Designing Intelligent Memory Interfaces for Improving
Accelerator-based System Performance

Anonymous Author(s)

ABSTRACT

Domain-specific systems, typically consisting of one or more cus-
tom accelerators, improve the execution efficiency of a specific
set of applications compared to general-purpose systems. These
accelerator designs can be generated using high-level synthesis
(HLS) flows to improve productivity and enable a comprehensive
design space exploration to meet various energy and performance
constraints. HLS tools often ignore the challenges of implementing
a complex system of parallel custom accelerators. In particular, the
way accelerators access memory is often constrained by the tool
to either on-chip memory or external memory, with limited opti-
mization opportunities. From the system-level perspective, efficient
data movement between accelerators and memory while reducing
the system bus contention is critical to maximizing system per-
formance. This paper proposes the design of a buffering system
that improves memory access for HLS-generated accelerators by
efficiently employing burst transactions using the AXI4 protocol.
We also discuss the improvements that our design brings to HLS
methodologies for dealing with external memory accesses.

ACM Reference Format:

Anonymous Author(s). 2023. Designing Intelligent Memory Interfaces for
Improving Accelerator-based System Performance. In Proceedings of Inter-
national Conference on Supercomputing (ICS 2023). ACM, New York, NY,
USA, 8 pages. https://doi.org/XxxxXXX.XXXXXXX

1 INTRODUCTION

With the end of Dennard scaling, new technology nodes keep in-
creasing the transistor density but fail to improve energy efficiency.
Domain-specific accelerators, designed to perform only a subset of
recurring functionalities, have become the leading solution to in-
crease performance in tight power constraints. Modern computing
systems at all scales include several application-specific accelera-
tors [1, 8, 10, 19, 20, 23] and, in some cases, field programmable
gate arrays (FPGAs), which are devices configurable after their
deployment, that allow adding specialized accelerators [4, 18, 26].

High-Level Synthesis (HLS) tools [9, 11, 25] allow creating hard-
ware designs in hardware description languages (HDLs) starting
from descriptions in high-level languages (e.g., C/C++), significantly
reducing the time and effort required to develop custom acceler-
ators, for both FPGAs and application-specific integrated circuits
(ASICs) devices.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS 2023, June 21-23, 2023, Orlando, FL

© 2023 Association for Computing Machinery.

ACM ISBN xxxX-X-XXXX-XXXX-X/XX/XX...$XX.XX

https://doi.org/xxxXxxXXx.XXXXXXX

Typically, accelerators generated through HLS employ a load-
compute-store paradigm [7]. The accelerator loads the initial data
required to start the computation from an external memory through
a memory channel, performs computation, and stores back data
through the same memory channel. Thus, at first, the accelerator
is stalled, waiting for data. The memory channel only becomes
available for further data movement after the accelerator starts
computing.

From the system-level perspective, the ideal scenario is for ac-
celerators to avoid stalling while waiting for data [13, 15] and no
contention on the memory channels. When considering complex
designs with multiple accelerators connected to the same external
memory, their load/store operations may create contention on the
memory channels and consequently increase the time the accelera-
tors are stalled. Hence, optimizing management of memory access
is critical to maximize overall system efficiency.

One widely used approach to address this issue is to leverage
locality and burst memory transfers [12, 17]. Accelerators can, in
fact, employ private local buffers to prefetch and store data in bursts
(a set of consecutive data in memory). The accelerator can then load
or store relevant data with low latency. A burst memory transac-
tion moves more data with a single transaction and requires single
handshaking before the actual transfer; thus, it could be larger and
slower than performing a load/store operation of a single mem-
ory word, but can significantly reduce the number of transactions
needed to transfer all the data, providing higher memory efficiency.
As transactions grow larger, the overhead for headers and hand-
shaking becomes smaller. HLS tools allow employing burst memory
transactions to optimize data transfers but require significant code
restructuring and tool-specific pragma annotations to map the code
patterns to burst transactions. For example, the Xilinx Vitis HLS
manual devotes an entire chapter to optimizations for burst trans-
fers [2]. Additionally, HLS tools typically only optimize memory
access for a single accelerator at a time, not considering effects due
to multiple accelerators accessing, in parallel, the same shared pool
of external memory.

Effectively implementing burst memory accesses can signifi-
cantly improve the efficiency of accelerator-based systems. Methods
to simplify and automate their implementation are highly sought af-
ter for hardware generators. The ideal scenario would be to perform
a single transaction to move in all input data, perform the compu-
tation, and finally move out data in a single transaction. While this
requires the accelerator to wait longer to start computing, it reduces
transfer overheads and subsequent accelerator stalls by exploiting
spatial locality. Crucially, it also frees the memory bus for other
transactions, allowing it to overlap computation with communica-
tion in multi-accelerator systems or in single-accelerator solutions
that can exploit multi-buffering and pipelining. However, this is not
always a practical solution, especially for HLS, where accelerators
might be complex designs coming from several large and mostly

https://doi.org/xxxxxxx.xxxxxxx
https://doi.org/xxxxxxx.xxxxxxx

ICS 2023, June 21-23, 2023, Orlando, FL

Accelerator

AXI

Switch Memory

Accelerator

(@)

Anon.

Buﬁers}

‘ {Accelerator

AXI
Switch

Memory

11

‘ [Accelerator Buffers }

(b)

Figure 1: HLS-generated accelerator systems: (a) Baseline, and (b) Proposed design

Table 1: Memory operations and execution cycles distribution
of the PolyBench kernels

Kernel Memory operations Execution Cycles

Read Write Total Total Computation ~ Communication

2mm 2,302 200 2,502 31,138 18,828 (60.47%) 12,310 (39.53%)
3mm 3,300 300 3,600 44,433 26,733 (60.16%) 17,700 (38.84%)
atax 112 22 134 2,119 1,471 (69.42%) 648 (30.58%)
bicg 120 20 140 2,083 1,403 (67.35%) 680 (32.65%)
doitgen 12,000 2,000 14,000 161,213 93,213 (57.82%) 68,000 (42.18%)
mvt 240 20 260 3,104 1,824 (58.76%) 1,280 (41.24%)

sequential code structures (often replicated through classical loop
optimization techniques to increase instruction-level parallelism).
Generating accelerators for such codes would need large buffers
to fit all the data required by the computation. As system designs
integrate more custom processing elements, FPGAs may need more
resources and/or ASICs would need to devote even more area for
the necessary on-chip memory.

This paper introduces the design of a novel, parametric buffering
system for HLS-generated accelerators. The buffering system is
transparent with respect to HLS tools, attaching to a conventional
interface generated along the Finite-State Machine with Datapath
(FSMD) model. HLS tools, however, can derive parameters for the
buffer system through appropriate analysis passes. Specifically, this
paper discusses several design tradeoffs for the buffer system to
achieve an optimal balance between performance in single and
multiple accelerator systems.

In summary, the contributions of this paper are:

o the design of a buffer system to transparently improve mem-
ory interfacing in HLS-generated accelerators;

o the evaluation of the design tradeoffs in single and multiple
accelerator configurations;

e the considerations for the integration of such buffering mech-
anism in HLS tools.

The paper proceeds as follows: Section 2 discusses the motivation
for our design. Section 3 presents the details of the design. Section
4 presents the experimental evaluation and discusses the various
design tradeoffs. Section 5 is about the related work. Finally, Section
6 concludes the paper.

== 2mm 3mm atax bicg =e=doitgen =®=mvt

10.0
9.0
8.0
7.0
6.0
5.0
40
3.0
20
10
0.0

Performance slowdown

1 2 5 10 20 50
Memory channel latency (cycles)

Figure 2: Performance degradation of PolyBench kernels’
accelerators with increasing memory channel latency

—8—2mm 3mm atax bicg =—e=doitgen =@=mvt
100
90
80
70
60
50
40
30

Accelerator stalled cycles (%)

1 2 5 10 20 50
Memory channel latency (cycles)

Figure 3: Stalled cycles analysis for PolyBench kernels’ ac-
celerators with increasing memory channel latency

2 MOTIVATION

We present a case study highlighting the need for optimizing mem-
ory interfaces to improve the performance of HLS-generated accel-
erators. We synthesized the linear algebra kernels from the Poly-
Bench [21] benchmark suite for the case study. Table 1 gives a brief
overview of the synthesized kernels. The 2mm and 3mm represent
two and three consecutive matrix multiplications, with data depen-
dencies between the operations. The atax kernel represents matrix
transpose and vector multiplication, while the mvt kernel performs

Designing Intelligent Memory Interfaces for Improving Accelerator-based System Performance

matrix-vector product and transpose operation. The bicg kernel is
the biconjugate gradient sub-kernel of the BiCGStab linear solver.
doitgen is the multi-resolution analysis kernel. These kernels repre-
sent many algorithmic operations found in scientific computing or
high-level data science programming frameworks.

We synthesized these kernels using the Bambu [9] HLS tool from
the PandA framework. Bambu is an open-source state-of-the-art
HLS tool that generates register-transfer level (RTL) designs starting
from high-level C/C++ codes or LLVM intermediate representations
(IRs). The RTL designs generated by Bambu follow the FSMD model.
For the case study, we obtain separate RTL designs (represented in
synthesizable Verilog code) for each PolyBench kernel.

Figure 1(a) shows the high-level block diagram of the generic
HLS-generated accelerators. Typically, these accelerators employ
a load-compute-store paradigm. The accelerator requests the data
required for current computation from an external memory using a
memory channel. After the computation finishes, it stores the data
back into the external memory through the same memory channel.
Thus, for the typical system, the memory channel is free when the
accelerator is actively computing. Meanwhile, when the memory
channel is servicing the data requests, the accelerator is stalled for
data. Table 1 shows the memory operations for PolyBench kernels,
as well as the distribution of execution cycles. As observed, the
system is compute-bound, with accelerators computing for 57.82%
(for doitgen) — 69.42% (for atax) of the total execution cycles. The
memory channel is active for only 30.58% — 42.18% of the total
execution cycles.

However, these results represent the best-case scenario with
single-cycle memory channel latency. The total latency includes
both the latency of the interconnect and of the actual memory
access. The various components in the memory channel (e.g., AXI
switches and network-on-chip routers) can introduce a multi-cycle
latency in the memory channel. Thus, in the typical system, the
accelerators are stalled longer, waiting for the data as the memory
channel latency increases. In our case study, we experimented with
a range of memory channel latency to understand the impact on
overall system performance.

Figure 2 presents the normalized accelerator performance for
a range of memory channel latency. The results in Table 1 (i.e.,
single-cycle memory channel latency) are used as the baseline in
the case study. As expected, we observe performance degradation
as the channel latency increases. For example, on average, the
accelerators required 2.39X more execution cycles for 10 cycles of
latency, while for 50 cycles of latency, the accelerators required
8.56X more execution cycles.

The performance degradation can be attributed to additional
stalled cycles for accelerators. Figure 3 presents the results for
stalled cycles. For a memory channel latency of 50 cycles, the ac-
celerators are stalled for 90.07% (for atax) — 93.92% (for doitgen)
of the total execution cycles. Figure 3 also presents an additional
observation: channel latency of as low as five cycles can convert
the compute-bound system to a memory-bound system (i.e., the
accelerators spend more time stalled for data than computation
cycles). Moreover, in the case of multiple accelerators sharing the
memory channel, the multiple load/store operations and the chan-
nel latency can drastically reduce the overall system performance.

ICS 2023, June 21-23, 2023, Orlando, FL

g
-
X
<
[Buffer Controller }
A A
&l ofl &| &l &
| @ EIl 8l S| 3| =
8| § UIES | o
ol T S 3| & 2)
S 8|l S| S| £
2 s 3
{ Q Q
4
output_enable
read_data
Read Buffer
address
Acc | | v
write_enable .
- Write Buffer
write_data

Figure 4: Buffer Design Overview

Thus, optimizing memory interfaces is essential to improve sys-
tem performance. One widely used solution to address this issue is
to decouple the accelerators from the shared memory channel, as
shown in Figure 1(b). We can leverage burst memory transfers to
prefetch and store the data in private local buffers. The accelera-
tors can access the buffered data with low latency while allowing
the shared memory channel to be available for load/store requests
from other accelerators. In the following section, we describe the
implementation of our efficient memory interface in detail.

3 METHODOLOGY

The main objective of our design is to localize data via dynamic burst
prefetching. Our solution aims to be completely transparent to the
accelerator, i.e., the proposed buffering system can be attached as a
plug-in component to an existing design, regardless of, for example,
the granularity or pattern with which the accelerator accesses the
external memory. This feature provides several benefits, facilitating:

e integration in existing intellectual property (IP) designs;
e automatic generation/integration with HLS flows;
e design space exploration of different configurations.

This solution is also transparent to the user of the HLS flow. In
fact, there is no need to restructure or annotate the code feed to
the HLS tool.

Figure 1(a) depicts a generic HLS-generated system, where the
custom accelerator interfaces with external memory with a given
communication protocol (e.g., AMBA AXI4 [3]). Our buffering com-
ponents interpose between the accelerator and the memory in-
terface, as in Figure 1(b). In the proposed design, the accelerator
keeps issuing memory requests as if directly accessing the external
memory. The proposed buffering system intercepts such requests,
and either serves the data immediately if the accessed data has
been localized (due to an earlier memory request) or triggers burst
read/write operations on the external memory.

ICS 2023, June 21-23, 2023, Orlando, FL

Figure 4 provides a schematic overview of our buffering system,
which consists of two major components: a buffer controller and the
buffers (read-only, write-only, and read-write). All the buffers use
on-chip memory (e.g., block RAMs for FPGAs). Each buffer config-
uration (i.e., capacity and burst size) can be adjusted individually.
We present a design space exploration analysis for optimizing the
buffer configurations in Section 4.

We analyze the call graph of the specification to generate the
buffering system configuration. We allocate one buffer per each
function argument bound to external memory. We also differentiate
between read-only, write-only, and read-write buffers based on
the direction of the data movements. To enrich the specification
call graph with data-flow information, we leverage SODA-OPT [4],
a compiler that extends the MLIR framework [14]. MLIR enables
a compilation flow that builds on progressive lowering and op-
timizations at the correct abstraction. In this work, we leverage
the automatic partitioning and the state-of-the-art optimization
pipeline for HLS kernels presented in [4], and implement buffer
analysis to capture the direction of the memory operation (i.e., in,
out, inout) for every individual function argument, always ensuring
that the memory spaces of different arguments are disjoint in the
absence of any data dependencies.

Read Operations. The first read on an address space associated
with a particular buffer triggers a burst read on external memory.
For each subsequent read, the buffer control logic checks if the
target address falls in the space of the fetched data. In case of a
hit (i.e., data has been already fetched), data is returned at on-chip
memory latency. In case of a miss, a new batch of data is fetched,
starting at the address which caused the miss. Accesses on a miss
have the latency cost of a burst transaction to external memory.

Write Operations. Write operations always occur locally, as long
as the target address is in the buffer address space boundaries (hit).
Every time a miss occurs, the locally written data must be flushed to
external memory. Similarly, local data is flushed to external memory
once the accelerator completes execution.

Proposed HLS Flow. Our proposed HLS flow starts with the anal-
isys and optimization of the initial code specification at the fron-
tend. The process generates individual LLVM-IR representations
of the accelerated kernels, and a call graph with data-flow infor-
mation, characterized by both dependencies and direction of data
movements with respect to memory. We synthesize each kernel
individually with conventional HLS, each with its own memory
ports. From the information encoded in the call graph, we allocate
read, write, and read/write buffers, which have different control
logic and ports. Finally, we assemble the system connecting the
accelerators’ memory ports to the buffers, and the buffers to the
shared bus. We also introduce control logic to trigger the execu-
tion of the accelerators based on the dependency information in
the call graph, as detailed in [7]. It is important to note that this
compositional approach is only possible since our buffering system
is transparent to the accelerators, and does not require any modifi-
cation of the individual kernel accelerators, including their internal
control logic.

Anon.

Table 2: Dot product: Execution latency (clock cycles) with
varying buffers sizes and channel latency

Channel Latency Buffer size (# data elements)

(clock cycles) 0 1 2 4 8 16 32 64 128

1 2,109 2,525 1,925 1,625 1,489 1433 1,381 1,357 1,345
2 2512 2930 2,130 1,730 1,546 1466 1,402 1370 1,354
5 3721 4,145 2,745 2,045 1,717 1,565 1,465 1,409 1,381
10 5736 6,170 3,770 2,570 2,002 1,730 1,570 1,474 1,426
20 9,766 10,220 5,820 3,620 2,572 2,060 1,780 1,604 1,516
50 21,856 22,370 11,970 6,770 4,282 3,050 2,410 1,994 1,786

——0 1 2 4 =@=8 == =@=32 =@=(4 —0=128

100

50,//

1 2 5 10 20 50
Memory channel latency (cycles)

Accelerator stalled cycles (%)
o
o

Figure 5: Dot product: Stalled cycles with varying buffer sizes
and channel latency

4 EXPERIMENTAL EVALUATION

The proposed solution provides high flexibility for buffer config-
urations, depending on the design tradeoffs, to improve system
performance. We present a design space exploration (DSE) analy-
sis for the buffer configuration options for system characteristics
(buffer sizes, memory channel latency) and the memory access
patterns. We analyze the system performance on two features: per-
formance speedup and memory channel occupancy required to
achieve the speedup. In an ideal scenario, we want to achieve max-
imum performance speedup while keeping the memory channel
occupancy at a minimum to mitigate any possible memory channel
congestion.

We chose to synthesize a dot-product kernel for the DSE analysis
concerning the buffer sizes. The dot-product kernel has a highly
regular memory access pattern, so any variation in the buffer sizes
directly affects the performance. Due to its importance, we also
synthesized a matrix multiplication kernel to present the DSE anal-
ysis for the memory access patterns. The memory access patterns
of the individual function arguments are different from each other.
In the typical matrix multiplication, the elements of the first matrix
are accessed row-wise, and the elements of the second matrix are
accessed by column (i.e., a strided access pattern), while resulting
elements need to be temporarily stored for subsequent computa-
tions. We synthesized both kernels using the open-source Bambu
HLS tool (discussed in Section 2).

Designing Intelligent Memory Interfaces for Improving Accelerator-based System Performance

4 =8 == =@=32 == (4 —=—128

100

1 2 5 10 20 50
Memory channel latency (cycles)

Memory channel occupied cycles (%)

Figure 6: Dot product: Memory channel occupancy with vary-
ing buffer sizes and channel latency

4.1 DSE for buffer sizes

We first analyze how the buffer sizes and channel delay directly
affect performance. For this study, we synthesized the dot-product
kernel with an input size of 100 elements. We vary the size of the
buffers from 0 (i.e., no buffer) to 128, which corresponds to the
best-case scenario (i.e., full prefetching/localization). We also vary
the memory channel delay from 1 to 50 clock cycles.

Table 2 summarizes the performance of the different design
space configurations. The dot-product regularity provides us with
information on both worst-case and best-case scenarios. The worst-
case scenario corresponds to a buffer size of 1 element. This scenario
is analogous to having a 100% buffer miss rate. In this case, as
expected, the buffering system leads to performance degradation,
since it causes the data to be read/written twice: once from/to
external memory and once from/to the local buffer memory. The
performance penalty becomes less significant as we increase the
memory channel delay.

On the other side, we achieve the maximum performance with a
buffer size of 128, which exceeds the kernel data size requirements.
This best-case scenario corresponds to prefetching the entire in-
put data to the local buffer memory, and finally writing it all at
once to external memory when execution completes. We observe a
performance speedup when increasing the buffer sizes, especially
at higher channel delays. For example, using buffers with 128 ele-
ments, we observe a speedup of 4.02X for a channel latency of 10
cycles, while the speedup improves to 12.24X for a channel latency
of 50 cycles.

The relative speedup diminishes as we approach the maximum
buffer size. We observe this because increasing the buffer size re-
duces the miss rate, especially for regular computation. The lower
miss rates signify that the memory channel is accessed fewer times,
minimizing any potential impact of memory channel latency on the
performance. However, it is important to note that even if bigger
buffer sizes offer smaller relative gains, they have very low resource
overheads, which are mostly limited to additional on-chip memory.
From a system-level perspective, an automated design exploration
engine can adjust the size of the buffers to achieve performance
speedup closer to the best-case scenario while respecting the target
device resource constraints (e.g., on-chip memory availability).

ICS 2023, June 21-23, 2023, Orlando, FL

Figure 5 shows how the percentage of the accelerator idle time
(i.e., time stalled waiting for memory requests to be serviced) varies
with the buffer sizes and channel latency. The idle time follows the
same trends of the execution latency, diminishing with increasing
buffer sizes. Both latency and idle time are good metrics for evalu-
ating resource utilization efficiency, since the original accelerator
design remains unchanged. Figure 5 also presents an interesting
observation: the accelerator is stalled for more time for a buffer size
of 1 compared to no buffers. This observation confirms the reason
for the performance degradation observed in Table 2. For a smaller
memory channel latency, the buffer of size 2 results in more stalled
cycles. This observation presents the design tradeoff scenario for a
larger buffer size for a lower channel delay.

Finally, we evaluate the variations in channel occupancy time
(percentage with respect to execution time), as reported in Figure 6.
Memory channel occupancy, in addition to absolute performance,
is an important characteristic from the system-level perspective.
When multiple concurrent accelerators are attached to the same
memory channel, keeping the channel occupancy low is critical to
reducing congestion and the response time of memory operations,
improving overall system performance. The relative time when the
memory channel is occupied significantly decreases as the buffer
sizes increase, since larger buffer sizes reduce memory channel
accesses. It is important to note that, for the case of no buffer and
buffer size of 1, the total number of cycles when the bus is occupied
is identical, as the number of memory channel accesses is the same
in both conditions. However, the occupancy percentage (calculated
with respect to execution time) observed in Figure 6 is lower for
size 1 because of the performance degradation seen in Table 2.

4.2 DSE for memory access patterns

We also analyze how the buffering system parameters depend on
memory access patterns. We synthesized a matrix multiplication
kernel with input matrices of size 6X6 (i.e., 36 elements). Matrix
multiplication is an essential operation in almost all the scientific
computing and machine learning applications. It also presents the
use case where the memory access patterns for all the matrices
are diverse. The first matrix (matrix A) requires row-wise element
access, while the second matrix (matrix B) requires column-wise
element access. In an external memory, the data elements are stored
in a contiguous pattern. Thus, a strided memory access pattern
emerges (with the stride being equal to the row size) when the
consecutive elements of the same column are accessed. While the
input matrices are read-only, the matrix multiplication results (and
the intermediate products) must be stored for frequent read/write
operations. We vary the size of buffers from 0 (i.e., no buffers) to
36 (i.e., entire data can be stored in the buffers). To limit the design
space for brevity, we only vary the buffer sizes of a single function
argument at a time while keeping the buffer size constant for other
arguments.

Table 3 summarizes the performance of the matrix multiplica-
tion kernel for various buffer configurations and memory channel
latency values. The second and last columns in Table 3 present
the worst-case and best-case scenarios, respectively. Varying the
buffer sizes for matrix A (i.e., matrix with row-wise element access)
has a higher impact on performance improvement compared to

ICS 2023, June 21-23, 2023, Orlando, FL

Anon.
Table 3: Matrix multiplication: Execution latency (clock cycles) with varying buffers sizes and channel latency
Channel Bufer sizes for matrices B and C = 36 Bufer sizes for matrices A and C = 36 Bufer sizes for matrices A and B = 36
latency Buffer size for matrix A Buffer size for matrix B Buffer size for matrix C
(cycles) 0 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 36
1 5,678 4,818 4,170 3,976 3,460 3,412 3,374 4,818 5,034 5,466 4,818 4,890 3912 3,775 3,560 3,454 3,418 3,390 3,368 3,348
2 6,578 5256 4392 4,116 3,488 3,428 3,386 5,256 5472 5904 5,040 5,040 3,966 3,925 3,638 3,496 3,444 3,408 3,380 3,356
5 8,630 6,570 5,058 4,536 3,572 3,476 3,422 6,570 6,786 7,218 5,706 5,490 4,128 4,375 3,872 3,622 3,522 3,465 3,420 3,380
10 11,470 8,760 6,168 5,236 3,712 3,556 3,482 8,760 8,976 9,408 6,816 6,240 4,398 5,125 4,262 3,832 3,652 3,560 3,486 3,420
20 17,205 13,140 8,388 6,636 3,992 3,716 3,602 13,140 13,356 13,788 9,036 7,740 4,938 6,625 5,042 4,252 3,912 3,750 3,616 3,500
50 34,410 26,280 15,048 10,836 4,832 4,196 3,962 26,280 26,496 26,928 15,696 12,240 6,558 11,125 7,382 5,512 4,692 4,312 4,006 3,740

2 4 =8 ——16 —8=32 —8=—36 ——(—o—1 2

[N
Q
o

90
80
70
60
50
40
30

4 ~9—8 ~0—16 —8=32 —8=36

2 4 —o—8 —0—16 —8=32 —8=36

20

Accelerator stalled cycles (%)
Accelerator stalled cycles (%)

1 2 5 10 20
Memory channel latency (cycles)

(@

(b)

Accelerator stalled cycles (%)

10
Memory channel latency (cycles)

50 1 2 5 10 20
Memory channel latency (cycles)

()

Figure 7: Matrix multiplication: Stalled cycles with varying channel latency and buffer sizes for matrices: (a) matrix A, (b)

matrix B, and (c) matrix C, where [C] = [A]X[B]

-1 4 —0—8 —e—16 —=32 —e=36 ——0 —o—1

100
90
80
70
60
50
40
30
20
10

4 —8=8 —8—16 —8=32 —e=—36

%

——0 —o—1 4 ~—8 ~o—16 —o=32 —e—36

100

0

Memory channel occupied cycles (%)
Memory channel occupied cycles (%)

1 2 5 10 20
Memory channel latency (cycles)

1 2

(@

5

Memory channel latency (cycles)

(b)

Memory channel occupied cycles (%)

10 20 1 2 5 10 20

Memory channel latency (cycles)

(©)

Figure 8: Matrix multiplication: Memory channel occupancy with varying channel latency and buffer sizes for matrices: (a)

matrix A, (b) matrix B, and (c) matrix C, where [C] = [A]x[B]

changing the buffer sizes for matrix B (i.e., matrix with column-
wise elements access). When varying the buffer sizes for matrix
B, we observe a performance degradation with increasing buffer
sizes up to size 4, and also degradation from 8 to 16 for smallest
channel latency. There is marginal performance improvement for
buffer of size 8. This observation implies that the current buffering
system implementation does not optimize well for strided memory
accesses. One possible optimization for strided access is to have
multiple smaller buffers instead of one larger buffer. On the other
hand, larger buffers are shown to improve the performance for
larger channel delay values. Thus, for strided memory access pat-
terns, it is essential to consider both the stride amount and channel
delays to optimize the buffering system. When the buffer sizes for
matrix C are varied, there is not much performance improvement

observed. In this scenario, the input matrices A and B are stored in
the local buffers, thus all the input load operations are serviced by
the buffers.

Figure 7 shows the percentage of time the accelerator is stalled
waiting for the requested data, for various buffer sizes and channel
latency. In Figure 7(a), the accelerator is stalled significantly longer
for the buffer sizes up to 4. These buffer sizes are smaller than
the row size of the input matrix (in this case, 6). Hence, smaller
buffer sizes cause additional memory load operations to fetch a
part of the row, resulting in multiple buffer overwrites. Any buffer
size larger than the row size shows similar stalled cycle trends.
Figure 7(b) shows that the accelerator is stalled for a long time in
almost all cases. The strided memory access pattern causes signifi-
cant overwrites in the buffer. The accelerator is least stalled for data

Designing Intelligent Memory Interfaces for Improving Accelerator-based System Performance

in Figure 7(c), since all the input data is present in the buffers. In
this case, the accelerator is stalled only when it writes the results to
the external memory. We report the variation in memory channel
occupancy time in Figure 8. As expected, since all the input data
is stored in buffers in the case of Figure 8(c), the memory channel
is least occupied compared to Figures 8(a) and 8(b). The additional
memory accesses because of inadequate buffer sizes (for buffer sizes
less than 6, in the case of Figure 8(a)) and strided memory access
pattern (for Figure 8(b)) increase the memory channel occupancy.

5 RELATED WORK

Burst transfers are a feature of the AMBA AXI protocol [3] that im-
proves the throughput of the load-store functions by reading/writing
chunks of data to or from external memory with a single transac-
tion. Vitis HLS automatically generates a design that can perform
burst transactions if the compiler can infer the burst lengths from
the induction variable [2]. This optimization aggregates memory
accesses inside loops/functions from user code in larger fixed-sized
read/write global memory requests.

The AMBA AXI Data Prefetch Buffer IP block described in [24]
provides a mechanism to prefetch contiguous data during read
operations over the AMBA AXI bus. Unlike our work, this IP block
performs asynchronous memory copies into a FIFO instead of a
RAM, and is not designed for direct integration in HLS tools.

Shah et al. [22] propose Cache-accel, an FPGA accelerated cache
simulator with a prefetcher positioned between the L1 and the
L2 cache. The prefetcher module is parametric and can be par-
tially reconfigured at runtime. The possible configurations are next-
line prefetching, stride prefetching, and best-offset prefetching (BOP).
Originally described in [16], BOP implements a learning system to
determine the offset for the next data to be prefetched. The BOP
hardware design inspired some of the ideas in our work.

The adaptive Memory Interface Controller (MIC) [5] is a multi-
ported memory interface that manages concurrent memory access
from arrays of parallel accelerators to multiple memory channels or
banks. MIC is a templated module that HLS tools can specialize for
methodologies that generate parallel accelerator designs [6]. The
design proposed in our work could provide accelerator side buffers
with prefetch and burst transfer functionalities to such an interface
when the memory controller uses the AXI protocol, as in Xilinx
hard and soft IP blocks.

6 CONCLUSION

Increasing the efficiency of memory accesses is critical in domain-
specific systems composed of several custom accelerators when
these designs need to access and share external memories directly.
HLS tools that generate specialized accelerators from high-level
languages, such as C or C++, typically require specific code annota-
tions and restructuring to optimize their memory interfacing, often
leading to additional significant development efforts. Moreover,
these tools cannot efficiently deal with effects due to the presence
of multiple accelerators. In this paper, we presented a buffering sys-
tem for accelerators generated with HLS tools that access external
memory. We discussed how our solution transparently improves the
performance of accelerators generated through HLS tools through
prefetching and allows assembling burst transactions (using, for

ICS 2023, June 21-23, 2023, Orlando, FL

example, the AXI4 protocol). We also discussed the design tradeoffs
of the buffering system in single and multiple accelerator designs,
and demonstrated how it improves accelerator performance while
reducing the occupancy of the memory interfaces. We finally pro-
vided a path to integrating such a parametric buffering system in
HLS tools.

REFERENCES

[1] AMD. 2020. Versal: The First Adaptive Compute Acceleration Platform (ACAP).
Retrieved Dev 11, 2022 from https://docs xilinx.com/v/u/en-US/wp505-versal-
acap

[2] AMD. 2022. Vitis High-Level Synthesis User Guide (UG1399): Overview of Burst
Transfers. Retrieved Nov 20, 2022 from https://docs.xilinx.com/r/en-US/ug1399-
vitis-hls/AXI-Burst- Transfers

[3] ARM. 2021. AMBA AXI and ACE Protocol Specification. Technical Report. ARM.

[4] Nicolas Bohm Agostini, Serena Curzel, Vinay Amatya, Cheng Tan, Marco Min-
utoli, Vito Giovanni Castellana, Joseph Manzano, David Kaeli, and Antonino
Tumeo. 2022. An MLIR-based Compiler Flow for System-Level Design and Hard-
ware Acceleration. In IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD’22). IEEE, San Diego, CA. https://doi.org/10.1145/3508352.3549424

[5] Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. 2014. An adap-
tive Memory Interface Controller for improving bandwidth utilization of hybrid
and reconfigurable systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE’14). 1-4. https://doi.org/10.7873/DATE.2014.192

[6] Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. 2021.
High-Level Synthesis of Parallel Specifications Coupling Static and Dynamic
Controllers. In IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS’21). IEEE, Portland, OR, USA, 192-202. https://doi.org/10.1109/
IPDPS49936.2021.00028

[7] Serena Curzel, Nicolas Bohm Agostini, Vito Giovanni Castellana, Marco Minutoli,
Ankur Limaye, Joseph Manzano, Jeff Zhang, David Brooks, Gu-Yeon Wei, Fabrizio
Ferrandi, and Antonino Tumeo. 2022. End-to-End Synthesis of Dynamically
Controlled Machine Learning Accelerators. IEEE Trans. Comput. 71, 12 (2022),
3074-3087. https://doi.org/10.1109/TC.2022.3211430

[8] Maico Cassel dos Santos, Tianyu Jia, Martin Cochet, Karthik Swaminathan, Joseph

Zuckerman, Paolo Mantovani, Davide Giri, Jeff Jun Zhang, Erik Jens Loscalzo,

Gabriele Tombesi, Kevin Tien, Nandhini Chandramoorthy, John-David Wellman,

David Brooks, Gu-Yeon Wei, Kenneth Shepard, Luca Carloni, and Pradip Bose.

2022. A Scalable Methodology for Agile Chip Development with Open-Source

Hardware Components. In IEEE/ACM International Conference on Computer-Aided

Design (ICCAD’22). IEEE/ACM, San Diego, CA, USA.

Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi,

Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian Pilato, and An-

tonino Tumeo. 2021. Bambu: an Open-Source Research Framework for the

High-Level Synthesis of Complex Applications. In ACM/IEEE Design Automa-

tion Conference (DAC’21). IEEE, San Francisco, CA, USA, 1327-1330. https:

//doi.org/10.1109/DAC18074.2021.9586110

Tim Fritzmann, Georg Sigl, and Johanna Sepulveda. 2020. RISQ-V: Tightly

coupled RISC-V accelerators for post-quantum cryptography. IACR Transactions

on Cryptographic Hardware and Embedded Systems 20 (2020), 239-280. Issue 3.

https://doi.org/10.13154/tches.v2020.i4.239- 280

Intel. 2020. Intel FPGA SDK for OpenCL. https://www.altera.com/products/

design-software/embedded- software-developers/opencl/overview.html Online

accessed on 22-11-2022.

Wooyoung Jang. 2019. Unaligned Burst-Aware Memory Subsystem. IEEE

Transactions on Very Large Scale Integration Systems 27, 10 (2019), 2387-2400.

https://doi.org/10.1109/TVLSL.2019.2922621

[13] Ozgur Kilic, Nathan Tallent, and Ryan Friese. 2020. Rapid Memory Footprint

Access Diagnostics. In IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS’20). IEEE, Boston, MA, USA, 273-284. https:

//doi.org/10.1109/ISPASS48437.2020.00047

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-

sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific

Computation. In 2021 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). 2-14. https://doi.org/10.1109/CG0O51591.2021.9370308

[15] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When Prefetching Works,

When It Doesn’t, and Why. ACM Transactions on Architecture and Code Opti-
mization 9, 1, Article 2 (2012), 29 pages. https://doi.org/10.1145/2133382.2133384

[16] Pierre Michaud. 2016. Best-offset hardware prefetching. In HPCA. IEEE, 469-480.

[17] Matthew Naylor, Paul Fox, Theodore Markettos, and Simon Moore. 2013. Man-

aging the FPGA memory wall: Custom computing or vector processing?. In IEEE
International Conference on Field programmable Logic and Applications (FPL’13).
IEEE, Porto, Portugal, 1-6. https://doi.org/10.1109/FPL.2013.6645538

—
o)

[10

—_
-

[12

[14

https://docs.xilinx.com/v/u/en-US/wp505-versal-acap
https://docs.xilinx.com/v/u/en-US/wp505-versal-acap
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI-Burst-Transfers
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI-Burst-Transfers
https://doi.org/10.1145/3508352.3549424
https://doi.org/10.7873/DATE.2014.192
https://doi.org/10.1109/IPDPS49936.2021.00028
https://doi.org/10.1109/IPDPS49936.2021.00028
https://doi.org/10.1109/TC.2022.3211430
https://doi.org/10.1109/DAC18074.2021.9586110
https://doi.org/10.1109/DAC18074.2021.9586110
https://doi.org/10.13154/tches.v2020.i4.239-280
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://doi.org/10.1109/TVLSI.2019.2922621
https://doi.org/10.1109/ISPASS48437.2020.00047
https://doi.org/10.1109/ISPASS48437.2020.00047
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2133382.2133384
https://doi.org/10.1109/FPL.2013.6645538

ICS 2023, June 21-23, 2023, Orlando, FL

[18]

[19]

[20

[21

[22]

Jennifer Ngadiuba, Vladimir Loncar, Maurizio Pierini, Sioni Summers, Giuseppe
Di Guglielmo, Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Mia
Liu, et al. 2020. Compressing deep neural networks on FPGAs to binary and
ternary precision with hls4ml. ML: Science and Technology 2, 1 (2020), 1-14.
https://doi.org/10.1088/2632-2153/aba042

NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture, Un-
precedented Acceleration at Every Scale. Retrieved Dev 11, 2022
from https://images.nvidia.com/aem-dam/en-zz/Solutions/data- center/nvidia-
ampere-architecture-whitepaper.pdf

Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, Paul
Gao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, Tavio Guarino,
Ajay Joshi, Mark Oskin, and Michael Bedford Taylor. 2020. BlackParrot: An Agile
Open-Source RISC-V Multicore for Accelerator SoCs. IEEE Micro 40, 4 (2020),
93-102. https://doi.org/10.1109/MM.2020.2996145

Louis-Noél Pouchet and Tomofumi Yuki. 2021. Polybench/C 4.2.1. Retrieved Au-
gust 07, 2022 from https://web.cse.ohio- state.edu/~pouchet.2/software/polybench
Shivani Shah, Vaibhavi Mathur, Sahithi Meenakshi Vutakuru, Kavya Borra, and
Nanditha P. Rao. 2021. Cache-accel: FPGA Accelerated Cache Simulator with

[23

[24

[25

Anon.

Partially Reconfigurable Prefetcher. In 2021 24th Euromicro Conference on Digital
System Design (DSD). 97-100. https://doi.org/10.1109/DSD53832.2021.00024
Axel Stjerngren, Perry Gibson, and José Cano. 2022. Bifrost: End-to-End Evalua-
tion and optimization of Reconfigurable DNN Accelerators. In IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS’22). IEEE,
Singapore, 288-299. https://doi.org/10.1109/ISPASS55109.2022.00042

Veriest. 2022. AMBA AXI Data Prefetch Buffer. Retrieved Nov 20, 2022 from
https://www.design-reuse.com/sip/amba-axi- data-prefetch-buffer-ip-35567
Xilinx. 2019. Vivado Design Suite User Guide: High-Level Synthesis. Technical Re-
port UG902. Xilinx. 589 pages. https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2022. ScaleHLS: A New Scalable High-Level
Synthesis Framework on Multi-Level Intermediate Representation. In IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA’22). IEEE,
Seoul, South Korea, 741-755. https://doi.org/10.1109/HPCA53966.2022.00060

https://doi.org/10.1088/2632-2153/aba042
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://doi.org/10.1109/MM.2020.2996145
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench
https://doi.org/10.1109/DSD53832.2021.00024
https://doi.org/10.1109/ISPASS55109.2022.00042
https://www.design-reuse.com/sip/amba-axi-data-prefetch-buffer-ip-35567
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://doi.org/10.1109/HPCA53966.2022.00060

	Abstract
	1 Introduction
	2 Motivation
	3 Methodology
	4 Experimental evaluation
	4.1 DSE for buffer sizes
	4.2 DSE for memory access patterns

	5 Related Work
	6 Conclusion
	References

