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Abstract— As extreme weather events such as hurricanes, 
severe thunderstorms, and floods grow in frequency and intensity, 
the disruption of power grid systems poses significant challenges, 
including widespread electrical outages, economic losses, and 
threats to public safety. This paper presents a forward-looking 
approach that leverages geographical graph-based machine 
learning models to predict county-level maximum power outages 
during such events. By capturing the intricate interdependencies 
within power system networks, our approach aims to provide 
precise and actionable predictions that can optimize emergency 
response efforts and enhance grid resilience. Through the 
integration of real-world data, including hurricane advisories and 
power outage records, we have trained and benchmarked multiple 
machine learning models, demonstrating the feasibility and 
potential of this method. While our initial results are promising, 
this paper also charts a course for advancing these models, 
addressing the remaining challenges, and ultimately transforming 
how we anticipate and respond to the impacts of extreme weather 
on power systems. 
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I. INTRODUCTION 
In recent years, the frequency and severity of extreme 

weather events—including hurricanes, severe thunderstorms, 
and floods—have been on the rise [1]. These events can severely 
impact power systems, often leading to widespread electrical 
outages and extensive damage to critical infrastructure, such as 
substations, transmission and distribution lines, and power 
generation plants. These disruptions not only hinder essential 
services like healthcare, transportation, and national security but 
also cause substantial economic losses and negatively affect 
community well-being [2][3][4]. 

The ability to accurately predict power outages resulting 
from these extreme weather events is crucial. Effective outage 
prediction can optimize emergency response efforts, enhance 
grid resilience, and mitigate the adverse effects of these 
disruptions.  

However, predicting power outages in this context presents 
significant challenges. One of the primary challenges is that 
there are numerous factors that  may influence power outages, 
and our understanding of which features are strongly correlated 
with outages remains incomplete. One of very crucial features is 
the interdependency across power system infrastructure and its 
related components—where the failure of one component can 
trigger failures in others—further complicate the prediction 
process. Accurately modeling these interdependencies requires 
detailed network data, which is often difficult to obtain and 
integrate. 

Existing approaches have evolved from traditional statistical 
models like generalized linear models (GLMs) [15][16] and 
random forests [17][18] to more advanced techniques such as 
graph neural networks [19] to address the challenges of 
predicting power outages during extreme weather events. These 
models have progressively improved in their ability to capture 
the non-linear relationships between various factors, including 
weather conditions and power system characteristics. However, 
two key limitations persist: (1) they have largely overlooked the 
critical infrastructure interdependency of the power system, 
particularly how outages can propagate or cascade through 
interconnected infrastructure. Accurately modeling these 
cascading failures is crucial for predicting widespread power 
failures, but modeling interdependency is challenging due to 
complexity, lack of data, proprietary restrictions and security 
concerns; and (2) most models primarily rely on data from small 
geographic areas and are often dependent on proprietary data 
that are required to be provided by utilities, limiting their 
generalizability and applicability to other regions 

In this paper, we envision that leveraging and combining 
high-quality, diverse real-world data—including historical 
outages (e.g., EAGLE-I historic power outage data [5]), detailed 
weather records (e.g., Hurricane Mapping [13] or National 
Weather Service archives [14]) , and power grid geographical 
information (e.g., Homeland Infrastructure Foundation-Level 
Data (HIFLD) [12])—presents an unprecedented opportunity to 
develop accurate predictive models, capturing critical 
infrastructure interdependencies.  

More specifically, we heuristically infer interdependencies 
across power systems and other components based on their 
geographic proximity and metadata, then model these 
relationships as a large-scale geographical graph, where vertices 
represent infrastructure components and edges represent their 
interdependence. A graph operation, k-hop neighborhood 
searches from vertices in disrupted areas, are then used to 
generate data that augments the training data composed of power 
outage and weather-related information. This augmented data is 
subsequently used to train the model. Similar graph operations 
are performed to augment the input data and used for prediction. 

To demonstrate the feasibility of our approach, we trained 
models using hurricane advisory data obtained from Hurricane 
Mapping [13], covering 11 hurricanes from 2016 to 2023. We 
evaluated the performance of various machine learning models, 
including Random Forest [6], SVR [7], XGBoost [8], Gradient 
Boosting [9], k-Nearest Neighbor [28] and neural networks [29], 
using historical power outage data [5] and advisory data [13] 
associated with these hurricanes. We applied a leave-one-out 
cross-validation approach, where 10 hurricanes were used for 
training and 1 for testing, and observed promising accuracy in 



predicting county impact level(i.e., maximum power outage) for 
the next 72 hours in Florida from the advisory timestamp. 

 
Fig. 1. Actual vs. Predicted County Impact Level within 72 Hours from the 

Hurricane Advisory Timestamp Using XGBoost. Hurricane Zeta (2020), 
Advisory #10. 

Fig. 1 illustrates an example output generated by the 
XGBoost model, comparing actual and predicted maximum 
power outages (number of customers impacted) within 72 hours 
of Hurricane Zeta's (2020) advisory #10. While our current 
model is relatively simple and intended as a foundational step 
rather than a complete solution—given that we did not 
incorporate various meteorological variables and focus mostly 
on interdependency—the results are promising. They 
demonstrate the potential of this approach to significantly 
enhance existing power outage prediction models. The accuracy 
of the tested models varied depending on the hurricane and the 
model used; however, the XGBoost and Neural Network models 
exhibited better accuracy than the other techniques, with Mean 
Absolute Errors (MAE) of 531.316 and 665.143, respectively, 
for Hurricane Zeta (Category 3 hurricane). A detailed evaluation 
of the results will be discussed in Section IV. 

Building on these initial successes, we also explore the 
remaining challenges and outline future research directions, 
emphasizing the importance of further advancing these models 
to enhance emergency preparedness and improve power system 
resilience in response to increasingly severe weather events. 

The remainder of this paper is organized as follows. Section 
II reviews existing studies on power outage prediction models 
and available datasets. Section III presents our initial models, 
explaining how we infer critical infrastructure 
interdependencies from available critical infrastructure data and 
incorporate them into power outage prediction model. In Section 
IV, we provide an evaluation of their performance. Finally, 
Section V offers concluding remarks and discusses the 
remaining challenges in developing accurate prediction models 
for power outages and outlines our vision for addressing these 
challenges. 

II. RELATED WORK 

A. Existing Models 
Numerous research studies have been conducted to develop 

models that predict power outages caused by extreme weather 
events, such as hurricanes, by leveraging various features related 
to weather conditions, environmental factors, and power system 
characteristics. Early efforts primarily employed generalized 

linear models (GLMs) [15][16], which utilized hurricane 
parameters like maximum wind speeds, environmental 
indicators such as tree types and soil moisture, and system-
specific data, including the number of transformers and 
customers. 

More recent studies have explored the use of ensemble 
learning methods, such as random forests, to enhance the 
predictive accuracy of outage models [17][18][22]. Guikema et 
al. [17] acknowledged the importance of using publicly 
available data set to make these models widely applicable, but 
authors admit that the models only using public dataset lead to 
lacking important features such as soil moisture data. Nateghi et. 
[18] el. focused on accurately power outage duration rather than 
occurrences. Lee et al. [22] benchmarked various machine-
learning techniques for a power outage model during hurricanes 
using publicly available data. However, the features used in the 
model were limited, and the predictions were focused solely on 
the state level. 

As research has progressed, there has been a gradual shift 
towards more advanced techniques, such as neural networks. 
Additionally, more recent approaches have started to 
incorporate graph-based methods, such as graph neural 
networks (GNNs), which are better suited to capturing the 
spatial and topological relationships within the power grid. For 
example, Owerko et al. [19] applied GNNs to predict power 
outages in New York City based on weather measurements, 
achieving higher accuracy by modeling the connections between 
weather stations as a graph. 

While the evolution of power outage prediction models has 
seen significant advancements through the incorporation of 
more sophisticated techniques, existing models have not yet 
accounted for critical infrastructure interdependencies—an 
essential factor in estimating damage caused by hurricanes. For 
instance, damage or failure can cascade across transmission 
substations and transmission lines, leading to power outages at 
the transmission level during extreme events [20]. Incorporating 
this information into predictive models could be highly 
beneficial. However, no existing approaches have done so due 
to the complexity of modeling critical infrastructure 
interdependencies and the lack of publicly available datasets that 
accurately represent these relationships.  

B. Available Data sets 
Historical Power Outage Data: The historical power outage 

data used in most existing work is typically sourced from 
regional utility companies [15][16][18][19] or manually 
extracted from the DOE Situation Reports [17]. In contrast, we 
leverage the U.S. historical power outage data collected by Oak 
Ridge National Laboratory (ORNL) through the EAGLE-I™ 
(Environment for Analysis of Geo-Located Energy Information) 
system [5]. EAGLE-I, maintained by ORNL for the Department 
of Energy (DOE), is an operational and scalable data and 
information platform that provides real-time wide-area 
situational awareness of the energy sector. It serves as a 
centralized platform for monitoring power distribution outages, 
covering over 146 million customers, which accounts for over 
92% of the U.S. and its territories. This platform has been 
collecting electric outage data since 2014, with records 
including the total number of customers without power at the 
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county level, alongside details about the relevant utility 
company. The outage data represents the number of affected 
customers, with snapshots recorded every 15 minutes. 

The EAGLE-I power outage data, spanning eight years from 
2014 to 2022, is now publicly available for data discovery 
purposes [21]. This availability is particularly significant as it 
enables the development of hurricane-related power outage 
prediction models on a national scale. Researchers can now train 
models using this extensive dataset without relying on 
proprietary data provided by utility companies or the manual 
extraction of information from past DOE situation reports. This 
opens up new opportunities for more accurate and scalable 
predictions of power outages during extreme weather events. In 
our previous work [22], we demonstrated how EAGLE-I dataset 
could be used to predict power outage during extreme weather 
events. In this paper, we further expand our approach to 
incorporate interdependency information into the model. 

Extreme weather event data: To develop effective power 
outage prediction models, incorporating accurate and 
comprehensive extreme weather event data is crucial. This data 
should include detailed historical information on the type, 
geographic location, and timing of each extreme weather event. 
In this paper, we used the dataset from Hurricane Mapping [13], 
which offers an organized archive of hurricane advisory data. 
Although Hurricane Mapping data requires a subscription fee 
and is not freely available, it is derived from publicly accessible 
sources like those provided by the National Hurricane Center 
(NHC) [11]. Since our primary focus in this paper is on 
demonstrating how critical infrastructure interdependencies can 
be incorporated into the model. As a result, we concentrated on 
hurricanes and a limited set of weather variables (e.g., Wind 
Probabilities). However, our approach can be naturally extended 
to include other types of extreme weather events. For weather 
events beyond hurricanes, the National Weather Service (NWS) 
[14] provides publicly available weather data that should be 
considered. This dataset contains information about the 
geography, type (e.g., hurricane, flood, thunderstorm), and 
advisory level (Watch, Warning, Advisory, etc.) of weather 
events that have occurred in the U.S. The dataset and its 
metadata are accessible in various formats. 

Critical infrastructure data: As previously discussed, 
existing models often fail to account for interdependencies 
across heterogeneous layers of critical infrastructure, such as 
transmission lines, power plants, and substations. Incorporating 
these interdependencies into predictive models is a complex 
challenge, further complicated by the lack of publicly available 
datasets that accurately represent these relationships. Although 
straightforward datasets representing critical infrastructure 
interdependencies are not directly available, geographic data for 
various U.S. critical infrastructure is accessible through the 
Homeland Infrastructure Foundation-Level Data (HIFLD) 
program, managed by the U.S. Department of Homeland 
Security (DHS) [23]. 

HIFLD offers a comprehensive array of geospatial data on 
critical infrastructure sectors, including energy, transportation, 
communications, healthcare, and emergency services. The 
HIFLD program is divided into two categories: HIFLD Open, 

which is publicly accessible, and HIFLD Secure, which includes 
licensed and non-licensed datasets intended for official use only.  

HIFLD Open data, which provides over 400 datasets 
containing detailed geographical information, is already rich in 
content. However, it is also highly heterogeneous—lacking 
standardization and functioning independently of one another. 
Crucially, these datasets do not inherently include 
interdependency information. As a result, although these 
datasets have significant potential, effectively utilizing them 
requires innovative approaches to integrate them into predictive 
models, particularly to address the critical interdependencies 
necessary for accurate damage estimation. 

In Section III, we will explain how the HIFLD dataset can 
be used to infer critical infrastructure interdependencies and can 
be utilized for machine learning-based power outage prediction 
models in combination with EAGLE-I and hurricane advisory 
archives. 

III. DATA PROCESSING AND MODEL TRAINING 

A. Inference of Interdependency from Geographic Datasets 
Critical infrastructure interdependencies refer to the 

relationships between various systems, where the functioning of 
one system depends on others. This interconnection means that 
the failure of one component can cascade through the critical 
infrastructure network, potentially leading to widespread 
disruptions. Capturing these interdependencies is crucial for 
creating accurate models. Real-world interdependencies can be 
highly complex, involving backup power systems, rerouting 
mechanisms, and specific combinations of component statuses 
within the network. 

In our previous work [24][25], we demonstrated how a 
critical infrastructure interdependency network can be created 
from multiple geographical datasets. This approach models the 
infrastructure as a graph network, where nodes represent 
components like substations, transmission lines, power plants, 
or gas pipelines, and directed edges from node A to node B 
indicate that the failure of A can negatively impact or disrupt B. 
While this approach may not perfectly capture all real-world 
interdependency relationships, it could provide a reasonable 
estimate using the available datasets. In our previous work, we 
did not explore how this information could be utilized in power 
outage prediction models—a gap that this paper aims to address. 
In this study specifically, we used 31 HIFLD critical 
infrastructure datasets. These include 8 energy layers 
(Substations, Power Plants, Transmission Lines, Gas Pipelines, 
Delivery Points, Compressor Stations, Ethanol Plants, Dam 
Lines) and 23 non-energy layers. 

The non-energy layers include: 

• Safety and Security: Red Cross Chapter Facilities, 
Courthouses, EPA ER RMP Facilities, Fire Stations, Local 
Emergency Operations Centers, Local Law Enforcement 

• Transportation: Aviation Facilities, Hurricane Evacuation 
Routes, Primary Roads, Railroads 

• Food-Water-Shelter: National Shelter System Facilities, 
Public Refrigerated Warehouses 



• Health and Medical: Hospitals, Nursing Homes, Urgent 
Care Facilities 

• Hazardous Material: Wastewater Treatment Plants 

• Communication: Cell Towers, FM Transmission Towers 

• Other: Child Care Centers, Colleges and University 
Campuses, Banks, Credit Unions, Public Schools 

The 31 critical infrastructure datasets, originally in Shapefile 
format, were downloaded from the HIFLD data portal and 
processed to create a large-scale geographical graph. While the 
original process is introduced in our previous work [24][25], we 
made significant updates on the workflow and the data we used. 
Here is a summary of the updated workflow. 

First, each critical infrastructure component in the dataset is 
converted into a node (i.e., vertex). Each node represents a 
physical critical infrastructure entity, such as a substation, power 
plant, transmission line, public school, bank, and others. It's 
important to note that even transmission lines, which are 
typically represented as polylines (series of points), are 
converted into vertices rather than edges. As a result, we have 
31 types of nodes, where each node type corresponds to a 
specific category of critical infrastructure component, as defined 
by the original dataset. Each node is assigned its own 
geographical information (e.g., coordinates in the case of a 
point, or a series of coordinates in the case of a line or polygon) 
along with property-value pairs that describe the node (e.g., a 
substation might have a name, while a transmission line might 
have a maximum voltage). These property values are inherited 
from the original dataset. Each layer retains its own identifier, 
which uniquely identifies a component within that layer, also 
inherited from the original data. Additionally, we create a global 
node ID that is unique across the entire network. 

Second, we infer and create interdependency edges between 
different node types by applying rules defined using a 
predefined set of operations. Below are examples of these 
operations and how they were used to infer critical infrastructure 
interdependencies across components in different layers: 

• Within-Distance: This operation creates interdependency 
edges between nodes of type A and nodes of type B if B is 
located within a specified distance (e.g., 10 km) from A. If 
multiple B-type nodes are within this range, 1:N edges are 
created. For example, we used this operation to create edges 
from Cell Towers to Hospitals, as the disruption of mobile 
communication could potentially disrupt emergency 
services, coordination with first responders, and critical 
communications with staff. 

• Within-Area: This operation creates edges from A to B if B 
is located within specific boundaries corresponding to A. 
This is applicable when additional boundary information is 
available. If multiple B-type nodes are within this boundary 
associated with A, 1:N edges are created. For instance, let 
us say that service area data is available for distribution 
substations, all components within a substation’s service 
area can be connected to the substation. In our case, we used 
this operation to create edges from distribution substations 
to non-energy components being served by them. To this 
end, for each distribution substation, we estimated 

substation service area using a cost-distance algorithm [26], 
and used the areas to create between substation to other non-
energy components. 

• Nearest: This operation creates edges from A-type nodes to 
B-type nodes if B is the nearest neighbor to A. For example, 
edges can be created from Substation A to Transmission 
Line B if B is the nearest transmission line to A, implying 
that a disruption of the substation could negatively impact 
the transmission line. However, in some cases, both 
directions or the reverse direction of the edges may make 
more sense, so the rules need to be applied carefully. For 
instance, while connecting a substation to a transmission 
line, it is also important to consider that a transmission line 
failure may impact a distribution substation, necessitating 
bidirectional edges under the same conditions. 

• Intersection: This operation creates edges from A nodes to 
B nodes if A and B intersect. For example, transmission 
lines that are connected to each other may intersect, and if 
so, we create edges to reflect that a disruption in one 
transmission line can cascade to others. 

As a result, we created a total of 146 different dependencies 
across 31 node types. The constructed Critical Infrastructure 
Interdependency (CII) graph comprises 1,068,727 nodes and 
4,846,678 edges. It is important to note that our goal is not to 
perfectly capture all existing critical infrastructure 
interdependencies; rather, we focus on representing the 
heterogeneous dependencies using simple but reasonable 
assumptions and heuristics. Next, we will introduce how this 
graph can be used to estimate cascading impacts and how we 
leverage it for power outage prediction during extreme events. 

B. Estimating Cascading Impact Using k-hop Neighborhood 
Search on the CII Graph 
Each node in the CII graph is assigned geographical 

coordinates, allowing us to locate and identify critical 
infrastructure nodes within the impact zone of an extreme 
weather event. If the impact area is known, we can estimate the 
cascading effects by performing a k-hop neighborhood search 
(k-hop search for short) on the graph. A k-hop search with k=1 
identifies direct impacts (i.e., direct A→B interactions), while a 
search with k>1 includes nodes that are indirectly affected by 
the initial disruption. These identified nodes are considered to 
be at risk due to the disruption of the original nodes within the 
impact zone. 

For example, when a hurricane advisory is issued, from 
NHC or Hurricane Mapping, we can obtain data that specifies 
areas where wind speeds exceeding 50 mph are expected, along 
with associated probabilities over the next 72 hours. Both NHC 
and Hurricane Mapping offer data with various time windows 
such as 24, 72, 120 hours, but in this paper, we focus on the 72 
hour time frame. Figure 2 illustrates the transmission lines 
within the area predicted to experience 50 mph winds with a 
70% probability over 72 hours during Hurricane Laura 
(Advisory #22). We then perform a 3-hop neighborhood search 
on the graph, identifying all nodes reachable within three hops 
from these transmission lines. This allows us to determine the 
extent of cascading impacts and identify a range of infrastructure 
components that may be affected by the disruption.



TABLE I.  PEARSON’S CORRELATION COEFFICIENT BETWEEN THE NUMBER OF COMPONENTS IDENTIFIED BY K-HOP SEARCH AND MAXIMUM POWER 
OUTAGES IN EACH COUNTY BASED ON HURRICANE ADVISORY INFORMATION.

 

 
Fig. 2. Transmission lines identified within the area expected to experience 

wind speeds of 50 mph with a 70% probability over the next 72 hours, 
based on Hurricane Laura (Advisory #22). 

Fig.3. shows the result where each blue dot represents the 
vertices that are identified by the 3-hop search. The blue dots in 
Fig. 3 represent components in the Critical Infrastructure 
Interdependency (CII) graph that could potentially be impacted 
by the hurricane within the next 72 hours, either directly or 
indirectly. We observe that these components, at risk of 
disruption, are located both within and outside the defined 
impact zone. This result is valuable for identifying vulnerable 
components, even those located outside the impact zone; 
however, it must be interpreted cautiously. First, the CII graph 

is constructed based on simplified assumptions and heuristic 
rules, which may not fully account for the complexity of 
interdependencies across different critical infrastructure layers. 
Second, not all components within the impact zone are equally 
affected, and various types of infrastructure (e.g., transmission 
lines, substations, power plants) may experience simultaneous 
disruptions. Finally, we used an arbitrary k-value of 3 in this 
example, but the optimal k-value for accurately modeling 
hurricane impacts remains uncertain.  

To better understand and utilize the k-hop search results on 
the Critical Infrastructure Interdependency (CII) graph, we 
calculate the Pearson’s correlation coefficient [27] between 
these search results and power outages during the same period 
(within 72 hours of the advisory being issued). Specifically, we 
count the number of impacted components (blue dots in Fig.3) 
within each county and correlate these figures with the county's 
maximum number of customer outages recorded within 72 hours 
during the hurricane's impact, using data from EAGLE-I. A 
higher correlation value indicates a stronger relationship 
between the k-hop search results and the maximum observed 
outage levels during the 72-hour period. 

Fig. 4 resents an example pair of choropleth maps 
representing the data used to compute the correlation. It is 
important to note that the ranges of the values are different for 
each dataset. As, (a) shows the map based on the number of 
customers, but (b) shows the map based on the number of critical 
infrastructure components. Data in Fig.4 (b) cannot be directly 
used as a prediction of data shown Fig.4 (a). 

Table I presents the correlations calculated for advisories 
from four hurricanes: Irma, Laura, Ian, and Idalia. It is important 

Name Year Advisory Wind Speed 
(Knot) Probability (%) 

Pearson’s Correlation Coefficient at k 

k=1 k=3 k=5 k=7 k=9 

Irma 2017 40 50 90 0.094 0.345 0.826 0.820 0.877 

Irma 2017 40 50 70 0.647 0.799 0.847 0.855 0.858 

Irma 2017 40 34 90 0.698 0.859 0.855 0.860 0.857 

Irma 2017 40 34 70 0.631 0.864 0.860 0.858 0.857 

Laura 2020 22A 50 70 0.676 0.674 0.748 0.840 0.816 

Laura 2020 22A 34 90 0.683 0.650 0.737 0.839 0.817 

Laura 2020 22A 34 70 0.839 0.793 0.841 0.789 0.718 

Ian 2022 21 50 70 0.612 0.707 0.605 0.473 0.450 

Ian 2022 21 34 90 0.652 0.724 0.624 0.465 0.435 

Ian 2022 21 34 70 0.561 0.455 0.449 0.436 0.427 

Ida 2021 07 50 70 0.490 0.508 0.744 0.717 0.650 

Ida 2021 07 34 90 0.726 0.760 0.750 0.698 0.619 

Ida 2021 07 34 70 0.683 0.652 0.649 0.609 0.584 

Idalia 2023 09 34 90 0.106 0.119 0.176 0.311 0.277 

Idalia 2023 09 34 70 0.329 0.349 0.302 0.258 0.197 



to note that there are multiple options for defining the initial 
impact zone, and data availability varies for each case. For 
example, during Hurricane Irma, wind speed data was available 
for 50-knot and 34-knot winds with 90% and 70% probability, 
respectively, and these zones overlapped with transmission 
lines, allowing us to calculate the correlation. However, for other 
cases, such as Hurricane Idalia, wind speed data for 50 knots 
was not available. One pattern is that correlations are generally 
higher when the k is greater than 1. This indicates that the k-hop 
search is effective in capturing not only the immediate impact 
within the storm's impact zone but also the indirect effects on 
nodes located beyond it. The cascading nature of infrastructure 
disruptions, particularly during hurricanes, becomes evident as 
correlations peak at larger k values, suggesting that indirect 
disruptions are significant contributors to overall outages. 

 
Fig. 3. Result of a 3-hop neighborhood search identifying vertices 

(represented by blue dots) that could be impacted by the disruption of 
transmission lines under the area (in Fig.2) 

However, it’s important to note that there is no one-size-fits-
all approach when it comes to determining the optimal k value. 
For example, when using 50-knot area with 70% probability as 
impact area, Hurricane Irma’s correlation increases steadily with 
k, peaking at k=9. In contrast, during Hurricane Laura, the 
correlation reaches its highest point at k=5, after which it begins 
to decline. This variability underscores that the cascading impact 
on infrastructure depends on the characteristics of each storm, 
such as its wind speed and the probability of high winds 
affecting transmission lines and other components. Different 
storms require different k values to best capture the relationship 
between the k-hop search and the maximum outages recorded, 
meaning that the optimal k must be tuned on a case-by-case 
basis.  

Another interesting observation is that advisories with 
higher wind speeds or higher probabilities of impact tend to 
result in stronger correlations, as seen with Hurricane Irma’s 

advisories at 90% probability. For instance, when considering 
the 50-knot wind speed advisory at 90% probability, the 
correlation values steadily rise and remain high, peaking at k=9. 
This trend suggests that the certainty of high-impact winds with 
less uncertainty (i.e., high wind probability) leads to a more 
accurate emulation of the cascading impact. Conversely, 
advisories with lower wind speeds or lower probabilities, such 
as in the case of Hurricane Idalia, show weaker correlations. 
This is reasonable, as low wind speeds combined with high 
uncertainty are more likely to result in lower disruptions within 
the impact area. 

 
(a) Maximum number of customers without power per county within 72 

hours of advisory issuance (Advisory #21) 

 
(b) Total number of components per county from the k-hop search (k=3, 

34-knot, 90% probability) 

Fig. 4. Comparison of choropleth maps generated using k-hop search result 
and power outage data for Hurricane Ian Advisory #21 



In summary, while k-search using the CII graph is not a 
direct method for predicting power outages, we observe a strong 
Pearson correlation coefficient (>0.8~0.9) with the maximum 
number of customers experiencing outages in affected areas 
when both the impact zone (including factors like wind speed 
and probability) and k are optimized. However, k-search result 
are not directly comparable to power outage values, thus, 
machine learning models capable of learning from k-search 
results and predicting power outages is essential. Next, we 
explain how k-hop search results are used as features for training 
machine learning models that predicts power outage numbers. 

C. Machine Learning Models using k-hop search based 
features 
Data Preparation: Our main objective is to train machine 

learning models to predict the maximum number of customers 
without power per county within 72 hours of an advisory 
issuance, as illustrated in Fig. 4(a). Accurately predicting these 
values enables county-level risk assessment both before and 
during hurricane landfall, benefiting various stakeholders, 
including utility companies, emergency management agencies, 
homeowners, and residents. We reorganize available data, such 
as hurricane advisory data, k-hop search results, and power 
outage data, to create the training dataset. In this paper, we 
specifically focus on Florida due to the frequency of historical 
hurricane events in this region; however, the same approach can 
be applied and generalized to other areas. The hurricanes used 
in our analysis include Matthew (2016), Irma (2017), Harvey 
(2017), Dorian (2019), Sally (2020), Eta (2020), Zeta (2020), 
Elsa (2021), Nicole (2022), Ian (2022), and Idalia (2023). We 
used hurricane advisories at intervals of 5, specifically 
advisories 5, 10, 15, 20, and so on, to capture key stages of the 
hurricane's development and impact. 

The process for constructing our training dataset is as 
follows: For each hurricane advisory, we build the dataset with 
k values ranging from 1 to 10: 

• K-hop search configuration features: These input features 
include wind speed, wind probability from the advisory, 
and the k value used for the k-hop search (3 features in 
total). 

• Direct impact count features: These features represent the 
number of infrastructure components per county located 
within the direct impact zone (67 features, one for each 
county). These features remain constant across all k values. 

• Indirect impact count features: These features represent 
the number of infrastructure components per county located 
within the k-hop search result (67 features, one for each 
county). 

• Target variables: The maximum number of customers 
without power per county within 72 hours of the advisory 
issuance. (67 variables, one for each county) 

With this configuration, we prepared a training dataset. The 
total number of input features and target variables are 137 and 
67 respectively. We did not incorporate time-series power 
outage data into our training dataset for simplicity, rather, we 
solely focus on learning the relationship between k-hop search 
result and actual power outage values to evaluate if employing 

k-hop search, in other words, estimated critical infrastructure 
interdependency information, can play significant role in 
producing accurate result. 

Training Machine Learning Models: With the prepared 
training dataset, we trained five machine learning models 
capable of predicting multiple target variables: Random Forest 
(RF) [6], Support Vector Regressor (SVR) [7], XGBoost [8], 
Gradient Boosting [9], k-Nearest Neighbor (kNN) [28], and 
Neural Networks [29]. For implementation, we used Python's 
scikit-learn library [30], applying the library’s default 
hyperparameters. 

Making Predictions with Trained Models: Before landfall 
or during a hurricane's impact, hurricane advisories are issued. 
Hurricane advisory data provide information such as the shape 
of the impact zone, wind speed, and wind probability, which 
were used for training. Using this information, we prepare k-hop 
search configuration features. Additionally, a value for k 
(ranging from 1 to 10) must be selected. We then perform a k-
hop search on the CII graph to generate direct and indirect 
impact count features. These features are fed into a trained 
model (e.g., an XGBoost model) to predict the maximum 
number of customers without power per county within 72 hours 
of the advisory issuance (67 target variables, one for each 
county). 

IV. EVALUATION 
Hurricane advisories are time-dependent, as wind speed, 

probability, and impacted areas are continuously updated. 
Therefore, including future information from the same hurricane 
in both model training and testing must be avoided to prevent 
misleading performance. To address this, we assume that each 
hurricane is an independent event, though not within the same 
hurricane. We performed leave-one-out cross-validation, where 
we tested on one hurricane while training the model on all 
others, excluding the one being tested. This approach ensures 
that the model does not overfit to the specific characteristics of 
a single hurricane and generalizes well across independent 
events. By isolating each hurricane in this way, we avoid the risk 
of using future information from the same hurricane during 
training, creating a more robust model for predicting power 
outages during new, unseen hurricanes. At the time of prediction 
in practice, the available impact zones for the k-hop search to 
create input features may vary (e.g., some hurricanes may have 
a 5-knot 90% option available, while others may only have a 30-
knot 50% option). For our evaluation, we used the measured 
average MAE, generating input features from the k-hop search 
results based on all available options for each hurricane, with k 
varying from 1 to 10. 

Fig. 5 provides a detailed comparison of the Mean Absolute 
Error (MAE), broken down by both hurricane and machine 
learning model. This allows for a clear understanding of how 
each model performs for individual hurricanes. While Random 
Forest performs well across many hurricanes, its MAE spikes 
significantly for Hurricane Irma, suggesting that it may struggle 
with predicting outages for more severe storms. In contrast, 
XGBoost and Neural Networks show relatively lower MAEs 
across various hurricanes, with Neural Networks often 
delivering the lowest errors, as shown in Fig. 6 confirming its 
robustness in diverse storm conditions.  



Fig. 5. MAE Comparison for Each Model and Hurricane 

However, no single model consistently outperforms all 
others in every case, highlighting the complexity of these 
predictions. Since all models used scikit-learn's default 
hyperparameters, further tuning could enhance accuracy. Given 
Neural Networks' strong performance and potential for 
improvement with additional data and tuning, these results are 
promising for future development. 

It is also noteworthy that for hurricanes like Harvey, Nicole, 
and Zeta, predictions show relatively low MAE, indicating 
higher accuracy. However, for hurricanes such as Irma and Ian, 
the MAE is significantly higher, especially for Irma. This 
suggests that predicting outages for these storms was more 
challenging. This could be due to the complexity of their impact 
patterns, wind speeds, or other factors not accounted for in this 
study.  

 
Fig. 6. Average MAE per Hurricane Across All Models 

It’s important to interpret the Mean Absolute Error (MAE) 
with caution. Fig. 7(a) displays the scatter plot for Hurricane 

Irma using the Neural Network model, where the MAE was 
32,863.753. Despite the relatively high MAE, the model 
captured the overall trend quite well, demonstrating its ability to 
predict the general impact of the hurricane. Fig. 7(a) confirms 
that our approach was able to produce meaningful results, even 
when the prediction error was higher. Another example is shown 
in Fig. 7(b), which displays the XGBoost results for Hurricane 
Zeta, with a lower MAE of 611.011. While the model performed 
exceptionally well overall, a few outliers significantly inflated 
the MAE. These examples highlight the limitations of relying 
solely on MAE as a performance metric for power outage 
prediction, emphasizing the need for more specialized metrics 
that can better account for the nuances in these forecasts. 
Developing such metrics will be an important direction for 
future research. 

 
(a) Hurricane Irma – Neural Network (MAE: 32863. 753) 



 

(b) Hurricane Zeta – XGBoost (MAE: 611.011) 

Fig. 7. Actual vs. Predicted Scatter Plot 

 
(a) Neural Network Prediction for hurricane Dorian (Advisory #9) (Using 

the result of k-hop search with k=3, wind speed 34-knot, wind probability 
70%) 

 
(b) Neural Network Prediction for hurricane Irma (Advisory #40) (Using 

the result of k-hop search with k=3, wind speed 50-knot, wind probability 
90%) 

Fig. 8. Example Predictions 

Fig. 8 shows a choropleth map visualization of two 
predictions for Hurricanes Dorian and Irma. We observe that our 
predictions accurately reflect the geographical pattern of how 
power outages spread within the state of Florida. Unlike the 
results in Fig. 4, the values generated by the trained models are 
directly comparable to the actual values. As a result, these two 

maps share the same color scale at the bottom, which explains 
the ranges of outage values.  

V. CONCLUSIONS 
In this paper, we presented machine learning models 

designed to predict county-level maximum power outages 
during hurricane events. Specifically, we demonstrated how to 
construct a large-scale geographical Critical Infrastructure 
Interdependency (CII) graph that captures complex relationships 
across various critical infrastructure systems. We showed how 
performing a k-hop neighborhood search on this graph can be 
both insightful on its own and useful as features for machine 
learning models. Despite not incorporating a wide range of 
weather and geospatial features, our models were able to 
accurately predict county-level maximum power outages, 
effectively capturing how outages cascade across different 
counties. Given that advisories are issued in advance, this 
capability is particularly valuable for subject matter experts such 
as emergency responders, utility operators, and policymakers as 
they plan for potential impacts. This study points to several 
directions for future research and improvements: 

Incorporating additional features: As mentioned, we did not 
include many known geospatial and meteorological variables 
that could affect power outages. In future work, we can expand 
our models to incorporate a wider range of features, such as soil 
moisture, temperature, and other weather conditions. These 
additional inputs could help further improve model accuracy. 
Other related output variables should also be considered, such 
as outage values after given time, restoration time, minimum 
outage values, and average outage values, rather than focusing 
solely on the maximum.  

Time-series prediction: Power outages evolve over time. In 
this initial step, we focused on predicting maximum outages 
within a 72-hour window. However, future models can 
incorporate time-varying inputs and outputs to provide more 
granular, real-time predictions. This would allow us to track how 
outages develop over time, which would be incredibly useful for 
improving emergency response strategies. 

Hyperparameter tuning and model optimization: In this 
study, we did not extensively tune hyperparameters. For 
example, our neural network was implemented using the default 
settings in scikit-learn. There is significant potential to improve 
performance by optimizing the architecture for this specific 
problem. Given the nature of the data, exploring Graph Neural 
Networks (GNNs) could be especially beneficial, as they are 
well-suited to problems involving complex network 
relationships. 

Expanding to other extreme weather events: While our study 
focused on hurricanes, the approach can be applied to other 
extreme weather events that cause cascading power outages, 
such as wildfires, floods, and ice storms. Expanding the scope 
of our research to these events would allow us to better 
understand the broader applicability of our model across 
different types of natural disasters. 

More experiments and feature analysis: Further experiments 
are needed to explore how different features and configurations 
(such as wind probability, wind speed, k-hop, or weather event 
type) affect power outage predictions and model accuracy. This 

Actual Values Predicted Values

Actual Values Predicted Values



would deepen our understanding of the most critical factors 
influencing outages and how our models respond to different 
conditions. 

Developing improved metrics: As discussed, relying solely 
on MAE may not provide the most comprehensive assessment 
of model performance. We need metrics that better capture the 
geographical patterns of power outages, account for outliers, and 
consider factors such as population density and the severity of 
the weather event. Developing these metrics will be crucial for 
accurately evaluating and improving the model’s performance. 

These future steps will help create more robust and reliable 
power outage prediction models that can assist decision-makers 
in mitigating the impacts of extreme weather on critical 
infrastructure. 
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