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Abstract— Airports globally are shifting from ICE-powered to
electric Ground Support Equipment (eGSE) to enhance efficiency,
reduce operational costs, and improve operator health. Leveraging
predictable routes, flat terrain, and low operational speeds, airports
provide ideal conditions for electrification. This study evaluates
fireight GSE electrification at Dallas-Fort Worth International
Airport (DFW), USA, using the Agile@ platform, which integrates
three analytical methods: Freight Facility Model (FFM), Activity-
Structure-Intensity-Fuel (ASIF), and Monte Carlo simulations.
Results from 10,000 simulations indicate modest but critical
increases in electricity demand and significant variability in GSE
energy consumption. These insights emphasize the importance of
data-driven scheduling, targeted maintenance, and strategic
infrastructure planning. For high-uncertainty scenarios, airports
are advised to deploy buffer energy storage systems (battery banks),
implement demand-response charging strategies, schedule flexible
workforce shifts, and prioritize proactive maintenance—
particularly for equipment with higher operational uncertainty,
such as tug tractors with trailers. Agile@ thus offers a robust,
scalable, and data-driven framework to optimize long-term GSE
planning and enhance reliability across diverse airport
environments.

Keywords—airport freight, ground support equipment, data,
analysis, tool, electricity demand, grid impact.

I. INTRODUCTION

Airports globally are increasingly transitioning from
internal combustion engine (ICE)-powered Ground Support
Equipment (GSE) to electric alternatives (eGSE), driven by
operational efficiency improvements, reduced operational
costs, and improved working conditions for GSE operators.
Airports provide an ideal operating environment for eGSE due
to their predictable, short-distance logistics routes, consistently
flat terrain, and operational characteristics characterized by
frequent stop-and-go cycles. These features inherently favor
electric powertrains, enabling significant performance
improvements in cargo handling efficiency and equipment
reliability [1, 2].

Over the past two decades, airports have progressively
integrated electric equipment within ground operations. Major
North  American airports, including Seattle-Tacoma,
Philadelphia, and Dallas-Fort Worth International Airport
(DFW), have pioneered large-scale adoption of electric ground
equipment, motivated by efficiency gains and reduced lifecycle
costs [2, 3]. For instance, by 2016, major airlines such as Delta
had already transitioned over 15% of their GSE fleets to
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electric vehicles, highlighting sustained industry momentum
towards electrification [3]. Additionally, recent advances in
Internet of Things (IoT) technologies and automation have
allowed airports to further capitalize on operational reliability
and decreased turnaround times by optimizing ground
equipment use patterns within the highly structured airport
environment [4].

Building upon this momentum, the U.S. Department of
Energy’s Vehicle Technologies Office initiated the Athena
Zero Emission Vehicle (ZEV) project at DFW Airport in
August 2023, focused on systematically planning and
deploying electrified airport logistics equipment [5]. In support
of this initiative, Oak Ridge National Laboratory (ORNL)
developed a novel analytical platform: the Airport GSE
Infrastructure & Logistics Electrification Assessment Tool,
known as Agile@. This research introduces Agile@ as an
integrated, flexible, data-driven simulation tool explicitly
designed to guide airport stakeholders in operational planning,
infrastructure sizing, and strategic decision-making for freight
handling electrification.

The core novelty of Agile@ lies in its unique methodological
synthesis, integrating three previously independent analytical
approaches—Freight Facility Modeling (FFM), Activity-
Structure-Intensity-Fuel (ASIF) frameworks, and Monte Carlo
probabilistic simulation methods—into a singular cohesive
platform. While existing tools typically address operational
logistics modeling and energy consumption analysis separately,
Agile@ innovatively merges detailed operational data
simulation through the event-driven FFM, structured energy
analysis via the ASIF framework, and robust uncertainty
quantification using Monte Carlo techniques. This integration
provides decision-makers with comprehensive and actionable
insights regarding infrastructure demands, equipment
utilization rates, and robust planning scenarios that effectively
capture operational variability and future uncertainty.

In this study, we showcase the Agile@ platform's
effectiveness by analyzing freight operations at DFW. We
simulate various electrification scenarios for key Ground
Support Equipment (GSE) types, including forklifts, loaders,
pushback tractors, and tug tractors. By quantifying energy
usage patterns, infrastructure requirements, and operational
characteristics, our findings aim to guide stakeholders in
optimal equipment deployment and targeted investments to
manage the increased electricity demands of large-scale GSE
electrification. Although this demonstration focuses on a major
international cargo airport, Agile@'s adaptable structure and
flexible inputs make it a practical analytical resource for
airports of varying sizes, regional cargo hubs, and logistics
facilities beyond the aviation sector.
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II. FRAMEWORKFOR ANALYSIS

The Agile@ Platform integrates three analytical methods—
the Freight Facility Model (FFM), the Activity-Structure-
Intensity-Fuel (ASIF) framework, and Monte Carlo
simulations—to systematically estimate freight demand and
evaluate the impacts of electrifying ground support equipment
(GSE) at DFW airport, as depicted in Figure 1.
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FIGURE 1. Flowchart of the Agile@ Platform

A. Freight Facility Model (FFM) — Estimating Activity (A)

Step 1 involves the Freight Facility Model (FFM), an
event-based simulation tool developed in C# with a SQL
database, designed to simulate cargo operations between
aircraft and cargo terminals. FFM processes cargo flight
schedules provided by cargo operators or airport authorities,
calculates Unit Load Device (ULD) requirements based on
aircraft configurations, and integrates cargo weight data using
historical monthly tonnage levels. Operational assumptions
incorporated into the model include a 60-minute aircraft
refueling period, a maximum of five dollies per tug tractor, a

200-foot aircraft pushback lasting approximately 10 minutes,
and a standardized cargo density of 10 1b/ft’. Additionally,
GSE charging protocols are established, triggering recharging
when battery levels drop below 20% and continuing until they
reach 80%. The FFM provides Excel-based outputs detailing
operational metrics such as equipment utilization, freight
capacity utilization per aircraft, and estimated energy
consumption.

B.  ASIF Framework — Estimating Energy Demand

Step 2 utilizes the ASIF framework, which breaks down
energy demand and environmental emissions into four
interrelated components: Activity (A), Structure (S), Intensity
(I), and Fuel (F). Activity encompasses operational data
derived from FFM outputs, including metrics such as daily
distances, operational hours, and ton-kilometers. Structure
evaluates fleet composition, categorizing GSE by type and
operational share percentages. Intensity calculates energy
consumption per unit of operation, expressed in kWh/km or
kWh/ton-km, while Fuel assesses emissions based on fuel
types, measured in grams of pollutants per liter. The ASIF
framework first estimates electricity consumption from ICE-
powered GSE operations and then total exhaust emissions (G)
through Equation 1 [6].

G=Y,;(Ax8xIxF) (M

In Equation 1, G represents the exhaust emissions from
cargo handling using GSEs, measured in tons of emissions. 4
denotes the total freight movement by GSE, expressed in ton-
kilometers (tkm), as derived from the Freight Facility Model
(FFM). S corresponds to the modal share of GSE composition,
given as a percentage. [ signifies the energy intensity of GSE
by type, measured in kWh/km for GSEs moving laterally such
as tugs and kWh/ton for GSEs used in lifting load such as
loaders. F accounts for the fuel mix and emission
characteristics, defined in grams of pollutant per liter. The
indices k and f represent the fuel type and GSE mode type,
respectively. In this study we only considered the first three
variables in Equation 1 to estimate energy demand from ICE-
powered GSEs and assess the impact of ICE-powered GSE
operations transition to eGSEs.

C. Monte Carlo Simulation — GSE Energy Use

Step 3 involves Monte Carlo simulations, a probabilistic
method used to quantify uncertainties in future GSE
operations and energy demand. The Monte Carlo simulation
models were developed in Python. For each scenario, 10,000
simulations were conducted, systematically varying critical
parameters to reflect realistic operational conditions and
variability [7].

Key assumptions include an annual freight growth rate of
1.25%-1.5% based on historical cargo activity at DFW
Airport, and a GSE fleet expansion rate of 3.9% derived from
historical fleet trends observed at the same airport. Battery
capacities for electric GSE ranged from 50-350 kWh,
reflecting commercially available models currently deployed



at major airports. Equipment-specific energy consumption
rates were set between 0.5 and 2.5 kWh/km based on physics-
based calculations considering equipment mass, operational
speeds, and task profiles.

The simulations provide hourly, daily, and weekly
probabilistic energy demand profiles, informing infrastructure
sizing, transformer capacity, and grid management strategies.
The probabilistic outputs enable stakeholders to plan
proactively for operational variability, implementing targeted
contingency measures like energy storage and demand-
response strategies to mitigate potential high-demand impacts.

TABLE 1
Energy Consumption Pattern of GSEs
GSE Pushback Tractor Loader Tug Forklift
Type (kWh/pushback)  (kWh/kg/hour) (kWhikm/kg)  (kWhikg)
Min 7 0.0003 0.001 0.002
Max 10 0.0005 0.003 0.003

Monte Carlo simulation outputs generate probabilistic
hourly energy demand profiles, comprehensive daily and
weekly energy consumption distributions, and robust
infrastructure demand forecasts under various electrification
and growth scenarios.

III. FFM RUN AND SIMULATION RESULTS

The FFM simulates aircraft scheduling by integrating
arrival times, cargo volumes, and GSE usage. It estimates the
number of unit load devices (ULDs) enplaned and deplaned
based on monthly cargo tonnage while assigning aircraft
configurations to determine available cargo capacity. Using
cargo density factors, the model ensures realistic load
estimates by calculating the proportion of ULDs loaded per
turnaround, aligning with volume constraints. The following
illustrative example provides a clearer understanding of
aircraft cargo loading calculations.

A. Ilustrative Example: Aircraft Cargo Loading Calculation

To determine cargo distribution, the model selects an
aircraft configuration and applies a standard air cargo density
factor (10 lbs per cubic foot). Since cargo aircraft typically
reach volume limits before weight limits, the model ensures
feasible capacity estimates. For example, if the simulation
horizon is from 16 January to 15 February, the amount of
cargo loaded is (16/31) of the January cargo enplaned plus
(15/28) of the February cargo enplaned. In this example, we
calculate the total enplaned tonnage and the capacity utilization
for aircraft based on cargo enplaned using the following steps:
Step 1: Enplaned Tonnage Calculation:
= The carrier enplaned 10,305 tons in January and 9,111 tons

in February, resulting in a calculated enplaned tonnage of

9,867 tons for the simulation period from January 16 to

February 15, based on prorated daily averages. The

enplaned tonnage = (16/31) x 10,305 + (15/28) x 9,111 =

9,867 tons
Step 2: Available ULD Volume:
= The total available ULD volume is 4,611,074 cubic feet.
Step 3: Using Cargo Density:

= Using a standard air cargo density of 10 Ibs per cubic foot,
and 1 Ib=0.0005 US ton, the total capacity = 23,055 tons.

Step 4: Capacity Utilization:

= The capacity utilized by the enplaned cargo is:

(9,867/23,055) x100=42.8%

Step 5: Aircraft Loading:

= Each aircraft loads 42.8% of its maximum ULD capacity.
The same logic applies to unloading ULDs, ensuring

accurate tracking of cargo movement within the simulation

framework.

B. FFM Outputs

The FFM generates outputs that inform analysts about
simulated operations and compiles them into a Microsoft
Excel workbook as given in Table 2. Worksheet details hourly
equipment usage and key parameters for energy calculations.
Agile@ utilizes these data to predict GSE energy demand. The
FFM generated table is used as an input for Agile@. The
values from the activity to weight columns in table 2 are used
to calculate the energy consumption for each activity. Prior to
using the values from the table, all the values are converted to
Metric system within Agile@.

TABLE 2
Model Outputs — Sample Worksheet
equipment date ‘hour activity dollies | collies distance weight time (hours)
iloaded) | {empt (miles) (pounds)
loader 1/1/2025 2 travelling to plane 0.095 0.093
wgtractor /12025 2 travelling to plane 5 0.085 2500 0.0%0
loader /12025 2 unloading 8585 0.285
wgtractor /12025 3 travelling to facility 5 0.085 11085 0.0%0
wgtractor /12025 3 travelling to plane 5 0.085 2500 0.0%0
loader 1/1/2025 3 unloading 8585 0.251
g tractor 1/1/2025 3 travelling to facility 5 0.095 11085 0.0%0
g tractor 1/1/2025 3 travelling to plane 5 0.095 2500 0.0%0
loader 1/1/2025 4 unloading 8585 0.310
loader 1/1/2025 4 travelling to plane 0.095 0.083
g tractor 1/1/2025 4 travelling to facility 5 0.095 11085 0.0%0
g tractor 1/1/2025 4 travelling to plane 5 0.095 2500 0.0%0
loader 1/1/2025 4 unloading 22686 0.313
g tractor 1/1/2025 4 travelling to plane 5 0.085 2500 0.0%0
loader 1/1/2025 4 unloading 23543 0253
g tractor 1/1/2025 4 travelling to facility 5 0.085 25186 0.0%0
g tractor 1/1/2025 4 travelling to facility 5 0.085 26043 0.0%0
g tractor 1/1/2025 5 travelling to plane 5 0.085 2500 0.0%0
loader 1/1/2025 5 unloading 27850 0341
g ractor 1/1/2025 5 travelling to plane 5 0.095 2500 0.0%0
loader 1/1/2025 5 unloading 33515 0299

IV. RESULTS AND DISCUSSION

This section uses Monte Carlo simulations to analyze
energy use by cargo loaders, tug tractors, forklifts, and
pushback tractors, revealing trends to guide operators,
planners, and policymakers on infrastructure and demand.

A. Aggregate Energy Consumption Patterns

Hourly Patterns: Energy demand peaks in the morning
(07:00-09:00) and late afternoon (16:00-18:00), reaching 45—
50 kWh, while overnight consumption remains low (below 20
kWh) as shown in Figure 2.

Daily Patterns: Median daily energy usage is ~0.45 MWh,
with extremes reaching 1.4-1.8 MWh due to wide-body
arrivals or cargo surges. These variations guide staffing,
equipment rotation, and contingency planning as shown in
Figure 3.



Weekly Patterns: Cumulative weekly energy consumption
typically ranges from 2.5-5 MWh, exceeding 5 MWh on peak
weeks. Surges necessitate robust transformer capacity, on-site
storage, and flexible grid connections as shown in Figure 4.

Monte Carlo Simulation: Typical Day Hourly Energy
0.06 4

~@- Median Energy (MWh)
1%-99% CI
5%-95% CI

. 25%-75% C1

0.05

0.04 -

Energy (MWh)

S e e e S A e e e e e e S AL
0o 1 2z 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour
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FIGURE 3. Daily GSE Energy Consumption Over a Month
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FIGURE 4. Weekly GSE Energy Consumption

B.  Energy Consumption by GSE Type

Hourly patterns: Figure 5 illustrates 24-hour energy use of
forklifts, loaders, pushback tractors, and tug tractors, with
Monte Carlo-derived confidence intervals (e.g., 1-99%, 5—
95%, 25-75%) shown as variable color shades. Tug tractors
peak above 0.02-0.03 MWh/hour due to heavy cargo
operations, while loaders and pushbacks show moderate use
(0.01-0.02 MWh/hour), and forklifts stay below 0.01
MWh/hour. Morning and evening surges align with flight
activity; overnight lows enable fueling, charging, and
maintenance. Simulations show peak hourly demands of 30—
40 kWh for tugs, 10-20 kWh for loaders and pushbacks, and
under 10 kWh for forklifts."

Monte Carlo: Typical Day Hourly Energy by Equipment (1-99, 5-95, 25-75 CT)
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FIGURE 5. Hourly Energy Use Profile of GSEs by type

Daily patterns: Figure 6 presents daily energy use by GSE
type, showing tug tractors as the highest consumers, peaking
at 0.4-0.5 MWh on busy days. Loaders and pushbacks range
from 0.1-0.3 MWh/day, and forklifts stay below 0.1
MWh/day. Tug tractor spikes align with heavy cargo flights
and extended towing, dropping to ~0.2 MWh on lighter days.
Monte Carlo simulations confirm ranges: 200-500 kWh for
tugs, 100-300 kWh for loaders and pushbacks, and under 100
kWh for forklifts. Spikes reflect high-activity periods and
underscore the need to forecast demand and adjust staffing,
fueling, and equipment accordingly.

Weekly patterns: Figure 7 aggregates weekly GSE energy use,
showing how daily fluctuations build over seven days. Tug
tractors often exceed 2.0 MWh/week, with some weeks
showing significant increases, surpassing 2.5 MWh during
high-activity periods. Loaders and pushbacks reach 1.0-1.5
MWh, while forklifts stay under 1.0 MWh. Monte Carlo
simulations show typical weeks at 300400 kWh, with peaks
over 420 kWh driven by tug usage. Planners can leverage this
data to assess infrastructure capacity and schedule major
maintenance during low-demand weeks.

Figures 5, 6 and 7 confirm that tug tractors exhibit the highest
variability and peaks, while loaders and pushback tractors
show moderate swings tied to flight traffic and forklift
remains stable. By understanding these consumption patterns,
ground operations managers can optimize task distribution,



resource planning, and prevent GSE capacity or airport
infrastructure overload.

In Figure 5, the hourly energy for tug tractors happens to be
relatively low because it captures a worm’s-eye (hour-by-
hour) snapshot on a day or set of hours when tug use was not
at its peak. Tug tractors typically move large amounts of cargo
and can tow multiple dollies, but their exact usage depends on
factors like flight schedules, cargo loads, and operational
timing. If those factors happen to be modest in the particular
hours shown in Figure 5, the tug tractor’s energy curve
appears low relative to other equipment.

By contrast, Figures 6 and 7 aggregate daily and weekly
usage, respectively. Over these broader time spans, tug
tractors usually emerge as the largest total consumers of
energy because their overall workload accumulates to higher
levels. In other words, the bird’s-eye perspective in Figures 6
and 7 shows tug tractors dominating due to repeated heavy-
duty hauling across multiple days, whereas the worm’s-eye
perspective in Figure 5 caught a period in which tug
operations were comparatively lighter. These different levels
of detail—hourly versus daily or weekly—naturally highlight
different peaks and patterns for each GSE type, reflecting real-
world variability in cargo arrivals, distances traveled, and the
number of loaded dollies.

Monte Carlo: Daily Encrgy by Equipment (1-99, 5-95, 25-75 CT)
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FIGURE 6. Daily Energy Use Profile of GSEs by type

Monte Carlo Weekly Energy Trend by Equipment (1-99, 5-95, 25-75 CT)
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FIGURE 7. Weekly Energy Use of GSE by type

C. Heatmaps and Eqipment -Specific Highlights

Figures 8-10 expand the Monte Carlo framework by
dissecting energy use patterns across time scales and
equipment types, enabling more granular planning and
operational decisions.

Visualize Load Peaks: Figure 8 presents a typical day
heatmap, charting hour-by-hour energy usage over several
days. Darker cells denote higher loads, revealing peak
periods—typically mid-morning and late afternoon—driven
by overlapping flight operations. This view supports real-time
load shifting, such as rescheduling forklift usage during low-
demand windows.

Pinpoint Temporal Surges: Figure 9 maps day-of-week vs.
week-by-week variations, exposing recurring high-demand
periods (e.g., repeated Wednesday spikes >1 MWh). It enables
planners to target low-usage days, like Sundays (20-30%
lower), for GSE overhauls or battery replacements, and to
identify consistent high-demand days (e.g., Tuesdays or
Thursdays) across weeks for strategic resource alignment.
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Differentiate Equipment Variability: Figure 10 details
equipment-segregated Monte Carlo results, separating energy
usage by GSE type. It identifies high-variability assets (e.g.,
tugs with dollies) versus predictable loads (e.g., pushback
tractors), allowing operators to allocate buffer capacity where
uncertainty is highest and optimize maintenance for stable
equipment.

Together, Figures 8-10 reveal interlocking temporal and
equipment-level patterns, reinforcing the need for precision
scheduling, targeted maintenance, and policy-driven
interventions to manage demand variability and prevent
energy spikes
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D. Key Takeaways

The analysis reveals significant fluctuations in GSE energy
demand, highlighting the importance of data-driven
scheduling, targeted maintenance, and infrastructure planning
to mitigate peak loads and optimize airport operations. The
significant variability observed in the Monte Carlo-derived
energy consumption forecasts underscores the necessity of
contingency planning. For high-uncertainty scenarios, airports
should consider measures such as establishing buffer energy
storage systems (battery banks) capable of handling
unexpected demand peaks, implementing demand-response
charging strategies to mitigate grid stress, and scheduling
flexible workforce shifts to respond dynamically to
operational  variations. Additionally, equipment with
consistently high uncertainty (such as tug tractors with
trailers) should be prioritized for increased redundancy and
proactive maintenance schedules to ensure service reliability
during demand surges.

V. CONCLUSION

Electrification of GSE at airports offer cost savings,
improved reliability, and operational efficiency. Their
structured  operations—short routes, low speeds, and

centralized maintenance—enable a seamless transition. As cost
pressures and regulations increase, electrifying GSE presents a
strategic opportunity to reduce fuel costs and emissions while
optimizing workflows.

This study simulated GSE energy consumption at Dallas-
Fort Worth International Airport (DFW) to evaluate
electrification’s impact on energy demand. Results show that
while GSE electricity consumption remains a small fraction of
the airport’s total use, accurate estimates are crucial for
infrastructure planning. Understanding peak and average load
profiles helps optimize charging strategies, reducing strain on
local grids and minimizing costs.

The approach used in this study is scalable and adaptable,
allowing similar energy demand assessments across airports of
varying sizes and cargo profiles. Although initially
demonstrated at DFW, the Agile@ platform is readily
adaptable for use across diverse airport scales and logistics
environments. Its modular design—where operational
schedules, fleet configurations, energy intensities, and growth
parameters are defined as user-input variables—enables
application at regional airports, large cargo hubs, or even
intermodal logistics facilities beyond the aviation sector. By
adjusting inputs reflective of local operational characteristics
and market conditions, stakeholders can leverage Agile@ to
conduct detailed scenario analyses and infrastructure
assessments at virtually any site managing electrified logistics
equipment.
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