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    Abstract— Airports globally are shifting from ICE-powered to 
electric Ground Support Equipment (eGSE) to enhance efficiency, 
reduce operational costs, and improve operator health. Leveraging 
predictable routes, flat terrain, and low operational speeds, airports 
provide ideal conditions for electrification. This study evaluates 
freight GSE electrification at Dallas-Fort Worth International 
Airport (DFW), USA, using the Agile@ platform, which integrates 
three analytical methods: Freight Facility Model (FFM), Activity-
Structure-Intensity-Fuel (ASIF), and Monte Carlo simulations. 
Results from 10,000 simulations indicate modest but critical 
increases in electricity demand and significant variability in GSE 
energy consumption. These insights emphasize the importance of 
data-driven scheduling, targeted maintenance, and strategic 
infrastructure planning. For high-uncertainty scenarios, airports 
are advised to deploy buffer energy storage systems (battery banks), 
implement demand-response charging strategies, schedule flexible 
workforce shifts, and prioritize proactive maintenance—
particularly for equipment with higher operational uncertainty, 
such as tug tractors with trailers. Agile@ thus offers a robust, 
scalable, and data-driven framework to optimize long-term GSE 
planning and enhance reliability across diverse airport 
environments.
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I. INTRODUCTION  

Airports globally are increasingly transitioning from 
internal combustion engine (ICE)-powered Ground Support 
Equipment (GSE) to electric alternatives (eGSE), driven by 
operational efficiency improvements, reduced operational 
costs, and improved working conditions for GSE operators. 
Airports provide an ideal operating environment for eGSE due 
to their predictable, short-distance logistics routes, consistently 
flat terrain, and operational characteristics characterized by 
frequent stop-and-go cycles. These features inherently favor 
electric powertrains, enabling significant performance 
improvements in cargo handling efficiency and equipment 
reliability [1, 2].

Over the past two decades, airports have progressively 
integrated electric equipment within ground operations. Major 
North American airports, including Seattle-Tacoma, 
Philadelphia, and Dallas-Fort Worth International Airport 
(DFW), have pioneered large-scale adoption of electric ground 
equipment, motivated by efficiency gains and reduced lifecycle 
costs [2, 3]. For instance, by 2016, major airlines such as Delta 
had already transitioned over 15% of their GSE fleets to 

electric vehicles, highlighting sustained industry momentum 
towards electrification [3]. Additionally, recent advances in 
Internet of Things (IoT) technologies and automation have 
allowed airports to further capitalize on operational reliability 
and decreased turnaround times by optimizing ground 
equipment use patterns within the highly structured airport 
environment [4].

Building upon this momentum, the U.S. Department of 
Energy’s Vehicle Technologies Office initiated the Athena 
Zero Emission Vehicle (ZEV) project at DFW Airport in 
August 2023, focused on systematically planning and 
deploying electrified airport logistics equipment [5]. In support 
of this initiative, Oak Ridge National Laboratory (ORNL) 
developed a novel analytical platform: the Airport GSE 
Infrastructure & Logistics Electrification Assessment Tool, 
known as Agile@. This research introduces Agile@ as an 
integrated, flexible, data-driven simulation tool explicitly 
designed to guide airport stakeholders in operational planning, 
infrastructure sizing, and strategic decision-making for freight 
handling electrification.

The core novelty of Agile@ lies in its unique methodological 
synthesis, integrating three previously independent analytical 
approaches—Freight Facility Modeling (FFM), Activity-
Structure-Intensity-Fuel (ASIF) frameworks, and Monte Carlo 
probabilistic simulation methods—into a singular cohesive 
platform. While existing tools typically address operational 
logistics modeling and energy consumption analysis separately, 
Agile@ innovatively merges detailed operational data 
simulation through the event-driven FFM, structured energy 
analysis via the ASIF framework, and robust uncertainty 
quantification using Monte Carlo techniques. This integration 
provides decision-makers with comprehensive and actionable 
insights regarding infrastructure demands, equipment 
utilization rates, and robust planning scenarios that effectively 
capture operational variability and future uncertainty.

In this study, we showcase the Agile@ platform's 
effectiveness by analyzing freight operations at DFW. We 
simulate various electrification scenarios for key Ground 
Support Equipment (GSE) types, including forklifts, loaders, 
pushback tractors, and tug tractors. By quantifying energy 
usage patterns, infrastructure requirements, and operational 
characteristics, our findings aim to guide stakeholders in 
optimal equipment deployment and targeted investments to 
manage the increased electricity demands of large-scale GSE 
electrification. Although this demonstration focuses on a major 
international cargo airport, Agile@'s adaptable structure and 
flexible inputs make it a practical analytical resource for 
airports of varying sizes, regional cargo hubs, and logistics 
facilities beyond the aviation sector. 

This manuscript has been authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The US 
government retains and the publisher, by accepting the article for publication, 
acknowledges that the US government retains a nonexclusive, paid-up, 
irrevocable, worldwide license to publish or reproduce the published form of 
this manuscript, or allow others to do so, for US government purposes. DOE 
will provide public access to these results of federally sponsored research in 
accordance with the DOE Public Access Plan (https://www.energy.gov/doe-
public-access-plan). This manuscript is developed based upon funding from 
the Alliance for Sustainable Energy, LLC, Managing and Operating 
Contractor for the National Renewable Energy Laboratory under U.S. 
Department of Energy Inter-Entity Work Order# SUB-2-24-10255.

https://www.energy.gov/doe-public-access-plan
https://www.energy.gov/doe-public-access-plan


II. FRAMEWORK FOR ANALYSIS
The Agile@ Platform integrates three analytical methods—

the Freight Facility Model (FFM), the Activity-Structure-
Intensity-Fuel (ASIF) framework, and Monte Carlo 
simulations—to systematically estimate freight demand and 
evaluate the impacts of electrifying ground support equipment 
(GSE) at DFW airport, as depicted in Figure 1.

FIGURE 1. Flowchart of the Agile@ Platform

A. Freight Facility Model (FFM) – Estimating Activity (A)
Step 1 involves the Freight Facility Model (FFM), an 

event-based simulation tool developed in C# with a SQL 
database, designed to simulate cargo operations between 
aircraft and cargo terminals. FFM processes cargo flight 
schedules provided by cargo operators or airport authorities, 
calculates Unit Load Device (ULD) requirements based on 
aircraft configurations, and integrates cargo weight data using 
historical monthly tonnage levels. Operational assumptions 
incorporated into the model include a 60-minute aircraft 
refueling period, a maximum of five dollies per tug tractor, a 

200-foot aircraft pushback lasting approximately 10 minutes, 
and a standardized cargo density of 10 lb/ft³. Additionally, 
GSE charging protocols are established, triggering recharging 
when battery levels drop below 20% and continuing until they 
reach 80%. The FFM provides Excel-based outputs detailing 
operational metrics such as equipment utilization, freight 
capacity utilization per aircraft, and estimated energy 
consumption. 

B. ASIF Framework – Estimating Energy Demand 
Step 2 utilizes the ASIF framework, which breaks down 

energy demand and environmental emissions into four 
interrelated components: Activity (A), Structure (S), Intensity 
(I), and Fuel (F).  Activity encompasses operational data 
derived from FFM outputs, including metrics such as daily 
distances, operational hours, and ton-kilometers. Structure 
evaluates fleet composition, categorizing GSE by type and 
operational share percentages. Intensity calculates energy 
consumption per unit of operation, expressed in kWh/km or 
kWh/ton-km, while Fuel assesses emissions based on fuel 
types, measured in grams of pollutants per liter. The ASIF 
framework first estimates electricity consumption from ICE-
powered GSE operations and then total exhaust emissions (G) 
through Equation 1 [6]. 

                   (1)

In Equation 1, G represents the exhaust emissions from 
cargo handling using GSEs, measured in tons of emissions. A 
denotes the total freight movement by GSE, expressed in ton-
kilometers (tkm), as derived from the Freight Facility Model 
(FFM). S corresponds to the modal share of GSE composition, 
given as a percentage. I signifies the energy intensity of GSE 
by type, measured in kWh/km for GSEs moving laterally such 
as tugs and kWh/ton for GSEs used in lifting load such as 
loaders. F accounts for the fuel mix and emission 
characteristics, defined in grams of pollutant per liter. The 
indices k and f represent the fuel type and GSE mode type, 
respectively. In this study we only considered the first three 
variables in Equation 1 to estimate energy demand from ICE-
powered GSEs and assess the impact of ICE-powered GSE 
operations transition to eGSEs.

C. Monte Carlo Simulation – GSE Energy Use 
Step 3 involves Monte Carlo simulations, a probabilistic 

method used to quantify uncertainties in future GSE 
operations and energy demand. The Monte Carlo simulation 
models were developed in Python. For each scenario, 10,000 
simulations were conducted, systematically varying critical 
parameters to reflect realistic operational conditions and 
variability [7].

Key assumptions include an annual freight growth rate of 
1.25%–1.5% based on historical cargo activity at DFW 
Airport, and a GSE fleet expansion rate of 3.9% derived from 
historical fleet trends observed at the same airport. Battery 
capacities for electric GSE ranged from 50–350 kWh, 
reflecting commercially available models currently deployed 



at major airports. Equipment-specific energy consumption 
rates were set between 0.5 and 2.5 kWh/km based on physics-
based calculations considering equipment mass, operational 
speeds, and task profiles.

The simulations provide hourly, daily, and weekly 
probabilistic energy demand profiles, informing infrastructure 
sizing, transformer capacity, and grid management strategies. 
The probabilistic outputs enable stakeholders to plan 
proactively for operational variability, implementing targeted 
contingency measures like energy storage and demand-
response strategies to mitigate potential high-demand impacts.

TABLE 1
Energy Consumption Pattern of GSEs

GSE 
Type

Pushback Tractor
(kWh/pushback)

Loader
(kWh/kg/hour)

Tug
(kWh/km/kg)

Forklift
(kWh/kg)

Min 7 0.0003 0.001 0.002
Max 10 0.0005 0.003 0.003

Monte Carlo simulation outputs generate probabilistic 
hourly energy demand profiles, comprehensive daily and 
weekly energy consumption distributions, and robust 
infrastructure demand forecasts under various electrification 
and growth scenarios.

III. FFM RUN AND SIMULATION RESULTS
The FFM simulates aircraft scheduling by integrating 

arrival times, cargo volumes, and GSE usage. It estimates the 
number of unit load devices (ULDs) enplaned and deplaned 
based on monthly cargo tonnage while assigning aircraft 
configurations to determine available cargo capacity. Using 
cargo density factors, the model ensures realistic load 
estimates by calculating the proportion of ULDs loaded per 
turnaround, aligning with volume constraints. The following 
illustrative example provides a clearer understanding of 
aircraft cargo loading calculations. 

A. Illustrative Example: Aircraft Cargo Loading Calculation
To determine cargo distribution, the model selects an 

aircraft configuration and applies a standard air cargo density 
factor (10 lbs per cubic foot). Since cargo aircraft typically 
reach volume limits before weight limits, the model ensures 
feasible capacity estimates. For example, if the simulation 
horizon is from 16 January to 15 February, the amount of 
cargo loaded is (16/31) of the January cargo enplaned plus 
(15/28) of the February cargo enplaned. In this example, we 
calculate the total enplaned tonnage and the capacity utilization 
for aircraft based on cargo enplaned using the following steps:
Step 1: Enplaned Tonnage Calculation:
 The carrier enplaned 10,305 tons in January and 9,111 tons 

in February, resulting in a calculated enplaned tonnage of 
9,867 tons for the simulation period from January 16 to 
February 15, based on prorated daily averages. The 
enplaned tonnage = (16/31) × 10,305 + (15/28) × 9,111 = 
9,867 tons 

Step 2: Available ULD Volume: 
 The total available ULD volume is 4,611,074 cubic feet.
Step 3: Using Cargo Density:

 Using a standard air cargo density of 10 lbs per cubic foot, 
and 1 lb = 0.0005 US ton, the total capacity = 23,055 tons.

Step 4: Capacity Utilization:
 The capacity utilized by the enplaned cargo is:
(9,867/23,055) ×100=42.8% 
Step 5: Aircraft Loading:
 Each aircraft loads 42.8% of its maximum ULD capacity.

The same logic applies to unloading ULDs, ensuring 
accurate tracking of cargo movement within the simulation 
framework.

B. FFM Outputs
The FFM generates outputs that inform analysts about 

simulated operations and compiles them into a Microsoft 
Excel workbook as given in Table 2. Worksheet details hourly 
equipment usage and key parameters for energy calculations. 
Agile@ utilizes these data to predict GSE energy demand. The 
FFM generated table is used as an input for Agile@. The 
values from the activity to weight columns in table 2 are used 
to calculate the energy consumption for each activity. Prior to 
using the values from the table, all the values are converted to 
Metric system within Agile@.

TABLE 2
Model Outputs – Sample Worksheet

IV. RESULTS AND DISCUSSION
This section uses Monte Carlo simulations to analyze 

energy use by cargo loaders, tug tractors, forklifts, and 
pushback tractors, revealing trends to guide operators, 
planners, and policymakers on infrastructure and demand.

A. Aggregate Energy Consumption Patterns
Hourly Patterns: Energy demand peaks in the morning 
(07:00–09:00) and late afternoon (16:00–18:00), reaching 45–
50 kWh, while overnight consumption remains low (below 20 
kWh) as shown in Figure 2.

Daily Patterns: Median daily energy usage is ~0.45 MWh, 
with extremes reaching 1.4–1.8 MWh due to wide-body 
arrivals or cargo surges. These variations guide staffing, 
equipment rotation, and contingency planning as shown in 
Figure 3.



Weekly Patterns: Cumulative weekly energy consumption 
typically ranges from 2.5–5 MWh, exceeding 5 MWh on peak 
weeks. Surges necessitate robust transformer capacity, on-site 
storage, and flexible grid connections as shown in Figure 4.

FIGURE 2. Hourly GSE Energy Consumption Over a Day


FIGURE 3. Daily GSE Energy Consumption Over a Month
 

FIGURE 4. Weekly GSE Energy Consumption

B. Energy Consumption by GSE Type
Hourly patterns: Figure 5 illustrates 24-hour energy use of 
forklifts, loaders, pushback tractors, and tug tractors, with 
Monte Carlo-derived confidence intervals (e.g., 1–99%, 5–
95%, 25–75%) shown as variable color shades. Tug tractors 
peak above 0.02–0.03 MWh/hour due to heavy cargo 
operations, while loaders and pushbacks show moderate use 
(0.01–0.02 MWh/hour), and forklifts stay below 0.01 
MWh/hour. Morning and evening surges align with flight 
activity; overnight lows enable fueling, charging, and 
maintenance. Simulations show peak hourly demands of 30–
40 kWh for tugs, 10–20 kWh for loaders and pushbacks, and 
under 10 kWh for forklifts."

FIGURE 5. Hourly Energy Use Profile of GSEs by type

Daily patterns: Figure 6 presents daily energy use by GSE 
type, showing tug tractors as the highest consumers, peaking 
at 0.4–0.5 MWh on busy days. Loaders and pushbacks range 
from 0.1–0.3 MWh/day, and forklifts stay below 0.1 
MWh/day. Tug tractor spikes align with heavy cargo flights 
and extended towing, dropping to ~0.2 MWh on lighter days. 
Monte Carlo simulations confirm ranges: 200–500 kWh for 
tugs, 100–300 kWh for loaders and pushbacks, and under 100 
kWh for forklifts. Spikes reflect high-activity periods and 
underscore the need to forecast demand and adjust staffing, 
fueling, and equipment accordingly.
Weekly patterns: Figure 7 aggregates weekly GSE energy use, 
showing how daily fluctuations build over seven days. Tug 
tractors often exceed 2.0 MWh/week, with some weeks 
showing significant increases, surpassing 2.5 MWh during 
high-activity periods. Loaders and pushbacks reach 1.0–1.5 
MWh, while forklifts stay under 1.0 MWh. Monte Carlo 
simulations show typical weeks at 300–400 kWh, with peaks 
over 420 kWh driven by tug usage. Planners can leverage this 
data to assess infrastructure capacity and schedule major 
maintenance during low-demand weeks.
Figures 5, 6 and 7 confirm that tug tractors exhibit the highest 
variability and peaks, while loaders and pushback tractors 
show moderate swings tied to flight traffic and forklift 
remains stable. By understanding these consumption patterns, 
ground operations managers can optimize task distribution, 



resource planning, and prevent GSE capacity or airport 
infrastructure overload.
In Figure 5, the hourly energy for tug tractors happens to be 
relatively low because it captures a worm’s-eye (hour-by-
hour) snapshot on a day or set of hours when tug use was not 
at its peak. Tug tractors typically move large amounts of cargo 
and can tow multiple dollies, but their exact usage depends on 
factors like flight schedules, cargo loads, and operational 
timing. If those factors happen to be modest in the particular 
hours shown in Figure 5, the tug tractor’s energy curve 
appears low relative to other equipment.
By contrast, Figures 6 and 7 aggregate daily and weekly 
usage, respectively. Over these broader time spans, tug 
tractors usually emerge as the largest total consumers of 
energy because their overall workload accumulates to higher 
levels. In other words, the bird’s-eye perspective in Figures 6 
and 7 shows tug tractors dominating due to repeated heavy-
duty hauling across multiple days, whereas the worm’s-eye 
perspective in Figure 5 caught a period in which tug 
operations were comparatively lighter. These different levels 
of detail—hourly versus daily or weekly—naturally highlight 
different peaks and patterns for each GSE type, reflecting real-
world variability in cargo arrivals, distances traveled, and the 
number of loaded dollies.

FIGURE 6. Daily Energy Use Profile of GSEs by type

FIGURE 7. Weekly Energy Use of GSE by type

C. Heatmaps and Eqipment -Specific Highlights
Figures 8–10 expand the Monte Carlo framework by 
dissecting energy use patterns across time scales and 
equipment types, enabling more granular planning and 
operational decisions.
Visualize Load Peaks: Figure 8 presents a typical day 
heatmap, charting hour-by-hour energy usage over several 
days. Darker cells denote higher loads, revealing peak 
periods—typically mid-morning and late afternoon—driven 
by overlapping flight operations. This view supports real-time 
load shifting, such as rescheduling forklift usage during low-
demand windows.
Pinpoint Temporal Surges: Figure 9 maps day-of-week vs. 
week-by-week variations, exposing recurring high-demand 
periods (e.g., repeated Wednesday spikes >1 MWh). It enables 
planners to target low-usage days, like Sundays (20–30% 
lower), for GSE overhauls or battery replacements, and to 
identify consistent high-demand days (e.g., Tuesdays or 
Thursdays) across weeks for strategic resource alignment.

FIGURE 8. Day‐of‐Week vs. Hour‐of‐Day Heatmap

FIGURE 9. Week‐by‐Week vs. Hour‐of‐Day Heatmap



Differentiate Equipment Variability: Figure 10 details 
equipment-segregated Monte Carlo results, separating energy 
usage by GSE type. It identifies high-variability assets (e.g., 
tugs with dollies) versus predictable loads (e.g., pushback 
tractors), allowing operators to allocate buffer capacity where 
uncertainty is highest and optimize maintenance for stable 
equipment.

Together, Figures 8-10 reveal interlocking temporal and 
equipment-level patterns, reinforcing the need for precision 
scheduling, targeted maintenance, and policy-driven 
interventions to manage demand variability and prevent 
energy spikes

FIGURE 10. Equipment-Specific Monte Carlo Distributions

D. Key Takeaways
The analysis reveals significant fluctuations in GSE energy 
demand, highlighting the importance of data-driven 
scheduling, targeted maintenance, and infrastructure planning 
to mitigate peak loads and optimize airport operations. The 
significant variability observed in the Monte Carlo-derived 
energy consumption forecasts underscores the necessity of 
contingency planning. For high-uncertainty scenarios, airports 
should consider measures such as establishing buffer energy 
storage systems (battery banks) capable of handling 
unexpected demand peaks, implementing demand-response 
charging strategies to mitigate grid stress, and scheduling 
flexible workforce shifts to respond dynamically to 
operational variations. Additionally, equipment with 
consistently high uncertainty (such as tug tractors with 
trailers) should be prioritized for increased redundancy and 
proactive maintenance schedules to ensure service reliability 
during demand surges.

V. CONCLUSION
Electrification of GSE at airports offer cost savings, 

improved reliability, and operational efficiency. Their 
structured operations—short routes, low speeds, and 

centralized maintenance—enable a seamless transition. As cost 
pressures and regulations increase, electrifying GSE presents a 
strategic opportunity to reduce fuel costs and emissions while 
optimizing workflows.

This study simulated GSE energy consumption at Dallas-
Fort Worth International Airport (DFW) to evaluate 
electrification’s impact on energy demand. Results show that 
while GSE electricity consumption remains a small fraction of 
the airport’s total use, accurate estimates are crucial for 
infrastructure planning. Understanding peak and average load 
profiles helps optimize charging strategies, reducing strain on 
local grids and minimizing costs.

The approach used in this study is scalable and adaptable, 
allowing similar energy demand assessments across airports of 
varying sizes and cargo profiles. Although initially 
demonstrated at DFW, the Agile@ platform is readily 
adaptable for use across diverse airport scales and logistics 
environments. Its modular design—where operational 
schedules, fleet configurations, energy intensities, and growth 
parameters are defined as user-input variables—enables 
application at regional airports, large cargo hubs, or even 
intermodal logistics facilities beyond the aviation sector. By 
adjusting inputs reflective of local operational characteristics 
and market conditions, stakeholders can leverage Agile@ to 
conduct detailed scenario analyses and infrastructure 
assessments at virtually any site managing electrified logistics 
equipment.
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