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Abstract— As extreme weather events such as hurricanes,
severe thunderstorms, and floods grow in frequency and intensity,
the disruption of power grid systems poses significant challenges,
including widespread electrical outages, economic losses, and
threats to public safety. This paper presents a forward-looking
approach that leverages geographical graph-based machine
learning models to predict county-level maximum power outages
during such events. By capturing the intricate interdependencies
within power system networks, our approach aims to provide
precise and actionable predictions that can optimize emergency
response efforts and enhance grid resilience. Through the
integration of real-world data, including hurricane advisories and
power outage records, we have trained and benchmarked multiple
machine learning models, demonstrating the feasibility and
potential of this method. While our initial results are promising,
this paper also charts a course for advancing these models,
addressing the remaining challenges, and ultimately transforming
how we anticipate and respond to the impacts of extreme weather
on power systems.
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1. INTRODUCTION

In recent years, the frequency and severity of extreme
weather events—including hurricanes, severe thunderstorms,
and floods—have been on the rise [1]. These events can severely
impact power systems, often leading to widespread electrical
outages and extensive damage to critical infrastructure, such as
substations, transmission and distribution lines, and power
generation plants. These disruptions not only hinder essential
services like healthcare, transportation, and national security but
also cause substantial economic losses and negatively affect
community well-being [2][3][4].

The ability to accurately predict power outages resulting
from these extreme weather events is crucial. Effective outage
prediction can optimize emergency response efforts, enhance
grid resilience, and mitigate the adverse effects of these
disruptions.

However, predicting power outages in this context presents
significant challenges. One of the primary challenges is that
there are numerous factors that may influence power outages,
and our understanding of which features are strongly correlated
with outages remains incomplete. One of very crucial features is
the interdependency across power system infrastructure and its
related components—where the failure of one component can
trigger failures in others—further complicate the prediction
process. Accurately modeling these interdependencies requires
detailed network data, which is often difficult to obtain and
integrate.
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Existing approaches have evolved from traditional statistical
models like generalized linear models (GLMs) [15][16] and
random forests [17][18] to more advanced techniques such as
graph neural networks [19] to address the challenges of
predicting power outages during extreme weather events. These
models have progressively improved in their ability to capture
the non-linear relationships between various factors, including
weather conditions and power system characteristics. However,
two key limitations persist: (1) they have largely overlooked the
critical infrastructure interdependency of the power system,
particularly how outages can propagate or cascade through
interconnected infrastructure. Accurately modeling these
cascading failures is crucial for predicting widespread power
failures, but modeling interdependency is challenging due to
complexity, lack of data, proprietary restrictions and security
concerns; and (2) most models primarily rely on data from small
geographic areas and are often dependent on proprietary data
that are required to be provided by utilities, limiting their
generalizability and applicability to other regions

In this paper, we envision that leveraging and combining
high-quality, diverse real-world data—including historical
outages (e.g., EAGLE-I historic power outage data [5]), detailed
weather records (e.g., Hurricane Mapping [13] or National
Weather Service archives [14]) , and power grid geographical
information (e.g., Homeland Infrastructure Foundation-Level
Data (HIFLD) [12])—presents an unprecedented opportunity to
develop accurate predictive models, capturing critical
infrastructure interdependencies.

More specifically, we heuristically infer interdependencies
across power systems and other components based on their
geographic proximity and metadata, then model these
relationships as a large-scale geographical graph, where vertices
represent infrastructure components and edges represent their
interdependence. A graph operation, k-hop neighborhood
searches from vertices in disrupted areas, are then used to
generate data that augments the training data composed of power
outage and weather-related information. This augmented data is
subsequently used to train the model. Similar graph operations
are performed to augment the input data and used for prediction.

To demonstrate the feasibility of our approach, we trained
models using hurricane advisory data obtained from Hurricane
Mapping [13], covering 11 hurricanes from 2016 to 2023. We
evaluated the performance of various machine learning models,
including Random Forest [6], SVR [7], XGBoost [8], Gradient
Boosting [9], k-Nearest Neighbor [28] and neural networks [29],
using historical power outage data [5] and advisory data [13]
associated with these hurricanes. We applied a leave-one-out
cross-validation approach, where 10 hurricanes were used for
training and 1 for testing, and observed promising accuracy in



predicting county impact level(i.e., maximum power outage) for
the next 72 hours in Florida from the advisory timestamp.
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Fig. 1. Actual vs. Predicted County Impact Level within 72 Hours from the
Hurricane Advisory Timestamp Using XGBoost. Hurricane Zeta (2020),
Advisory #10.

Fig. 1 illustrates an example output generated by the
XGBoost model, comparing actual and predicted maximum
power outages (number of customers impacted) within 72 hours
of Hurricane Zeta's (2020) advisory #10. While our current
model is relatively simple and intended as a foundational step
rather than a complete solution—given that we did not
incorporate various meteorological variables and focus mostly
on interdependency—the results are promising. They
demonstrate the potential of this approach to significantly
enhance existing power outage prediction models. The accuracy
of the tested models varied depending on the hurricane and the
model used; however, the XGBoost and Neural Network models
exhibited better accuracy than the other techniques, with Mean
Absolute Errors (MAE) of 531.316 and 665.143, respectively,
for Hurricane Zeta (Category 3 hurricane). A detailed evaluation
of the results will be discussed in Section IV.

Building on these initial successes, we also explore the
remaining challenges and outline future research directions,
emphasizing the importance of further advancing these models
to enhance emergency preparedness and improve power system
resilience in response to increasingly severe weather events.

The remainder of this paper is organized as follows. Section
IT reviews existing studies on power outage prediction models
and available datasets. Section III presents our initial models,
explaining how  we infer critical infrastructure
interdependencies from available critical infrastructure data and
incorporate them into power outage prediction model. In Section
IV, we provide an evaluation of their performance. Finally,
Section V offers concluding remarks and discusses the
remaining challenges in developing accurate prediction models
for power outages and outlines our vision for addressing these
challenges.

II. RELATED WORK

A. Existing Models

Numerous research studies have been conducted to develop
models that predict power outages caused by extreme weather
events, such as hurricanes, by leveraging various features related
to weather conditions, environmental factors, and power system
characteristics. Early efforts primarily employed generalized

linear models (GLMs) [15][16], which utilized hurricane
parameters like maximum wind speeds, environmental
indicators such as tree types and soil moisture, and system-
specific data, including the number of transformers and
customers.

More recent studies have explored the use of ensemble
learning methods, such as random forests, to enhance the
predictive accuracy of outage models [17][18][22]. Guikema et

[17] acknowledged the importance of using publicly
available data set to make these models widely applicable, but
authors admit that the models only using public dataset lead to
lacking important features such as soil moisture data. Nateghi et.
[18] el. focused on accurately power outage duration rather than
occurrences. Lee et al. [22] benchmarked various machine-
learning techniques for a power outage model during hurricanes
using publicly available data. However, the features used in the
model were limited, and the predictions were focused solely on
the state level.

As research has progressed, there has been a gradual shift
towards more advanced techniques, such as neural networks.
Additionally, more recent approaches have started to
incorporate graph-based methods, such as graph neural
networks (GNNs), which are better suited to capturing the
spatial and topological relationships within the power grid. For
example, Owerko et al. [19] applied GNNs to predict power
outages in New York City based on weather measurements,
achieving higher accuracy by modeling the connections between
weather stations as a graph.

While the evolution of power outage prediction models has
seen significant advancements through the incorporation of
more sophisticated techniques, existing models have not yet
accounted for critical infrastructure interdependencies—an
essential factor in estimating damage caused by hurricanes. For
instance, damage or failure can cascade across transmission
substations and transmission lines, leading to power outages at
the transmission level during extreme events [20]. Incorporating
this information into predictive models could be highly
beneficial. However, no existing approaches have done so due
to the complexity of modeling critical infrastructure
interdependencies and the lack of publicly available datasets that
accurately represent these relationships.

B. Available Data sets

Historical Power Outage Data: The historical power outage
data used in most existing work is typically sourced from
regional utility companies [15][16][18][19] or manually
extracted from the DOE Situation Reports [17]. In contrast, we
leverage the U.S. historical power outage data collected by Oak
Ridge National Laboratory (ORNL) through the EAGLE-I™
(Environment for Analysis of Geo-Located Energy Information)
system [5]. EAGLE-I, maintained by ORNL for the Department
of Energy (DOE), is an operational and scalable data and
information platform that provides real-time wide-area
situational awareness of the energy sector. It serves as a
centralized platform for monitoring power distribution outages,
covering over 146 million customers, which accounts for over
92% of the U.S. and its territories. This platform has been
collecting electric outage data since 2014, with records
including the total number of customers without power at the



county level, alongside details about the relevant utility
company. The outage data represents the number of affected
customers, with snapshots recorded every 15 minutes.

The EAGLE-I power outage data, spanning eight years from
2014 to 2022, is now publicly available for data discovery
purposes [21]. This availability is particularly significant as it
enables the development of hurricane-related power outage
prediction models on a national scale. Researchers can now train
models using this extensive dataset without relying on
proprietary data provided by utility companies or the manual
extraction of information from past DOE situation reports. This
opens up new opportunities for more accurate and scalable
predictions of power outages during extreme weather events. In
our previous work [22], we demonstrated how EAGLE-I dataset
could be used to predict power outage during extreme weather
events. In this paper, we further expand our approach to
incorporate interdependency information into the model.

Extreme weather event data: To develop effective power
outage prediction models, incorporating accurate and
comprehensive extreme weather event data is crucial. This data
should include detailed historical information on the type,
geographic location, and timing of each extreme weather event.
In this paper, we used the dataset from Hurricane Mapping [13],
which offers an organized archive of hurricane advisory data.
Although Hurricane Mapping data requires a subscription fee
and is not freely available, it is derived from publicly accessible
sources like those provided by the National Hurricane Center
(NHC) [11]. Since our primary focus in this paper is on
demonstrating how critical infrastructure interdependencies can
be incorporated into the model. As a result, we concentrated on
hurricanes and a limited set of weather variables (e.g., Wind
Probabilities). However, our approach can be naturally extended
to include other types of extreme weather events. For weather
events beyond hurricanes, the National Weather Service (NWS)
[14] provides publicly available weather data that should be
considered. This dataset contains information about the
geography, type (e.g., hurricane, flood, thunderstorm), and
advisory level (Watch, Warning, Advisory, etc.) of weather
events that have occurred in the U.S. The dataset and its
metadata are accessible in various formats.

Critical infrastructure data: As previously discussed,
existing models often fail to account for interdependencies
across heterogeneous layers of critical infrastructure, such as
transmission lines, power plants, and substations. Incorporating
these interdependencies into predictive models is a complex
challenge, further complicated by the lack of publicly available
datasets that accurately represent these relationships. Although
straightforward datasets representing critical infrastructure
interdependencies are not directly available, geographic data for
various U.S. critical infrastructure is accessible through the
Homeland Infrastructure Foundation-Level Data (HIFLD)
program, managed by the U.S. Department of Homeland
Security (DHS) [23].

HIFLD offers a comprehensive array of geospatial data on
critical infrastructure sectors, including energy, transportation,
communications, healthcare, and emergency services. The
HIFLD program is divided into two categories: HIFLD Open,

which is publicly accessible, and HIFLD Secure, which includes
licensed and non-licensed datasets intended for official use only.

HIFLD Open data, which provides over 400 datasets
containing detailed geographical information, is already rich in
content. However, it is also highly heterogeneous—Ilacking
standardization and functioning independently of one another.
Crucially, these datasets do not inherently include
interdependency information. As a result, although these
datasets have significant potential, effectively utilizing them
requires innovative approaches to integrate them into predictive
models, particularly to address the critical interdependencies
necessary for accurate damage estimation.

In Section III, we will explain how the HIFLD dataset can
be used to infer critical infrastructure interdependencies and can
be utilized for machine learning-based power outage prediction
models in combination with EAGLE-I and hurricane advisory
archives.

III. DATA PROCESSING AND MODEL TRAINING

A. Inference of Interdependency from Geographic Datasets

Critical infrastructure interdependencies refer to the
relationships between various systems, where the functioning of
one system depends on others. This interconnection means that
the failure of one component can cascade through the critical
infrastructure network, potentially leading to widespread
disruptions. Capturing these interdependencies is crucial for
creating accurate models. Real-world interdependencies can be
highly complex, involving backup power systems, rerouting
mechanisms, and specific combinations of component statuses
within the network.

In our previous work [24][25], we demonstrated how a
critical infrastructure interdependency network can be created
from multiple geographical datasets. This approach models the
infrastructure as a graph network, where nodes represent
components like substations, transmission lines, power plants,
or gas pipelines, and directed edges from node A to node B
indicate that the failure of A can negatively impact or disrupt B.
While this approach may not perfectly capture all real-world
interdependency relationships, it could provide a reasonable
estimate using the available datasets. In our previous work, we
did not explore how this information could be utilized in power
outage prediction models—a gap that this paper aims to address.
In this study specifically, we used 31 HIFLD critical
infrastructure datasets. These include 8 energy layers
(Substations, Power Plants, Transmission Lines, Gas Pipelines,
Delivery Points, Compressor Stations, Ethanol Plants, Dam
Lines) and 23 non-energy layers.

The non-energy layers include:

o Safety and Security: Red Cross Chapter Facilities,
Courthouses, EPA ER RMP Facilities, Fire Stations, Local
Emergency Operations Centers, Local Law Enforcement

e Transportation: Aviation Facilities, Hurricane Evacuation
Routes, Primary Roads, Railroads

e Food-Water-Shelter: National Shelter System Facilities,
Public Refrigerated Warehouses



e Health and Medical: Hospitals, Nursing Homes, Urgent
Care Facilities

o Hazardous Material: Wastewater Treatment Plants
e Communication: Cell Towers, FM Transmission Towers

e Other: Child Care Centers, Colleges and University
Campuses, Banks, Credit Unions, Public Schools

The 31 critical infrastructure datasets, originally in Shapefile
format, were downloaded from the HIFLD data portal and
processed to create a large-scale geographical graph. While the
original process is introduced in our previous work [24][25], we
made significant updates on the workflow and the data we used.
Here is a summary of the updated workflow.

First, each critical infrastructure component in the dataset is
converted into a node (i.e., vertex). Each node represents a
physical critical infrastructure entity, such as a substation, power
plant, transmission line, public school, bank, and others. It's
important to note that even transmission lines, which are
typically represented as polylines (series of points), are
converted into vertices rather than edges. As a result, we have
31 types of nodes, where each node type corresponds to a
specific category of critical infrastructure component, as defined
by the original dataset. Each node is assigned its own
geographical information (e.g., coordinates in the case of a
point, or a series of coordinates in the case of a line or polygon)
along with property-value pairs that describe the node (e.g., a
substation might have a name, while a transmission line might
have a maximum voltage). These property values are inherited
from the original dataset. Each layer retains its own identifier,
which uniquely identifies a component within that layer, also
inherited from the original data. Additionally, we create a global
node ID that is unique across the entire network.

Second, we infer and create interdependency edges between
different node types by applying rules defined using a
predefined set of operations. Below are examples of these
operations and how they were used to infer critical infrastructure
interdependencies across components in different layers:

e Within-Distance: This operation creates interdependency
edges between nodes of type A and nodes of type B if B is
located within a specified distance (e.g., 10 km) from A. If
multiple B-type nodes are within this range, 1:N edges are
created. For example, we used this operation to create edges
from Cell Towers to Hospitals, as the disruption of mobile
communication could potentially disrupt emergency
services, coordination with first responders, and critical
communications with staff.

e Within-Area: This operation creates edges from A to B if B
is located within specific boundaries corresponding to A.
This is applicable when additional boundary information is
available. If multiple B-type nodes are within this boundary
associated with A, 1:N edges are created. For instance, let
us say that service area data is available for distribution
substations, all components within a substation’s service
area can be connected to the substation. In our case, we used
this operation to create edges from distribution substations
to non-energy components being served by them. To this
end, for each distribution substation, we estimated

substation service area using a cost-distance algorithm [26],
and used the areas to create between substation to other non-
energy components.

e Nearest: This operation creates edges from A-type nodes to
B-type nodes if B is the nearest neighbor to A. For example,
edges can be created from Substation A to Transmission
Line B if B is the nearest transmission line to A, implying
that a disruption of the substation could negatively impact
the transmission line. However, in some cases, both
directions or the reverse direction of the edges may make
more sense, so the rules need to be applied carefully. For
instance, while connecting a substation to a transmission
line, it is also important to consider that a transmission line
failure may impact a distribution substation, necessitating
bidirectional edges under the same conditions.

o Intersection: This operation creates edges from A nodes to
B nodes if A and B intersect. For example, transmission
lines that are connected to each other may intersect, and if
so, we create edges to reflect that a disruption in one
transmission line can cascade to others.

As aresult, we created a total of 146 different dependencies
across 31 node types. The constructed Critical Infrastructure
Interdependency (CII) graph comprises 1,068,727 nodes and
4,846,678 edges. It is important to note that our goal is not to
perfectly capture all existing critical infrastructure
interdependencies; rather, we focus on representing the
heterogeneous dependencies using simple but reasonable
assumptions and heuristics. Next, we will introduce how this
graph can be used to estimate cascading impacts and how we
leverage it for power outage prediction during extreme events.

B. Estimating Cascading Impact Using k-hop Neighborhood
Search on the CII Graph

Each node in the CII graph is assigned geographical
coordinates, allowing us to locate and identify critical
infrastructure nodes within the impact zone of an extreme
weather event. If the impact area is known, we can estimate the
cascading effects by performing a k-hop neighborhood search
(k-hop search for short) on the graph. A k-hop search with k=1
identifies direct impacts (i.e., direct A—B interactions), while a
search with k>1 includes nodes that are indirectly affected by
the initial disruption. These identified nodes are considered to
be at risk due to the disruption of the original nodes within the
impact zone.

For example, when a hurricane advisory is issued, from
NHC or Hurricane Mapping, we can obtain data that specifies
areas where wind speeds exceeding 50 mph are expected, along
with associated probabilities over the next 72 hours. Both NHC
and Hurricane Mapping offer data with various time windows
such as 24, 72, 120 hours, but in this paper, we focus on the 72
hour time frame. Figure 2 illustrates the transmission lines
within the area predicted to experience 50 mph winds with a
70% probability over 72 hours during Hurricane Laura
(Advisory #22). We then perform a 3-hop neighborhood search
on the graph, identifying all nodes reachable within three hops
from these transmission lines. This allows us to determine the
extent of cascading impacts and identify a range of infrastructure
components that may be affected by the disruption.



TABLE L.

PEARSON’S CORRELATION COEFFICIENT BETWEEN THE NUMBER OF COMPONENTS IDENTIFIED BY K-HOP SEARCH AND MAXIMUM POWER

OUTAGES IN EACH COUNTY BASED ON HURRICANE ADVISORY INFORMATION.

Name Year Advisory Wind Speed Probability (%) Pearson’s Correlation Coefficient at k
(Knot) =1 k=3 k=5 k=7 =9
Irma 2017 40 50 90 0.094 0.345 0.826 0.820 0.877
Irma 2017 40 50 70 0.647 0.799 0.847 0.855 0.858
Irma 2017 40 34 90 0.698 0.859 0.855 0.860 0.857
Irma 2017 40 34 70 0.631 0.864 0.860 0.858 0.857
Laura 2020 22A 50 70 0.676 0.674 0.748 0.840 0.816
Laura 2020 22A 34 90 0.683 0.650 0.737 0.839 0.817
Laura 2020 22A 34 70 0.839 0.793 0.841 0.789 0.718
Ian 2022 21 50 70 0.612 0.707 0.605 0.473 0.450
Ian 2022 21 34 90 0.652 0.724 0.624 0.465 0.435
Ian 2022 21 34 70 0.561 0.455 0.449 0.436 0.427
Ida 2021 07 50 70 0.490 0.508 0.744 0.717 0.650
Ida 2021 07 34 90 0.726 0.760 0.750 0.698 0.619
Ida 2021 07 34 70 0.683 0.652 0.649 0.609 0.584
Idalia 2023 09 34 90 0.106 0.119 0.176 0.311 0.277
Idalia 2023 09 34 70 0.329 0.349 0.302 0.258 0.197
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Fig. 2. Transmission lines identified within the area expected to experience
wind speeds of 50 mph with a 70% probability over the next 72 hours,
based on Hurricane Laura (Advisory #22).

Fig.3. shows the result where each blue dot represents the
vertices that are identified by the 3-hop search. The blue dots in
Fig. 3 represent components in the Critical Infrastructure
Interdependency (CII) graph that could potentially be impacted
by the hurricane within the next 72 hours, either directly or
indirectly. We observe that these components, at risk of
disruption, are located both within and outside the defined
impact zone. This result is valuable for identifying vulnerable
components, even those located outside the impact zone;
however, it must be interpreted cautiously. First, the CII graph

is constructed based on simplified assumptions and heuristic
rules, which may not fully account for the complexity of
interdependencies across different critical infrastructure layers.
Second, not all components within the impact zone are equally
affected, and various types of infrastructure (e.g., transmission
lines, substations, power plants) may experience simultaneous
disruptions. Finally, we used an arbitrary k-value of 3 in this
example, but the optimal k-value for accurately modeling
hurricane impacts remains uncertain.

To better understand and utilize the k-hop search results on
the Critical Infrastructure Interdependency (CII) graph, we
calculate the Pearson’s correlation coefficient [27] between
these search results and power outages during the same period
(within 72 hours of the advisory being issued). Specifically, we
count the number of impacted components (blue dots in Fig.3)
within each county and correlate these figures with the county's
maximum number of customer outages recorded within 72 hours
during the hurricane's impact, using data from EAGLE-I. A
higher correlation value indicates a stronger relationship
between the k-hop search results and the maximum observed
outage levels during the 72-hour period.

Fig. 4 resents an example pair of choropleth maps
representing the data used to compute the correlation. It is
important to note that the ranges of the values are different for
each dataset. As, (a) shows the map based on the number of
customers, but (b) shows the map based on the number of critical
infrastructure components. Data in Fig.4 (b) cannot be directly
used as a prediction of data shown Fig.4 (a).

Table I presents the correlations calculated for advisories
from four hurricanes: Irma, Laura, lan, and Idalia. It is important



to note that there are multiple options for defining the initial
impact zone, and data availability varies for each case. For
example, during Hurricane Irma, wind speed data was available
for 50-knot and 34-knot winds with 90% and 70% probability,
respectively, and these zones overlapped with transmission
lines, allowing us to calculate the correlation. However, for other
cases, such as Hurricane Idalia, wind speed data for 50 knots
was not available. One pattern is that correlations are generally
higher when the k is greater than 1. This indicates that the k-hop
search is effective in capturing not only the immediate impact
within the storm's impact zone but also the indirect effects on
nodes located beyond it. The cascading nature of infrastructure
disruptions, particularly during hurricanes, becomes evident as
correlations peak at larger k values, suggesting that indirect
disruptions are significant contributors to overall outages.
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Fig. 3. Result of a 3-hop neighborhood search identifying vertices
(represented by blue dots) that could be impacted by the disruption of
transmission lines under the area (in Fig.2)

However, it’s important to note that there is no one-size-fits-
all approach when it comes to determining the optimal k value.
For example, when using 50-knot area with 70% probability as
impact area, Hurricane Irma’s correlation increases steadily with
k, peaking at k=9. In contrast, during Hurricane Laura, the
correlation reaches its highest point at k=5, after which it begins
to decline. This variability underscores that the cascading impact
on infrastructure depends on the characteristics of each storm,
such as its wind speed and the probability of high winds
affecting transmission lines and other components. Different
storms require different k values to best capture the relationship
between the k-hop search and the maximum outages recorded,
meaning that the optimal k must be tuned on a case-by-case
basis.

Another interesting observation is that advisories with
higher wind speeds or higher probabilities of impact tend to
result in stronger correlations, as seen with Hurricane Irma’s

advisories at 90% probability. For instance, when considering
the 50-knot wind speed advisory at 90% probability, the
correlation values steadily rise and remain high, peaking at k=9.
This trend suggests that the certainty of high-impact winds with
less uncertainty (i.e., high wind probability) leads to a more
accurate emulation of the cascading impact. Conversely,
advisories with lower wind speeds or lower probabilities, such
as in the case of Hurricane Idalia, show weaker correlations.
This is reasonable, as low wind speeds combined with high
uncertainty are more likely to result in lower disruptions within
the impact area.

Power Outage Density Map (Max in Next 72 hours) for 2022-09-28 12:30:00
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(a) Maximum number of customers without power per county within 72
hours of advisory issuance (Advisory #21)
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(b) Total number of components per county from the k-hop search (k=3,
34-knot, 90% probability)

Fig. 4. Comparison of choropleth maps generated using k-hop search result
and power outage data for Hurricane Ian Advisory #21



In summary, while k-search using the CII graph is not a
direct method for predicting power outages, we observe a strong
Pearson correlation coefficient (>0.8~0.9) with the maximum
number of customers experiencing outages in affected areas
when both the impact zone (including factors like wind speed
and probability) and k are optimized. However, k-search result
are not directly comparable to power outage values, thus,
machine learning models capable of learning from k-search
results and predicting power outages is essential. Next, we
explain how k-hop search results are used as features for training
machine learning models that predicts power outage numbers.

C. Machine Learning Models using k-hop search based
features

Data Preparation: Our main objective is to train machine
learning models to predict the maximum number of customers
without power per county within 72 hours of an advisory
issuance, as illustrated in Fig. 4(a). Accurately predicting these
values enables county-level risk assessment both before and
during hurricane landfall, benefiting various stakeholders,
including utility companies, emergency management agencies,
homeowners, and residents. We reorganize available data, such
as hurricane advisory data, k-hop search results, and power
outage data, to create the training dataset. In this paper, we
specifically focus on Florida due to the frequency of historical
hurricane events in this region; however, the same approach can
be applied and generalized to other areas. The hurricanes used
in our analysis include Matthew (2016), Irma (2017), Harvey
(2017), Dorian (2019), Sally (2020), Eta (2020), Zeta (2020),
Elsa (2021), Nicole (2022), Ian (2022), and Idalia (2023). We
used hurricane advisories at intervals of 5, specifically
advisories 5, 10, 15, 20, and so on, to capture key stages of the
hurricane's development and impact.

The process for constructing our training dataset is as
follows: For each hurricane advisory, we build the dataset with
k values ranging from 1 to 10:

o K-hop search configuration features: These input features
include wind speed, wind probability from the advisory,
and the k value used for the k-hop search (3 features in
total).

e Direct impact count features: These features represent the
number of infrastructure components per county located
within the direct impact zone (67 features, one for each
county). These features remain constant across all k values.

e Indirect impact count features: These features represent
the number of infrastructure components per county located
within the k-hop search result (67 features, one for each
county).

e Target variables: The maximum number of customers
without power per county within 72 hours of the advisory
issuance. (67 variables, one for each county)

With this configuration, we prepared a training dataset. The
total number of input features and target variables are 137 and
67 respectively. We did not incorporate time-series power
outage data into our training dataset for simplicity, rather, we
solely focus on learning the relationship between k-hop search
result and actual power outage values to evaluate if employing

k-hop search, in other words, estimated critical infrastructure
interdependency information, can play significant role in
producing accurate result.

Training Machine Learning Models: With the prepared
training dataset, we trained five machine learning models
capable of predicting multiple target variables: Random Forest
(RF) [6], Support Vector Regressor (SVR) [7], XGBoost [8],
Gradient Boosting [9], k-Nearest Neighbor (kNN) [28], and
Neural Networks [29]. For implementation, we used Python's
scikit-learn library [30], applying the library’s default
hyperparameters.

Making Predictions with Trained Models: Before landfall
or during a hurricane's impact, hurricane advisories are issued.
Hurricane advisory data provide information such as the shape
of the impact zone, wind speed, and wind probability, which
were used for training. Using this information, we prepare k-hop
search configuration features. Additionally, a value for &k
(ranging from 1 to 10) must be selected. We then perform a k-
hop search on the CII graph to generate direct and indirect
impact count features. These features are fed into a trained
model (e.g., an XGBoost model) to predict the maximum
number of customers without power per county within 72 hours
of the advisory issuance (67 target variables, one for each
county).

IV. EVALUATION

Hurricane advisories are time-dependent, as wind speed,
probability, and impacted areas are continuously updated.
Therefore, including future information from the same hurricane
in both model training and testing must be avoided to prevent
misleading performance. To address this, we assume that each
hurricane is an independent event, though not within the same
hurricane. We performed leave-one-out cross-validation, where
we tested on one hurricane while training the model on all
others, excluding the one being tested. This approach ensures
that the model does not overfit to the specific characteristics of
a single hurricane and generalizes well across independent
events. By isolating each hurricane in this way, we avoid the risk
of using future information from the same hurricane during
training, creating a more robust model for predicting power
outages during new, unseen hurricanes. At the time of prediction
in practice, the available impact zones for the k-hop search to
create input features may vary (e.g., some hurricanes may have
a 5-knot 90% option available, while others may only have a 30-
knot 50% option). For our evaluation, we used the measured
average MAE, generating input features from the k-hop search
results based on all available options for each hurricane, with k
varying from 1 to 10.

Fig. 5 provides a detailed comparison of the Mean Absolute
Error (MAE), broken down by both hurricane and machine
learning model. This allows for a clear understanding of how
each model performs for individual hurricanes. While Random
Forest performs well across many hurricanes, its MAE spikes
significantly for Hurricane Irma, suggesting that it may struggle
with predicting outages for more severe storms. In contrast,
XGBoost and Neural Networks show relatively lower MAEs
across various hurricanes, with Neural Networks often
delivering the lowest errors, as shown in Fig. 6 confirming its
robustness in diverse storm conditions.
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Fig. 5.

However, no single model consistently outperforms all
others in every case, highlighting the complexity of these
predictions. Since all models used scikit-learn's default
hyperparameters, further tuning could enhance accuracy. Given
Neural Networks' strong performance and potential for
improvement with additional data and tuning, these results are
promising for future development.

It is also noteworthy that for hurricanes like Harvey, Nicole,
and Zeta, predictions show relatively low MAE, indicating
higher accuracy. However, for hurricanes such as Irma and Ian,
the MAE is significantly higher, especially for Irma. This
suggests that predicting outages for these storms was more
challenging. This could be due to the complexity of their impact
patterns, wind speeds, or other factors not accounted for in this
study.
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Fig. 6. Average MAE per Hurricane Across All Models

It’s important to interpret the Mean Absolute Error (MAE)
with caution. Fig. 7(a) displays the scatter plot for Hurricane

MAE Comparison for Each Model and Hurricane

Irma using the Neural Network model, where the MAE was
32,863.753. Despite the relatively high MAE, the model
captured the overall trend quite well, demonstrating its ability to
predict the general impact of the hurricane. Fig. 7(a) confirms
that our approach was able to produce meaningful results, even
when the prediction error was higher. Another example is shown
in Fig. 7(b), which displays the XGBoost results for Hurricane
Zeta, with a lower MAE of 611.011. While the model performed
exceptionally well overall, a few outliers significantly inflated
the MAE. These examples highlight the limitations of relying
solely on MAE as a performance metric for power outage
prediction, emphasizing the need for more specialized metrics
that can better account for the nuances in these forecasts.
Developing such metrics will be an important direction for
future research.
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Fig. 8. Example Predictions

Fig. 8 shows a choropleth map visualization of two
predictions for Hurricanes Dorian and Irma. We observe that our
predictions accurately reflect the geographical pattern of how
power outages spread within the state of Florida. Unlike the
results in Fig. 4, the values generated by the trained models are
directly comparable to the actual values. As a result, these two

maps share the same color scale at the bottom, which explains
the ranges of outage values.

V. CONCLUSIONS

In this paper, we presented machine learning models
designed to predict county-level maximum power outages
during hurricane events. Specifically, we demonstrated how to
construct a large-scale geographical Critical Infrastructure
Interdependency (CII) graph that captures complex relationships
across various critical infrastructure systems. We showed how
performing a k-hop neighborhood search on this graph can be
both insightful on its own and useful as features for machine
learning models. Despite not incorporating a wide range of
weather and geospatial features, our models were able to
accurately predict county-level maximum power outages,
effectively capturing how outages cascade across different
counties. Given that advisories are issued in advance, this
capability is particularly valuable for subject matter experts such
as emergency responders, utility operators, and policymakers as
they plan for potential impacts. This study points to several
directions for future research and improvements:

Incorporating additional features: As mentioned, we did not
include many known geospatial and meteorological variables
that could affect power outages. In future work, we can expand
our models to incorporate a wider range of features, such as soil
moisture, temperature, and other weather conditions. These
additional inputs could help further improve model accuracy.
Other related output variables should also be considered, such
as outage values after given time, restoration time, minimum
outage values, and average outage values, rather than focusing
solely on the maximum.

Time-series prediction: Power outages evolve over time. In
this initial step, we focused on predicting maximum outages
within a 72-hour window. However, future models can
incorporate time-varying inputs and outputs to provide more
granular, real-time predictions. This would allow us to track how
outages develop over time, which would be incredibly useful for
improving emergency response strategies.

Hyperparameter tuning and model optimization: In this
study, we did not extensively tune hyperparameters. For
example, our neural network was implemented using the default
settings in scikit-learn. There is significant potential to improve
performance by optimizing the architecture for this specific
problem. Given the nature of the data, exploring Graph Neural
Networks (GNNs) could be especially beneficial, as they are
well-suited to problems involving complex network
relationships.

Expanding to other extreme weather events: While our study
focused on hurricanes, the approach can be applied to other
extreme weather events that cause cascading power outages,
such as wildfires, floods, and ice storms. Expanding the scope
of our research to these events would allow us to better
understand the broader applicability of our model across
different types of natural disasters.

More experiments and feature analysis: Further experiments
are needed to explore how different features and configurations
(such as wind probability, wind speed, k-hop, or weather event
type) affect power outage predictions and model accuracy. This



would deepen our understanding of the most critical factors
influencing outages and how our models respond to different
conditions.

Developing improved metrics: As discussed, relying solely
on MAE may not provide the most comprehensive assessment
of model performance. We need metrics that better capture the
geographical patterns of power outages, account for outliers, and
consider factors such as population density and the severity of
the weather event. Developing these metrics will be crucial for
accurately evaluating and improving the model’s performance.

These future steps will help create more robust and reliable
power outage prediction models that can assist decision-makers
in mitigating the impacts of extreme weather on critical
infrastructure.
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