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OVERVIEW OF THINGS TO COME

Overview

* Define quantum sensing in general independent of a specific implementation.
» Define our specific implementation of quantum sensing using a superconducting qubit.
* Present data without ionizing radiation on our current qubit design.

* Proposed measurement configuration with a source of ionizing radiation.



INTRODUCTION
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* In the left image a superconducting qubit device is shown at the 6 mm x 6 mm die level. bt "l WU\ l' “" " VY VAVAAVAR

* In the middle zoom-in image the core elements of superconducting qubits, Josephson Junctions, are barely visible at this 30 um x 30 ym scale.
* In the right zoom-in image [2] a typical Superconductor-Insulator-Superconductor Josephson Junction is schematically shown in cross-section.
* In the lower right image is the electromagnetic spectrum. A superconducting qubit as a quantum sensor for ionizing radiation in the 10 keV to 1 MeV energy range.

[2] A. P. Vepsalainen et al, Impact of ionizing radiation on superconducting qubit coherence, Nature 584, 551 (2020).



INTRODUCTION TO QUANTUM SENSING

* Quantum sensing describes the use of a quantum system, quantum properties, or quantum
phenomena to perform a measurement of a physical quantity.

* Generally in three categories:
= Use of a quantum object to measure a physical quantity.

= Use of quantum coherence to measure a physical quantity. Such as temporal superposition of
states.

= Use of quantum entanglement to improve measurement sensitivity beyond classical limits.
* Types of quantum sensors:

= Trapped lons

= Rydberg Atoms

= Superconducting Circuits

— We are utilizing transmission-line shunted plasma oscillation qubit or “transmon” for short.

= And many more.



ANATOMY OF A TRANSMON

Hamiltonian
H = 4E;n* — E; cos ¢
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*Krantz, P. et. el., A quantum engineer’s guide to superconducting qubits, Apl. Phys. Rev., 2019



THREE QUBIT CHIP FOR A RANGE OF SENSITIVITY

E, =Josephson Energy

= Ability of Cooper pair to tunnel through

the junction.

= Measure of energy stored in the
junction.

E. = Charging energy of junction.

E,/E; = A measure of sensitivity to charge
noise.

By having a multi-qubit die the range of

sensitivity to charge noise can be increased

by having a range of E /E_.
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EXAMPLE OF A QUBIT MEASUREMENT — RABI
OSCILLATIONS ON E /E = 50 QUBIT
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« Rabi Oscillations, P(Excited) o sin? (7)

Repeatedly measure a single point in the curve,

5 such as this peak.
0.8 ] Rabi Da’ga and Fit |
Transmon : -
4 ' & A —Fit |
= . | ) ..
é 3 0.6 -
— )
g : Y | Fé 0.5
o 2| g \ e
1 g ) N, i <S03
i) \ 4 Qs:
T w2 0 W2 om ol

Superconducting phase,gb

=]

0 5 10 15 20
Pulse Duration (us)



HIGH E /E = 50, T*
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HIGH E /E. = 50, T1 AVERAGE
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TUNABLE QUBIT, E /E; =50, T1 AVERAGE
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DETECTION PRINCIPLE
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PROPOSED MEASUREMENT CONFIGURATION

Measurement of a source at cryogenic temperatures from a
source at room temperature.

Quantum Sensor
(Transmon Qubit)
10 mK

Source
295 K
Co%9 or Cs'37
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CONTROL OVER RADIATION

* By having the radiation source external to the cryostat we can control the exposure strength and
duration.

 Allows use of different sources without thermal cycling.
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SUMMARY

We propose to utilize a transmon qubit as a quantum sensor for ionizing radiation.

To increase sensitivity range, we are developing a multi-qubit chip housing a range of E /E.

Work to characterize our device is currently on going.

Impacting radiation is expected to be seen as a decrease in coherence.

We propose to measure a radiation source at RT with a sensor at ~10 mK.
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