MARLOWE’s
successful characterization. Low taxonomic score distributions
within each sample represent a key indicator of low data
quality and less-than-successful characterization.

Analysis of Mammalian Samples: Primate Teeth

We also examined MARLOWE’s characterization specificity
for mammalian samples and compare its performance to the
specificity in microbial samples, i.e., the B. cereus data set'
described in Jenson et al.”' To that end, we analyzed a data set
of tooth samples from closely related primates: human
(Homo), gorilla (Gorilla), chimpanzee (Pan), orangutan
(Pongo), and baboon (Papio), which were acquired by
Froment et al.”" Species identification from tooth samples is

of forensic and archeological interest, as tooth samples often
survive environmental insult and are a protein-rich sample type
for source attribution and sex determination.’”’' While we
have utilized MARLOWE primarily for analysis of microbial
samples, here, we expand our analysis to closely-related
mammalian samples, since class-based forensic identification
spans a broad range of taxonomies, of which the ability to
characterize microbial samples and distinguish human from
nonhuman samples are particularly important. In their analysis
of these samples, Froment and co-workers fractionated
proteins for each sample by molecular weight into those >10
kDa, and those between 3 and 10 kDa.>” However, we focused
our analysis on the first set of samples since we expect this
group to contain the majority of proteins in the tooth samples,
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Figure 4. Heatmap of organism ranking of all taxa with taxonomic score >8 for each ground seed extract, grouped by true contributor species. Cells
are colored by normalized taxonomic score, normalized to the total taxonomic score per sample. Values in each cell represent the organism rank,

based on taxonomic score and the number of organism hits.

and thus, the most likely to yield correct taxonomic
characterizations. For results including the latter set of samples,
see Supporting Figure S4.

Analysis of this data set yielded correct characterization in
44% of samples for genera contained in the KEGG database,
defined strictly as ranking the true contributor as the top hit.
When considering ranked organisms with taxonomic score >8,
MARLOWE returns the true contributor within the top six
ranked organisms for 63% of samples (Figure 3). Of the five
genera examined, only the Papio genus is not in the KEGG
database, and so it is not surprising that the top-ranked
organisms for Papio samples returned by MARLOWE are close
relatives, that is, either Macaca mulatta (rhesus monkey) or
Chlorocebus sabaeus (green monkey), both of which are in the
same family as Papio (Cercopithecidae), and estimated to have
diverged from baboons approximately 12 and 14 million years
ago, respectively.”” In comparison, the Hominoidea super-
family that consists of the Homo, Gorilla, and Pongo genera
diverged from the Cercopithecoidea superfamily over 32

million years ago and are more distant relatives compared to
the Macaca and Chlorocebus genera.””

Among the different groups of samples, correct character-
ization to the Pongo genus was most confident, with Pongo
abelii as the top-ranked organism in all Pongo replicates and
higher normalized taxonomic scores than other top-ranked
organisms in other sample groups (on average, 0.41 + 0.16
(s.d.) normalized score) (Figure 3). Correct characterization of
the Gorilla genus as the top-ranked organism occurred in at
least one of two replicates. Surprisingly, results from tooth
samples of two individuals (Homo_LOS2 and Homo_LKS2),
whose teeth were extracted 3 and 15 years ago, respectively,
showed higher ranking of other primate species than the true
contributor, including P. abelii, Pan troglodytes, and Gorilla
gorilla, whose genera are of interest in this data set. In contrast,
for all nonhuman primate teeth samples, Homo sapiens was not
returned as a potential contributor even though other primates
were listed and ranked (Figure 3). This result likely stems from
the human proteome having the fewest strong peptides that
enable distinction of this genus compared to other primates.
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Similarly, the chimpanzee proteome has the second fewest
strong peptides of primates in the KEGG database, resulting in
unsuccessful characterization of Pan tooth samples.

Compared to the results described in Jenson et al.*" for the
B. cereus data set, characterization of teeth samples of closely-
related mammalian species appears to be more challenging for
MARLOWE. Not only is the overall correct characterization
rate for the data set lower (44 vs 88%), but the taxonomic
scores for correct characterization to the top-ranked organism
are also lower (18.7 + 7.4 (m + s.d.)), compared to those for
the correctly characterized B. cereus samples (359.7 + 250.4 (m
+ 5.d.)) (Jenson et al.)*" Additionally, deeper examination of
the taxonomic scores and organism ranking revealed that the
four genera of interest (Homo, Pongo, Pan, and Gorilla) that are
in MARLOWE’s SQL database are in the same taxonomic
group, and as such, have identical taxonomic scores. Thus,
their distinct ranking within each sample is based solely on
higher ranked organisms having a greater number of tag-strong
peptide matches. For example, a Pongo tooth sample was
correctly characterized to P. abelii as the top-ranked organism,
but MARLOWE also returned G. gorilla as a potential
contributor. The top two taxa had identical taxonomic scores
of 21, but only 3 tag-strong peptide matches for G. gorilla
compared to 18 matches for P. abelii (Figure 3). The few tag-
strong peptide matches detected here may have manifested
from limitations in protein diversity among primate tooth
proteomes.

However, regardless of extent of primate teeth proteomic
diversity, we note that organization of taxonomic groups for
primates is substantially different from the taxonomic group
assembly previously seen in the B. cereus data set, which has
implications for proteomic diversity of these two groups.
Where previously, multiple strains of B. cereus members could
span multiple taxonomic groups, an indicator of proteome
differences at the strain level, the four primate genera were
contained in the same taxonomic group. This organization of
taxonomic groups for primates in contrast to the B. cereus
superspecies suggests that proteome differences among
primates, and perhaps even other mammals, are much
narrower than among microbes. In essence, the extent of
proteome differences among primates at the family level may
be small and similar to those among bacteria at the species
level. Modern taxonomic nomenclature does not provide
quantitative guidelines for taxon names. Given that MAR-
LOWE relies on grouping organisms by their proteomic
similarity (i.e., taxonomic group), it is not surprising that these
primate teeth samples were correctly characterized at the
family level, and correct characterization performance sub-
stantially improves at the taxonomic group level.

Characterization of Ground Seed Extracts: Seeds

Finally, we demonstrate MARLOWE'’s performance in
characterizing ground seed extracts, an important forensic
proteomics application as this sample type is commonly
encountered in the identification of the protein toxin ricin."”
This data set’ contains biological replicates of R. communis
(castor seed), A. precatorius (jequirity pea, the source of the
toxin abrin), G. max (soybean), and A. hypogaea (peanut),
prepared as described in Methods section above. MARLOWE
successfully characterized all R. communis and G. max extracts
as the top-ranked organism. Of the two true contributors not
contained in the KEGG database, A. hypogaea and A.
precatorius, the top-ranked organisms were close relatives, at

the genus and subfamily clade levels,** respectively (Figure 4).
These results demonstrate MARLOWE'’s success in character-
izing seed extracts with high confidence, particularly in
distinguishing castor seeds toward ricin identification in
forensic proteomics.

Interpreting MARLOWE’s Taxonomic Characterization

The intent of MARLOWE’s development is to address a gap in
forensic proteomics, to generate investigative leads on
potential organisms in unknown biological samples without
presumptions of source organisms in a forensic context. Here,
we specifically focus on characterizing MARLOWE’s perform-
ance on a number of forensically-relevant biological samples.
Published organism identification/classification tools may
report higher success rates than those reported here, but
such studies do not typically explore the breadth of challenging
samples/data sets addressed here (see below). The known
lower accuracy of de novo identifications compared to database
search may also play a role. In either case, understanding the
limits of our tool was a key goal of this research.

As demonstrated by the different levels of MARLOWE’s
characterization success for each of the analyzed data sets,
taxonomic source characterization highly depends on a
combination of the following: high-quality, intact samples,
mass spectral data quality, and taxonomic representation and
underlying proteome relatedness of the organisms in the
database. While high, distinct taxonomic scores for top-ranked
organisms are simpler to interpret, low taxonomic scores can
be more ambiguous and can arise from multiple reasons,
including sample and data quality. Mass spectral data quality
for de novo sequencing is crucial for success in MARLOWE, as
observed from characterization of the Danish peat bog skin
samples and extracts from plague papers. The combination of
low taxonomic scores and low de novo peptide sequencing
scores suggests suboptimal samples and/or data acquisition
parameters.

Analysis of the other data sets showed differences in
taxonomic characterization specificity, ranging from the
capability to differentiate microbial samples at the species
level and some resolution to different strains, to primates with
lower characterization rates even at the family level. Though
true contributors may not be the top-ranked hit, MARLOWE
often returns true contributors in lists of potential organisms;
this can be observed in the increased characterization rates
when considering correct characterization in the top S ranks
compared to the top 1 rank in Table 1. However, when
reorganized into taxonomic groups based on proteomic
similarity of the organisms in the SQL database, character-
ization rates to the true contributors as the top-ranked
organism are similar or improve upon characterizing to
assigned taxonomic levels (Table 1). Because taxonomic
groups better represent proteome diversity, organisms in
highly ranked taxonomic groups returned from MARLOWE
can serve as investigative leads for further data analysis toward
identification of unknown samples, such as guiding database
searches with protein sequences from relevant organisms. In
fact, we strongly encourage follow-up actions for confirmatory
analyses, such as pairing database search with potential
organisms suggested by MARLOWE, as the original intent of
MARLOWE was not to produce organism identifications, but
to narrow the list of potential organisms from all known
organisms to a candidate list of statistically-likely organisms.
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We recognize that taxonomic representation in the organism
reference database plays a large role in characterization success
and can be another reason for observing low taxonomic scores,
as in the case of E. coli samples. The KEGG Genome database
that was used in MARLOWE includes many more prokaryotes
than eukaryotic species, which somewhat skews the distribu-
tions of shared and strong peptides. Further, not all organisms
are included in the KEGG Genome database, of which 5851
organisms are incorporated into MARLOWE, compared to the
UniProtKB database which consists of 161,146 nonredundant
organisms (accessed on September 2, 2021); this affects
taxonomic characterization specificity. Notably, MARLOWE
returns close relatives when proteomes of true contributors are
not found in the SQL database, and lower taxonomic scores for
top-ranked organisms can be an indicator that the true
contributors are not in MARLOWE. We expect the skew in
taxonomic representation and proteome relatedness would be
moderated by replacing the KEGG Genome database with
organisms in the UniProtKB database, which will improve
taxonomic scores and characterization; this work is currently
underway.

We selected the KEGG Genome database because its
structure easily mapped peptides to organisms, and its size was
not so great that it posed a significant database engineering
challenge, allowing us to focus on other parts of the
MARLOWE algorithm. The database includes ~260 million
tryptic peptides for the 5851 organisms present. Constructing a
database to include all of the ~1.3 million organisms present in
UniProtKB is a major effort requires high-throughput
computing resources. Thus, a comparison of MARLOWE’s
performance with different databases (e.g., KEGG Genome vs
UniProtKB) that is outside the scope of this study. However, if
a computationally-efficient analysis could be achieved with the
larger UniProtKB database, comparison of its characterization
performance with the current version of MARLOWE would be
of value.

Though the focus of this work has been on forensically
relevant samples, which we demonstrate with five analyzed
data sets, this untargeted approach to metaproteomics analysis
is not limited to forensic applications. Indeed, MARLOWE
may find other utility in other bioanalytical and clinical
applications to provide investigative leads of potential sources
of unknown, complex mixtures in an unbiased and statistically
robust manner.
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