

1 The variety and origin of materials accreted by Bennu's parent
2 asteroid
3
4
5

6 **Authors and affiliations**

7 Barnes, J.J.^{1*}, Nguyen, A.N.^{2*}, Abernethy, F.A.J.³, Bajo, K.⁴, Bekaert, D.V.⁵, Bloch, E.¹,
8 Brennecka, G.A.⁶, Busemann, H.⁷, Cowpe, J.S.⁸, Crowther, S.A.⁸, Ek, M.⁷, Fawcett, L.J.⁸,
9 Fehr, M.A.⁷, Franchi, I.A.³, Füri, E.⁵, Gilmour, J.D.⁸, Grady, M.M.³, Greenwood, R.C.³,
10 Haenecour, P.¹, Kawasaki, N.⁴, Koefoed, P.⁹, Krietsch, D.⁷, Le, L.¹⁰, Liszewska, K.M.⁷,
11 Maden, C.⁷, Malley, J.³, Marrocchi, Y.⁵, Marty, B.⁵, Meyer, L.A.E.⁷, Peretyazhko, T.S.¹⁰,
12 Piani, L.⁵, Render, J.⁶, Russell, S.S.¹¹, Rüfenacht, M.⁷, Sakamoto, N.⁴, Schönbächler,
13 M.⁷, Shollenberger, Q.R.⁶, Smith, L.¹, Thomas-Keprta, K.¹², Verchovsky, A.B.³,
14 Villeneuve, J.⁵, Wang, K.⁹, Welten, K.C.¹³, Wimpenny, J.⁶, Worsham, E.A.⁶, Yurimoto,
15 H.^{4,14}, Zimmermann, L.⁵, Zhao, X.³, Alexander, C.M.O'D.¹⁵, Amini, M.¹⁶, Baczyński, A.¹⁷,
16 Bland, P.¹⁸, Borg, L.E.⁶, Burgess, R.⁸, Caffee, M.W.¹⁹, Chaves, L.C.¹, Clay, P.L.^{8,20},
17 Dworkin, J.P.²¹, Fouustoukos, D.I.¹⁵, Glavin, D.P.²¹, Hamilton, V.E.²², Hill, D.¹, House,
18 C.H.¹⁷, Huss, G.R.²³, Ireland, T.²⁴, Jilly, C.E.²⁵, Jourdan, F.¹⁸, Keller, L.P.², Kruijer, T.S.⁶,
19 Lai, V.¹⁶, McCoy, T.J.²⁶, Nagashima, K.²³, Nishiizumi, K.¹³, Ogliore, R.²⁷, Ong, I.J.¹,
20 Reddy, S.M.¹⁸, Rickard, W.D.A.²⁸, Sandford, S.²⁹, Saxe, D.W.²⁸, Timms, N.¹⁸, Weis, D.¹⁶,
21 Wilbur, Z.E.²⁶, Zega, T.J.¹, DellaGiustina, D.N.¹, Wolner, C.W.V.¹, Connolly, H.C.Jr.^{1,30,31},
22 and Lauretta, D. S.¹

23
24 *These authors contributed equally.

25
26 ¹Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA.

27 ²Astromaterials Research and Exploration Science Division, NASA Johnson Space Center,
28 Houston, TX, USA.

29 ³School of Physical Sciences, The Open University, Milton Keynes, UK.

30 ⁴Department of Earth and Planetary Sciences, Hokkaido University, Sapporo, Japan.

31 ⁵Université de Lorraine, CNRS, CRPG, UMR 7358, Nancy, France.

32 ⁶Lawrence Livermore National Laboratory, Livermore, CA, USA.

33 ⁷Institute of Geochemistry and Petrology, ETH Zurich, Zurich Switzerland.

34 ⁸Department of Earth and Environmental Sciences, The University of Manchester, Manchester,
35 UK.

36 ⁹McDonnell Center for the Space Sciences and Department of Earth, Environment, and
37 Planetary Sciences, Washington University in St. Louis Saint Louis, MO, USA.

38 ¹⁰Amentum/JETS II Contract, Houston, TX, USA.

39 ¹¹Natural History Museum, London, UK.

40 ¹²Barrios/JETS II contract, Houston, TX, USA

41 ¹³Space Sciences Laboratory, University of California, Berkeley, CA, USA.

42 ¹⁴Isotope Imaging Laboratory (IIL), Creative Research Institution, Hokkaido University,
43 Sapporo, Japan.

44 ¹⁵Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA.

45 ¹⁶ PCIGR, Department of Earth, Ocean and Atmospheric Sciences, The University of British
46 Columbia, Vancouver, Canada.
47 ¹⁷ Department of Geosciences, Pennsylvania State University, University Park, PA, USA.
48 ¹⁸ Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin
49 University, Bentley, WA, Australia.
50 ¹⁹ Department of Physics and Astronomy and Department of Earth, Atmospheric, and Planetary
51 Sciences, Purdue University, West Lafayette, IN, USA.
52 ²⁰ Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada.
53 ²¹ Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA.
54 ²² Solar System Science & Exploration Division, Southwest Research Institute, Boulder, CO,
55 USA.
56 ²³ Hawaii Institute of Geophysics and Planetary Sciences, School of Ocean and Earth Sciences
57 and Technology, University of Hawaii at Manoa, Honolulu, HI, USA.
58 ²⁴ School of the Environment, University of Queensland, St Lucia, Australia.
59 ²⁵ Stanford Doerr School of Sustainability, Department of Earth & Planetary Sciences, Stanford
60 University, Stanford, CA, USA.
61 ²⁶ Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution,
62 Washington, DC, USA.
63 ²⁷ Department of Physics, Washington University in St. Louis, St. Louis, MO, USA.
64 ²⁸ John de Laeter Centre, Curtin University, Bentley, WA, Australia.
65 ²⁹ NASA Ames Research Center, Moffett Field, CA, USA.
66 ³⁰ Department of Geology, Rowan University, Glassboro, NJ, USA.
67 ³¹ Department of Earth and Planetary Science, American Museum of Natural History, New York,
68 NY, USA.

69

70 **Abstract**

71

72 **The first bodies to form in the solar system acquired their materials from stars, the**
73 **presolar molecular cloud, and the protoplanetary disk. Asteroids that have not**
74 **undergone planetary differentiation retain evidence of these primary accreted**
75 **materials. However, geologic processes such as hydrothermal alteration can**
76 **dramatically change their bulk mineralogy, isotopic compositions, and chemistry.**
77 **We analyzed the elemental and isotopic compositions of samples from asteroid**
78 **Bennu to uncover the sources and types of materials accreted by its parent body.**
79 **We show that some primary accreted materials escaped the extensive aqueous**
80 **alteration that occurred on the parent asteroid, including presolar grains from**
81 **ancient stars, organic matter from the outer solar system or molecular cloud,**
82 **refractory solids that formed close to the Sun, and dust enriched in neutron-rich Ti**
83 **isotopes. We find Bennu to be richer in isotopically anomalous organic matter,**
84 **anhydrous silicates, and light isotopes of K and Zn than its closest compositional**
85 **counterparts, asteroid Ryugu and Ivuna-type (CI) carbonaceous chondrite**
86 **meteorites. We propose that the parent bodies of Bennu, Ryugu, and CIs formed**
87 **from a common but spatially and/or temporally heterogeneous reservoir of**
88 **materials in the outer protoplanetary disk.**

89

90 **Main text**

91 NASA's Origins, Spectral Interpretation, Resource Identification, and Security–
92 Regolith Explorer (OSIRIS-REx) mission surveyed (101955) Bennu from 2018 to 2021
93 and delivered 121.6 g of its regolith (unconsolidated granular material) to Earth on 24
94 September 2023^{1,2}. Bennu is a ~500-m-diameter near-Earth asteroid. It is a rubble pile,
95 consisting of reaccumulated fragments of a much larger parent body (\geq 100 km) that was
96 collisionally disrupted in the main asteroid belt³. Unlike meteorites, the pristine Bennu
97 samples returned by OSIRIS-REx have not been subjected to heating from entry through
98 Earth's atmosphere and have experienced minimal or no interaction with the ambient
99 atmosphere and biosphere. These qualities make them ideal for probing the nature and
100 formation of early planetesimals, particularly their volatile and organic contents.

101 Remote sensing by OSIRIS-REx^{4–6} combined with the first laboratory analyses of
102 the regolith samples² showed that Bennu's surface material is composed of hydrated clay
103 minerals (phyllosilicates), magnetite, sulfides, carbonates, organic matter, phosphates
104 and small abundances of anhydrous silicates and oxides including olivine, pyroxene, and
105 spinel. These findings established that Bennu's parent body experienced extensive
106 mineralogical changes, whereby most of the original dust inherited from the
107 protoplanetary disk, including metals and anhydrous and amorphous silicates⁷, was
108 aqueously altered to secondary phases. This alteration was likely caused when water,
109 carbon dioxide, ammonia⁸, and other ices accreted by the parent body melted due to heat
110 generated from the decay of short-lived radioactive nuclides and impact events.

111 Detailed study of the returned samples is required to understand the diversity of
112 materials accreted by the parent asteroid, the chemical and isotopic reservoirs in the
113 protoplanetary disk where it formed, and the extent to which it was hydrothermally altered.
114 We investigated the bulk elemental and isotopic composition of Bennu aggregate
115 material—loose, unsorted particles < 0.5 cm—and the in situ isotopic compositions of
116 individual components, including presolar grains, organic matter, and anhydrous silicates.
117 Comparing the composition of Bennu samples with those of carbonaceous chondrites
118 (CCs) and samples of asteroid (162173) Ryugu returned by JAXA's Hayabusa2
119 mission^{9,10} places the accretion history and chemical evolution of Bennu's parent body in
120 the broader context of other primitive astromaterials.

121 **Results**

122 ***Bulk chemical and isotopic compositions***

123 The bulk abundances of 44 elements in Bennu samples were analyzed by
124 inductively coupled plasma mass spectrometry (ICP-MS) (Methods, Supplementary
125 Tables 1 and 2). The Bennu material has a solar-like refractory element composition
126 mostly within 5% of CI values¹¹. We observed depletions in uranium (U), tin (Sn), and
127 lead (Pb), alongside enrichments in fluid-mobile elements including yttrium (Y), barium
128 (Ba), phosphorus (P), sodium (Na), and potassium (K) (Extended Data Fig. 1), generally
129 consistent with previous results².

130 The abundances of soluble anions were determined using ion chromatography
131 (Methods, Extended Data Fig. 2, Supplementary Table 3). Of the suite analyzed, we
132 detected inorganic sulfate (SO_4^{2-} , $51.77 \pm 3.11 \mu\text{mol/g}$) and phosphate (PO_4^{3-} , 0.08 ± 0.01

133 $\mu\text{mol/g}$). These results are consistent with prior studies^{2,12} indicating the presence of
134 water-soluble sulfate and phosphate-bearing minerals in Bennu samples.

135 The weighted average of four laser-assisted fluorination analyses of Bennu
136 samples yields a bulk oxygen (O) isotopic composition of $+11.2 \pm 0.8\text{\textperthousand}$ for $\delta^{17}\text{O}$, $+20.2 \pm$
137 $1.8\text{\textperthousand}$ for $\delta^{18}\text{O}$, and $+0.66 \pm 0.24\text{\textperthousand}$ for $\Delta^{17}\text{O}$ (two standard errors (2SE)) (Methods,
138 Extended Data Fig. 3), consistent with the weighted average composition for Bennu
139 samples exposed to air² (Supplementary Table 4). The δ -notation indicates parts per
140 thousand deviations from a standard composition. The $\Delta^{17}\text{O}$ -value is used to describe the
141 mass-independent deviation from the terrestrial mass fractionation line (or slope of 0.52)
142 on an oxygen three-isotope plot. The variation displayed by the samples exceeds typical
143 analytical precision by at least an order of magnitude at the 2-sigma level (Methods). The
144 ranges of $\delta^{17}\text{O}$ and $\delta^{18}\text{O}$ in these samples are less than that reported previously². The
145 most extreme isotopic compositions are represented in the fine and intermediate-sized
146 particles retrieved from the avionics deck², which may indicate varying abundances of
147 distinct O-isotopes across different particle sizes.

148 Using stepped-combustion isotope ratio mass spectrometry (IRMS), we obtained
149 total carbon (C) contents of 4.42 and 4.45 wt.% and nitrogen (N) contents of 882 and
150 1246 ppm (parts per million) in two samples (Methods, Supplementary Table 5). The
151 corresponding weighted summed values for $\delta^{13}\text{C}$ are $+16.7$ and $+8.3\text{\textperthousand}$, and for $\delta^{15}\text{N}$ are
152 $+43.8$ and $+72.2\text{\textperthousand}$ (Extended Data Fig. 4). The C contents are similar to those reported
153 in other Bennu samples^{2,8}, but the N contents are lower (Extended Data Fig. 4). Our data
154 overlap the $\delta^{15}\text{N}$ values reported earlier⁸ and show higher $\delta^{13}\text{C}$ values, which may result
155 from greater contribution of carbonates or presolar grains in the small masses analyzed
156 here (<2 mg; Methods). Distinct groupings in the C data indicate the presence of three C-
157 bearing components: organics ($\delta^{13}\text{C} \leq -10\text{\textperthousand}$), carbonates (e.g., Fe,Mg-carbonate; $\delta^{13}\text{C}$
158 $> +43\text{\textperthousand}$), and presolar grains (diamonds, graphite, and silicon carbide (SiC)) (Extended
159 Data Fig. 5). The N data indicate at least three components: volatile organics ($\delta^{15}\text{N} \sim +20$
160 \textperthousand), less volatile organics ($\delta^{15}\text{N} \sim +40$ to $100\text{\textperthousand}$), and presolar grains (Extended Data Fig.
161 5).

162 Noble gas analyses indicate high abundances of argon-36 at 167 to 211×10^{-8}
163 $\text{cm}^3 \text{g}^{-1}$ (Methods, Supplementary Tables 6-8). In triple-neon-isotope space (Fig. 1),
164 Bennu materials show a spread in neon (Ne) isotopic compositions reflecting
165 contributions from (i) trapped noble gases, including Ne from phase Q, the major carrier
166 of planetary noble gases in CCs, which is likely associated with organic matter and C-rich
167 presolar grains¹³; (ii) solar wind implanted into surface materials; and (iii) cosmogenic Ne
168 produced through galactic and solar cosmic rays. We find xenon-132 concentrations ~ 1.8
169 to $2.6 \times 10^{-8} \text{ cm}^3 \text{ STP g}^{-1}$ (where STP is standard temperature and pressure). The Xe
170 isotope compositions are consistent with the average CC composition, i.e., phase Q plus
171 slight enrichments in heavy and light isotopes (“Xe-HL”) from presolar nanodiamonds^{13,14}
172 (Extended Data Fig. 6). We also find excesses in radiogenic ^{129}Xe from the decay of ^{129}I .

173 The Bennu samples show mass-dependent isotope compositions (where deviation
174 in isotope abundances scales with the mass of the isotopes involved) of K, copper (Cu),
175 and zinc (Zn): $\delta^{41}\text{K}$ of $-0.38 \pm 0.03\text{\textperthousand}$, $\delta^{65}\text{Cu}$ of $+0.21 \pm 0.02\text{\textperthousand}$, and $\delta^{66}\text{Zn}$ of $+0.37 \pm 0.02$

176 ‰ (2SE) (Fig. 2), as measured by multicollector (MC-) ICP-MS (Methods, Supplementary
177 Table 9). The non-mass-dependent (nucleosynthetic) titanium (Ti) isotopic composition
178 of the Bennu samples averages $+0.27 \pm 0.08 \varepsilon^{46}\text{Ti}$, $-0.02 \pm 0.05 \varepsilon^{48}\text{Ti}$, and $+1.98 \pm 0.08 \varepsilon^{50}\text{Ti}$ (Fig. 3), where ε -notation signifies parts per ten thousand deviations relative to a
180 terrestrial standard (Methods, Supplementary Table 10).

181 *In situ isotopic compositions*

182 Presolar grains are identified by their highly anomalous isotopic compositions due to
183 nucleosynthetic reactions that occurred in their parent stars (e.g., ^{15}O). We searched for
184 preserved, individual presolar grains by in situ C, N, O, and silicon (Si) isotopic mapping
185 of the phyllosilicate-rich matrix material using nanoscale secondary ion mass
186 spectrometry (NanoSIMS; Methods, Supplementary Tables 11-12). Based on highly
187 anomalous O isotope ratios ($\delta^{17}\text{O} -689$ to $+8067 \text{‰}$ and $\delta^{18}\text{O} +27$ to 387‰ ; Extended
188 Data Fig. 7), seven O-rich presolar grains were identified, including two silicates. The
189 chemical compositions of two O-rich presolar grains, determined by scanning electron
190 microscopy–energy dispersive X-ray spectroscopy (SEM-EDS), indicated one is a
191 ferromagnesian silicate (Extended Data Fig. 8) and one is an aluminum (Al) and
192 magnesium (Mg)–bearing oxide. Additionally, 39 presolar SiC and six presolar graphite
193 grains were identified with anomalous C and/or N isotopic compositions ($\delta^{13}\text{C} -737$ to
194 $+15832 \text{‰}$ and $\delta^{15}\text{N} -310$ to $+21661 \text{‰}$). The abundances of presolar SiC, graphite, and
195 O-rich grains are 25^{+5}_{-4}, 12^{+7}_{-5}, and $4 \pm 2 \text{ ppm}$, respectively (Fig. 4).

196 NanoSIMS mapping showed organic matter in Bennu samples occurs as discrete
197 phases, including nanoglobules, and in a diffuse form throughout the matrix² (Methods,
198 Supplementary Table 13). Discrete regions of organic matter had $\delta^{15}\text{N}$ values from -558
199 to $+3545 \text{‰}$, $\delta^{13}\text{C}$ values from -326 to $+364 \text{‰}$, and δD values from -920 to $+11,413 \text{‰}$
200 (Extended Data Fig. 9). Organic matter having anomalous isotopic compositions in H, N,
201 and C relative to the bulk compositions comprised 1.1, 0.6, and 0.04 area%, respectively,
202 of the total area of material analyzed (Methods).

203 We determined the O isotopic compositions of refractory silicate minerals—
204 specifically, olivine and low-calcium pyroxene—in situ by SIMS and NanoSIMS (Methods,
205 Supplementary Table 14). These minerals show mass-independent fractionation of O
206 isotopes and a range of compositions, from ^{16}O -rich grains with near-solar ($\delta^{17}\text{O}$, $\delta^{18}\text{O} <$
207 40‰) compositions to ^{16}O -poor grains with near-planetary ($\delta^{17}\text{O}$, $\delta^{18}\text{O} \sim 0 \text{‰}$) isotopic
208 compositions (Fig. 5).

209 Discussion

210 *Bennu's bulk composition compared to other primitive samples*

211 Bennu samples strongly resemble CI chondrites, with broadly similar bulk chemical
212 compositions (Extended Data Fig. 1). The bulk compositions of CCs reflect the origins
213 and alteration histories of their parent bodies, with CI chondrites most closely resembling
214 the solar photosphere¹¹. Hence, they are considered the most chemically primitive.
215 However, Bennu, like Ryugu, is enriched in P compared to CI chondrites². The abundant
216 P and presence of sulfate and phosphate ions in Bennu (Extended Data Figs. 1 and 2)
217 indicate contributions from organics and evaporite minerals such as soluble salts and
218 phosphates^{2,8,12}. The relatively low abundance of sulfate suggests the conditions during

219 alteration promoted sulfate loss, such as fluid flow through late-stage open systems or
220 reducing environments.

221 We identified the same types of C- and N-rich components—presolar grains,
222 organics, and carbonates—as those found in Ryugu, CI, and Mighei-type (CM)
223 chondrites¹⁶ (Extended Data Fig. 5). However, we find that Bennu, like Ryugu, is more C-
224 rich than CCs (Extended Data Fig. 4). The samples show a range in bulk N abundance,
225 overlapping but also exceeding⁸ abundances in CCs and Ryugu. Isotopically, the samples
226 analyzed here exhibit $\delta^{13}\text{C}$ values similar to some Ryugu particles and more elevated than
227 CI and CMs, whereas the $\delta^{15}\text{N}$ values are consistent with those samples.

228 Several isotopic systems imply that Bennu’s parent body, like Ryugu’s, retained a
229 primary volatile inventory, consistent with formation and preservation in a relatively cold,
230 unprocessed region of the early solar nebula. The Bennu samples show similar noble gas
231 abundances to Ryugu samples and heterogeneity in Ne and Xe isotopes comparable to
232 other primitive CCs and Ryugu^{17–19} (Fig. 1, Extended Data Fig. 6). Endmember
233 compositions of trapped noble gases (those not implanted by solar wind) in Bennu
234 samples are consistent with those of other aqueously altered materials, including CI, CM,
235 and Renazzo-type (CR) chondrites, indicating contributions of noble gases from Q-
236 bearing phases and presolar grains^{17,20}. The moderately volatile element (MVE) isotope
237 systems (K, Cu and Zn) closely resemble those of CI and Ryugu^{21,22}. Its K and Zn
238 isotopic compositions are slightly enriched in lighter isotopes (Fig. 2)^{21–23} suggesting
239 minimal volatile loss and limited thermal processing.

240 Small variations in isotopic abundances of transition metals (e.g., Ti, Cr, Mo) in
241 astromaterials arose because of heterogeneous distribution and incomplete mixing of
242 presolar dust, the carriers of these nucleosynthetic signatures, in the early solar system²⁴.
243 The neutron-rich Ti isotope signatures indicate that Bennu shares a nucleosynthetic
244 heritage with other CCs and is most similar to CI and Ryugu¹⁰ (Fig. 3). The $\Delta^{17}\text{O}$ values
245 also indicate similar formation environments. The $\delta^{18}\text{O}$ values of the CI^{25,26}, however,
246 are markedly lower than Bennu’s (Extended Data Fig. 3), likely reflecting modification of
247 CI by exposure to the Earth’s atmosphere and weathering.

248 Altogether, the bulk characteristics of Bennu indicate that it is chemically primitive
249 and has close chemical and isotopic affinity to Ryugu and CI.

250 *Origins of the parent body’s primary accreted components*

251 The oldest primary constituents in Bennu samples, like in other primitive
252 astromaterials, are submicrometer-sized presolar grains with isotopic compositions
253 indicating diverse stellar sources (Extended Data Fig. 7). Most of the Bennu SiC grains
254 have C and N isotopic compositions that are consistent with nucleosynthetic reactions
255 occurring in low-mass asymptotic giant branch (AGB) stars. Grains with large ^{15}N
256 enrichments likely have nova or supernova origins. Type AB grains have $^{12}\text{C}/^{13}\text{C}$ ratios <
257 13.5 and could have come from J-type C stars, born-again AGB stars, or supernovae¹⁵.
258 The graphite grains originate from AGB stars or supernova. The O-rich presolar grains
259 include ^{17}O -rich grains of AGB star or supernova origins and ^{17}O -poor grains of supernova
260 origin.

261 Organic matter that is isotopically indistinguishable from the bulk composition may
262 have formed in the parent body or in the nebula. A fraction (<10%) of organic matter in
263 carbonaceous astromaterials, including Ryugu, has large isotopic anomalies in H, C, and

264 N that are postulated to result from low-temperature (~10–40 K) chemical reactions in the
265 molecular cloud or outer protoplanetary disk^{27–29}. We found the ranges of H, C, and N
266 isotopic compositions of insoluble organic matter in Bennu to be similar to those in Cls
267 and CMs^{28,29}, Ryugu^{29–31}, and comet Wild 2 samples returned by NASA’s Stardust
268 mission³² (Extended Data Fig. 9). These compositional and isotopic parallels between
269 bulk and in situ data indicate that Bennu, like Ryugu, preserves a diverse suite of primitive
270 organic and volatile-rich materials.

271 Mineral assemblages that formed close to the Sun include refractory inclusions
272 (amoeboid olivine aggregates (AOAs) and calcium-aluminum-rich inclusions (CAIs)), and
273 chondrules consisting of anhydrous Mg,Fe-rich silicates and oxide minerals. Their O
274 isotopic compositions reflect the solar nebula composition (¹⁶O-rich) and subsequent
275 isotopic exchange with a ¹⁶O-poor reservoir. They are common in most types of CCs, yet
276 rare in Cls, Ryugu, and comet Wild 2^{33–36}. The Bennu samples have minor abundances
277 of submillimeter anhydrous silicates and oxides including olivine, pyroxene, and spinel².
278 The anhydrous silicate grains in the Bennu samples we analyzed have strong chemical
279 (CaO and FeO content, Extended Data Fig. 10) and isotopic affinity to ¹⁶O-rich AOAs and
280 ¹⁶O-poor chondrules found in CCs (Fig. 5), suggesting that they are fragments of these
281 inclusions. Thus, these minerals represent some of the earliest solar system condensates
282 that accreted into Bennu’s parent body. The similar bulk Ti isotopic compositions of
283 Bennu, Ryugu and Cls^{24,37} (Fig. 3) suggest similar, though not identical, proportions of
284 AOAs, chondrules, CAIs, and matrix. This supports the interpretation from petrologic
285 characterization of Bennu samples that the parent body formed predominantly from a
286 mixture dominated by dust, ices, and organics, with minor contributions of AOAs,
287 chondrule, and CAI-like solids⁷.

288 Our in-situ observations demonstrate that the materials accreted by Bennu’s
289 parent asteroid had diverse origins, and some survived subsequent processing.
290

291 ***Geological activity within Bennu’s parent body***

292 Presolar C-rich grains can be altered or destroyed by thermal metamorphism and
293 prolonged oxidation³⁸. The abundances of C-rich presolar grains in Bennu samples (25
294 ppm SiC and 12 ppm graphite) are comparable to those in unheated carbonaceous
295 astromaterials, including Cls and Ryugu^{30,38,39} (Fig. 4). Preservation of these presolar
296 grains indicates that Bennu’s parent body did not experience prolonged thermal
297 metamorphism exceeding ~400°C³⁸, in agreement with the much lower temperatures of
298 aqueous alteration inferred from evaporite mineralogy (< 50°C; ^{7,12}).

299 Bennu’s unfractionated bulk chemistry suggests closed-system aqueous
300 alteration. However, enrichments in some fluid-mobile elements² (Extended Data Fig. 1),
301 are consistent with an open-system. These enrichments, along with detected phosphate
302 ions suggests the addition of chemically distinct fluid(s)^{2,8,12}.

303 Presolar silicates are rapidly altered by hydration, and thus their abundances are
304 sensitive tracers of aqueous activity^{30,40}. The least aqueously altered CCs,
305 petrographically classified as types 2 and 3, have abundances up to ~250 ppm⁴⁰,
306 whereas no presolar silicates have been identified in the most aqueously altered type 1

307 Cls³⁹. That Bennu and Ryugu preserve presolar O-rich grains, albeit at similarly low
308 abundances (4 ± 2 and 3 ± 2 ppm, respectively)^{30,39}, suggests their parent bodies
309 experienced an intermediate degree of alteration between those of type 1 and type 2–3
310 meteorites.

311 Similarly, the nebular anhydrous silicates in Bennu indicate that aqueous
312 alteration, though extensive, was not complete (i.e., not all anhydrous silicates converted
313 to hydrated silicates). The abundance of anhydrous silicates (1–4 vol.%)^{2,7} is higher than
314 that within the major hydrated lithology of Ryugu (<0.1 vol.%) but is comparable to a less
315 altered Ryugu clast (3.9 vol.%)⁴¹. This may indicate that the Bennu samples experienced
316 less alteration than the Ryugu samples. However, their similar presolar silicate
317 abundances suggest similar degrees of alteration; therefore, an alternative explanation
318 could be that Bennu’s parent body started with a greater proportion of anhydrous solar
319 system silicates than Ryugu’s.

320 The H isotopic composition of organics in Bennu samples provides key constraints
321 on the extent of aqueous alteration. Bulk δD values of insoluble organic residues in CCs
322 have been shown to decrease with increasing aqueous alteration, while $\delta^{13}C$ and $\delta^{15}N$
323 values remain largely unaffected⁴². Similarly, the destruction of D-enriched domains in
324 organics has been linked to hydrothermal processing²⁸. The preservation of pronounced
325 D enrichments in Bennu organic matter and the high abundance of organics exhibiting H
326 isotopic anomalies supports the interpretation that hydration was incomplete. The Bennu
327 samples contain >2 times the abundance of isotopically anomalous organic matter than
328 samples of the hydrated Ryugu lithology^{29,30,41} and Orgueil³⁹. The distribution and
329 abundance of amino acids⁸ also suggest that the parent body was less aqueously altered
330 than type 1 chondrites and Ryugu.

331 We find a similar removal of the Ar-rich component carrier(s), which are rapidly
332 altered by hydration, as in the most aqueously altered CMs and Cls²⁰. This contrasts with
333 the observations of presolar and anhydrous silicates and organic matter in Bennu that
334 suggest a lower degree of aqueous alteration than Cls. The Ar-rich component may
335 therefore be more sensitive to aqueous alteration than silicates.

336 The isotopically light MVE composition of Bennu samples analyzed here, relative
337 to the Cls’ average composition, could indicate that the parent bodies started off with
338 distinct MVE compositions. Alternatively, these data may reflect limited sampling of the
339 full range of Bennu’s K and Zn isotopic compositions resulting from aqueous alteration.
340 We favor the latter because K and Zn are fluid-mobile, and it has been shown that
341 aqueous alteration could explain the range of K and Zn isotopic compositions among CI-
342 like materials (e.g.,⁴³).

343 Our findings place Bennu in an intermediate position along the CC alteration
344 continuum, bridging the heavily altered type 1 and the less altered type 2–3
345 astromaterials, and recording the complex interplay of primordial accretion, aqueous
346 activity, and organic chemistry in early solar system bodies. Crucially, the higher
347 abundance of anhydrous silicates and isotopically anomalous organic matter in Bennu
348 compared to Ryugu samples suggests that their respective parent bodies accreted
349 different mixtures of these materials. It is also possible that the aggregate samples
350 analyzed in this study do not represent the full range of aqueous alteration experienced

351 by Bennu's parent body. The lithologies and their proportions in the aggregate samples
352 are not yet constrained².
353

354 ***The reservoir from which Bennu's parent body formed***

355 Given the data presented here, particularly the nucleosynthetic signatures,
356 abundances of C and N, and high abundances of anhydrous silicates and isotopically
357 anomalous organic matter, we conclude that Bennu's parent body formed in a region
358 containing presolar SiC, graphite, oxides, and silicates, as well as organics and ices⁸
359 from the outer solar system and interstellar medium. This region also contained refractory
360 silicate minerals that were likely transported from hot, inner regions of the protoplanetary
361 disk to colder areas where ice was stable.

362 Our data reinforce existing dynamical and geologic evidence for common histories
363 of the parent bodies of Bennu and Ryugu^{3,41}. The bulk solar elemental abundances in
364 samples from both asteroids affirms their primitive nature (Extended Data Fig. 1). Their
365 shared mineral inventories^{2,12,41} indicate that both underwent hydrothermal alteration by
366 alkaline, salt-rich water, before catastrophic disruption and subsequent reaccumulation
367 into rubble-pile asteroids^{3,41}.

368 Two isotopically distinct reservoirs in the solar system are well resolved,
369 representing non-carbonaceous and carbonaceous astromaterials^{24,44}. This isotopic
370 divide indicates an early spatial separation within the protoplanetary disk and a dynamical
371 barrier that prevented large-scale mixing. Candidate mechanisms include the early
372 formation of Jupiter⁴⁵, a pressure maximum within the protoplanetary disk⁴⁶, possibly
373 related to the heliocentric distance where water ice condensed (known as the
374 'snowline')⁴⁷, or a combination thereof. Some studies suggest the presence of sub-
375 structures or sub-reservoirs within at least the inner disk³⁷, and possibly a third reservoir
376 farther out in the outer solar system corresponding to the CI-, Ryugu and Bennu
377 materials⁴⁸. The neutron-rich Ti isotope signatures measured here suggest that the
378 reservoir(s) sourcing the parent bodies of Bennu, Ryugu, and CIs were distinct from those
379 of all other chondritic meteorites. Moreover, the overlapping ranges of O isotopes in
380 Bennu and Ryugu samples^{9,26} (Extended Data Fig. 3) implies a common primordial
381 source or exposure to similar physicochemical environments during early solar system
382 evolution.

383 Bennu's parent asteroid could have accreted in a reservoir located close to the
384 water snowline that was seeded with sunward-drifting ice, refractory solids, and dust⁴⁷.
385 However, the CIs likely derive from parent bodies that accreted at distances >5 a.u.^{41,49}.
386 Moreover, exogenous clasts in Ryugu samples may have originated beyond the trans-
387 Neptunian region³⁰. The data support an outer solar system location, possibly beyond the
388 orbit of Saturn, for formation of Bennu's parent asteroid, particularly the high abundance
389 of organic matter with H and N isotope anomalies reported here and the elevated
390 ammonia content and ¹⁵N enrichments in the soluble organics reported previously⁸.
391 These characteristics are shared by comets, but Bennu's bulk chemical and isotopic
392 composition does not show clear evidence of a cometary component, such as depletion
393 of the heavy Xe isotopes⁵⁰.

394 Our analyses of aggregate samples indicate that Bennu's parent body experienced
395 significant aqueous alteration but preserved enough pre-accretion components from
396 diverse stellar, interstellar, and solar system sources to provide insight into its early

397 formation environment. There are genetic similarities in the main rock-forming elements
398 between Bennu, Ryugu, and CI materials, but also distinctions. In particular, the analyzed
399 Bennu samples contain more anhydrous silicates and isotopically anomalous organic
400 matter than samples of the hydrated Ryugu lithology^{29,30,41} and Orgueil³⁹. This suggests
401 that Bennu's parent asteroid accreted a different mix of these materials than those of CIs
402 and Ryugu. We propose that the parent bodies formed from a common reservoir beyond
403 the snowline that was heterogeneous in space and/or time during the earliest evolution
404 of the protoplanetary disk.

405
406

407 Methods

408

409 Samples

410 The samples studied (Supplementary Table 1) were derived from two sources: spillover
411 on the avionics deck, outside the spacecraft's Touch-and-Go Sample Acquisition
412 Mechanism (TAGSAM)⁵¹ and from within the TAGSAM itself. Samples from the avionics
413 deck were part of the 'quick-look' (QL) analysis phase of preliminary examination² and
414 have the ID structure are denoted OREX-5#####-0, where the number signs represent
415 a unique 6-digit numeric string. TAGSAM samples are denoted OREX-8#####-0. Sub-
416 samples have their own unique 6-digit string, whereas splits have the same 6-digit
417 numeric string as their parent samples but suffixes of -100, -101, -102, etc., rather than -
418 0. The QL samples were exposed to air during sample allocation, whereas TAGSAM
419 samples were allocated under N₂. All of the samples studied comprise aggregate
420 material with particles sizes less than 0.5 cm in longest dimension². All samples were
421 transported from Curation under N₂ and were stored under N₂ when not being studied.

422 Information on the samples studied, the elements and isotopes measured and in
423 which laboratory can be found in Supplementary Table 1. The table also includes the
424 DOIs of the data products underlying this work.

425

426 Analytical Techniques

427 *Coordinated dissolution*

428 An ~20.66 mg split of Bennu aggregate (OREX-803015-0) was dissolved at
429 Washington University at St Louis (WashU). Dissolution of the sample was done using
430 concentrated HF and HNO₃ in a 3:1 ratio for 48 hours at 170 °C in a closed beaker,
431 followed by fluxing the sample in concentrated HNO₃ and HCl. While undergoing the
432 HNO₃ flux 1 mL of H₂O₂ was slowly added to the sample to remove organics. Once
433 dissolution was complete, the sample were brought up in 5 mL 0.5 M HNO₃. The solution
434 was then split two ways: ~half stayed at WashU and half was sent to Lawrence Livermore
435 National Laboratory (LLNL). At LLNL the aliquot was further split into two aliquots with
436 one staying at LLNL (OREX-803015-101) and the other was sent to ETH Zürich (OREX-
437 803015-100).

438 **Bulk elemental abundances**

439 Bulk elemental abundances of OREX-803015-101 were determined at LLNL.
440 Major and trace element concentrations were measured using a high resolution ICP-MS
441 (Thermo Element XR) at LLNL. A sub-aliquot of the bulk digest equating to approximately
442 0.5 mg of Bennu was dried down and redissolved in 5 mL of internal standard solution.
443 This consists of 2% HNO₃ + 0.005M HF, spiked with 1 ng/g of In, Re, and Bi, which are
444 used to correct for instrument drift and sample matrix effects. A series of solution
445 standards and certified rock standards (USGS) were prepared in parallel and diluted
446 using the same internal standard solution. The Element ICP-MS was fitted with standard
447 'H' sample and skimmer cones, and solutions were aspirated using a 100
448 microliter/minute nebulizer (Glass Expansion). The Element was tuned for sensitivity and
449 reduced oxides, with typical count rates between 1.2 and 1.5×10^6 cps for 1 ng/g of In,
450 and oxide formation at ~5%. Most elements of interest were measured using low-
451 resolution mode, but elements that are commonly subject to interferences, such as the
452 transition metals, were measured at medium or high resolution (where Low resolution is
453 R = 300, Medium Resolution is R = 4,000 and High resolution is R = 10,000, with R =
454 m/Δ(m)). Sample count rates were background subtracted before quantification using a
455 combination of reference solutions and rock standards. Accuracy was assessed using the
456 USGS basalt standard BHVO-2, with most concentrations falling within 10% of reference
457 values.

458 The two measurements (this study and ²) were conducted by different laboratories
459 using separate aliquots of the same solutions (this study at LLNL and data reported in ²
460 at WashU). Minor differences in a few elements may stem from laboratory discrepancies,
461 as the two labs use different calibration standards (geostandards vs. synthetic standards)
462 and different internal standards. Also, in the context of Q-ICP-MS analyses by different
463 labs (and using different calibration standards), these two results are very close.
464 Therefore, these small differences are likely not significant.

465 Bennu and reference data in Extended Data Figure 1 Bennu and reference data
466 can be found in Supplementary Table 2 where the uncertainties provided are
467 measurement errors (internal) at the 2-sigma (2 σ) level.
468

469 **Bulk K, Cu, and Zn isotopes**

470 About 7 mg of sample OREX-803015-0 (total mass of 20.66 mg) was used for MVE
471 isotope analyses. Dissolution of the sample was done using concentrated HF and HNO₃
472 in a 3:1 ratio for 48 hours at 170°C in a closed beaker, followed by fluxing the samples in
473 concentrated HNO₃ and HCl. While undergoing the HNO₃ flux, 1 mL of H₂O₂ was slowly
474 added to sample to remove organics. Potassium isotope separation was undertaken first
475 using a triple-pass chromatography procedure with Bio-Rad AG50W-X8 100–200 mesh
476 cation exchange resin (see ²³ for detailed description of the K separation procedure). Due
477 to limited sample mass, the separation of Cu and Zn was conducted on the matrix aliquots
478 collected following K separation chemistry. The first pass of the Cu and Zn purification
479 procedure was undertaken using AG1-X8 200–400 mesh anion exchange resin, whereby
480 both elements were extracted one after the other (Cu was eluted using 22 mL of 6 M HCl,
481 while Zn was eluted using 10 mL of 3 M HNO₃). A second pass of the same procedure

482 was undertaken to further purify Cu, while Zn was further purified using a procedure which
483 still used AG1-X8 200–400 mesh anion exchange resin, but with 5 mL of 1.5 M HBr used
484 to elute the matrix, and 3 mL of 0.5 M HNO₃ to elute Zn (see ⁵² for a detailed description
485 of the Cu and Zn separation procedure).

486 The isotope analyses of K, Cu, and Zn were all conducted using a Thermo Scientific
487 Neptune Plus MC-ICP-MS. To lower the ArH⁺ peak and significantly increase the K signal
488 intensity, all K isotope analyses were undertaken using a “dry plasma” technique with the
489 Elemental Scientific APEX Ω high-sensitivity desolvation system used as an introduction
490 system (see ⁵³ for a detailed description of this technique). Additionally, all K isotope
491 analyses were undertaken using a high mass resolution slit. In contrast, Cu and Zn
492 analyses were undertaken using a quartz glass dual cyclonic spray chamber introduction
493 system and a low mass resolution slit.

494 To correct for instrument mass-bias the sample–standard bracketing technique was
495 used for all analyses with NIST SRM 3141a used as the K standard, NIST-SRM 976 used
496 as the Cu standard, and JMC-Lyon used as the Zn standard. The K isotopic composition
497 is given as $\delta^{41}\text{K} = [({}^{41}\text{K}/{}^{39}\text{K})_{\text{sample}}/({}^{41}\text{K}/{}^{39}\text{K})_{\text{standard}} - 1] \times 1000$. The Cu isotopic
498 composition is given as $\delta^{65}\text{Cu} = [({}^{65}\text{Cu}/{}^{63}\text{Cu})_{\text{sample}}/({}^{65}\text{Cu}/{}^{63}\text{Cu})_{\text{standard}} - 1] \times 1000$; and the
499 Zn isotopic composition as $\delta^{66}\text{Zn} = [({}^{66}\text{Zn}/{}^{64}\text{Zn})_{\text{sample}}/({}^{66}\text{Zn}/{}^{64}\text{Zn})_{\text{standard}} - 1] \times 1000$. For
500 both K and Zn, the analyses of samples and standards were conducted at a concentration
501 of 200 ppb, while for Cu analyses were run at a concentration of 100 ppb. To monitor data
502 quality, the geostandard BHVO-2 was analyzed alongside all sample analyses.

503 Non-Bennu data sources for Fig. 2 include $\delta^{65}\text{Cu}$ data for CCs ^{21,22,54} and NCs ^{54–}
504 ⁵⁶, $\delta^{41}\text{K}$ data for CCs ^{23,43,57–62} and NCs ^{23,43,59–63}, and $\delta^{66}\text{Zn}$ data for CCs ^{21,22,64–66} and
505 NCs ^{55,64,67,68}. Sources for non-Bennu elemental data include ^{22,41,57,69,70}. Data are
506 compiled in Supplementary Table 3.

507

508 **Bulk Ti isotopes**

509 Bulk Ti isotope analyses were conducted at two laboratories: Institute of
510 Geochemistry and Petrology, ETH Zurich, Switzerland and Lawrence Livermore National
511 Laboratory (LLNL), USA following coordinated dissolution (see above).

512

513 **ETH, Zurich**

514 Bulk Ti isotope analyses were performed on a 5.2 mg aliquot of Bennu aggregate
515 (OREX-803015-100) at ETH. Titanium was separated and purified through a three-step
516 anion exchange chromatography procedure, following the method detailed by ⁷¹. The total
517 procedural blank for Ti was 3.7 ng, resulting in a maximum blank contribution of 0.18%
518 for Ti. Yields of the purification procedure are 75–100%. High-precision Ti isotope data
519 were measured using a Thermo Scientific Neptune Plus multi-collector inductively
520 coupled plasma mass spectrometer (MC-ICP-MS) at ETH Zurich, following ³⁷. The
521 measurements were conducted at medium mass resolution (MR), with a mass resolving
522 power (R) of approximately 6600 to 7000 [R = m/ (m_{0.95}–m_{0.05})]. Titanium isotopes were
523 collected in two cup configurations. First, all five Ti isotopes and ⁴⁴Ca were measured

524 enabling correction of the Ca interference on ^{46}Ti and ^{48}Ti . The second configuration
525 included ^{49}Ti , ^{50}Ti , ^{51}V , ^{52}Cr , and ^{53}Cr to correct for isobaric interferences from V and Cr
526 on ^{50}Ti . A sample measurement consisted of 40 cycles with 8.39 s integration time for the
527 first configuration and 4.19 s for the second.

528 Each individual measurement consumed approximately 0.3 μg of Ti yielding a
529 signal of around 40 V over a 10^{11} Ohm resistor on ^{48}Ti . To correct for instrumental mass
530 bias, the isotope data were normalized to a $^{49}\text{Ti}/^{47}\text{Ti}$ ratio of 0.749766⁷², using the
531 exponential law. The results are reported relative to an in-house Alfa Aesar Ti wire
532 standard in the ϵ -notation, applying the sample-standard bracketing method:

$$533 \quad \epsilon^i \text{Ti} = \left(\frac{i/^{47}\text{Ti}_{\text{sample}}}{i/^{47}\text{Ti}_{\text{standard}}} - 1 \right) \times 10^4,$$

534 where i refers to the isotope masses ^{46}Ti , ^{48}Ti , and ^{50}Ti . The isotope data were
535 collected on two different days and included four repetitions for Bennu. To verify the
536 accuracy and reproducibility of these measurements, the terrestrial rock standard BHVO-
537 2 and the Agua Zarcas (CM2) chondrite were analyzed alongside the Bennu sample. The
538 analytical uncertainties of 9 analyses of BHVO-2 are $\pm 0.17 \epsilon^{46}\text{Ti}$, $\pm 0.09 \epsilon^{48}\text{Ti}$, and ± 0.16
539 $\epsilon^{50}\text{Ti}$ (2SD).

540

541 *LLNL*

542 Bulk Ti isotope analyses were performed on a ~5 mg aliquot of Bennu aggregate
543 (OREX-803015-101 at LLNL). Purification of Ti was performed using a three-stage
544 separation procedure. First, Fe was separated using 7M HCl – 0.01% H_2O_2 and AG1-X8
545 (100–200 mesh) ion-exchange resin. Next, the cut containing Ti was converted to 12M
546 HNO_3 and further purified following the methods outlined in^{73,74}, using precleaned and
547 preconditioned Eichrom® DGA resin cartridges in combination with a vacuum box system.
548 Finally, the Ti was further purified using 0.4M HCl – 1M HF and AG1-x8 (100-200 mesh)
549 ion-exchange resin. The USGS terrestrial rock standards BCR-2 and BHVO-2 were
550 processed through the same chemical purification procedure to verify the accuracy of our
551 methods. Yields of the purification procedure applied here are >90% and the total
552 procedural blanks were 2 ng for Ti, which is negligible, given that >2 micrograms of Ti
553 were processed from our aliquot of Bennu.

554 Titanium isotope measurements were completed using the Thermo Scientific
555 Neoma with an Aridus II and Jet sampler and X skimmer cones. All five Ti isotopes as well
556 as ^{44}Ca , ^{45}Sc , ^{51}V , ^{52}Cr , and ^{53}Cr were collected in one line using Faraday cups connected
557 to $10^{11} \Omega$ resistors. All samples and standards were measured on the flat low-mass peak
558 shoulders in medium-resolution (MR) mode to avoid molecular interferences. Samples
559 were bracketed with the Origins Lab (OL-)Ti standard and were measured at
560 concentrations of 200 ng/g Ti, resulting in intensities of ~40V on ^{48}Ti . Data were
561 normalized to $^{49}\text{Ti}/^{47}\text{Ti} = 0.749766$ and collected with 50 cycles with 4 second integration
562 time each. The analytical uncertainties of these methods as determined from 16 analyses
563 of BCR-2 and BHVO-2 are $\pm 0.29 \epsilon^{46}\text{Ti}$, $\pm 0.16 \epsilon^{48}\text{Ti}$, and $\pm 0.26 \epsilon^{50}\text{Ti}$ (2SD).

564 It should be noted that masses 44 (Ca), 45 (Sc), 51 (V), 52, and 53 (Cr) were
565 monitored during the Ti isotope measurements to monitor potential isobaric interferences
566 from other elements. However, due to the effective chemical isolation these signals were
567 always close to or indistinguishable from background. The corrections based on these
568 signals are well within the limits that have been previously shown to be accurate.

569 Data are compiled in Supplementary Table 10. The sources of non-Bennu data in
570 Fig. 3 include Ti data^{37,71,74–89} and O data^{25,26,90–97}.

571 ***Bulk anion abundances by ion chromatography***

572 A 25.6 mg Bennu aggregate (OREX-803001-0) was sealed in a glass ampoule
573 with 1 mL Milli-Q ultrapure water and heated at 100°C for 24 hr. The sample was
574 centrifuged, and the supernatant was separated from the solid residue. Forty percent of
575 the extract was dried, acid-hydrolyzed under 6M HCl vapor at 150°C for 3 hr and desalted
576 by passing the solution through an ion-exchange chromatography column (acid-
577 hydrolyzed wash, OREX-803001-111). Murchison acid-hydrolyzed wash and procedural
578 blank were prepared the same way. The solutions were transferred to the Astromaterials
579 Research and Exploration Science Division (ARES)/Johnson Space Center (JSC)
580 Analytical Geochemistry Lab for anion analysis by ion chromatography. Anions were
581 analyzed by a multi-gradient method at flow rate 2 mL/min using a Dionex Integrion
582 instrument equipped with a Dionex IonPac AS11 4 × 250 mm column, the Dionex EGC
583 500 KOH eluent generator cartridge, and a Dionex DRS 600 dynamically regenerated
584 suppressor with a 20 µL injection volume. Samples were analyzed for acetate, formate,
585 Cl⁻, SO₄²⁻, PO₄³⁻, F⁻, Br⁻, NO₃⁻. Results were corrected against a procedural blank. The
586 results are reported in Supplementary Table 3. While the abundance of chloride noted in
587 Supplementary Table 3 is high, it is important to note that it originated from the HCl that
588 was used for hydrolysis and not from the sample.

589 All published sulfate data shown in Extended Data Figure 2^{98–100} were measured
590 with Ion chromatography. The analyzed samples were water extracts from meteorites and
591 Ryugu. All extractions, except the one in Cooper et al.⁹⁸, were done under conditions
592 similar to the methods used for Bennu (Pizzarello et al.⁹⁹ 20 hrs at 100°C; Cooper et al.⁹⁸
593 25 hrs at RT; Yoshimura et al.¹⁰⁰ 20 hrs at 105°C, Bennu samples and our previous
594 unpublished data 24 hrs at 100°C). The actual IC procedures to measure dissolved anions
595 differed because different instruments, columns, eluent solutions, etc., were used.

596

597 ***Bulk O isotopes***

598 Oxygen isotopic analyses were undertaken at the Open University (OU, Milton
599 Keynes, UK) using an infrared laser-assisted fluorination system. A ~150 mg sample of
600 Bennu aggregates (OREX-800032-0) was transported from the JSC Curation Facility to
601 the Natural History Museum (NHM) in London in glass dimple slides sealed in a N₂
602 atmosphere within an Eagle sample container. A randomly selected ~15 mg sub-sample
603 (OREX-803099-0) was prepared in the N₂ glovebox at the NHM and transferred to the
604 Open University in dimple slides in a N₂ atmosphere within the Eagle container. The
605 sample was then stored and processed in the N₂ glovebox at the Open University,
606 ensuring that the sample was protected from atmospheric exposure at all stages from
607 departing JSC Curation to analysis.

608 Four sub-samples of OREX-803099-0 were prepared for oxygen isotope analyses
609 (a further two were prepared for the stepped heating C and N measurements also
610 reported here). OREX-803110-0 (2.3 mg) and OREX-803140-0 (3.3 mg) were randomly
611 selected splits considered representative of the overall sample. An aluminum foil strip was
612 used as a brush to preferentially select coarser or finer particles within the aggregate to

613 produce samples OREX-803136-0 (2.2 mg of coarser particles) and OREX-803137-0 (2.4
614 mg of finer particles). The range in particle size was not large, with typical particle size
615 diameter in the two samples estimated at ~400 μm and $\leq 200 \mu\text{m}$, respectively. Sample
616 masses are provided as a guide, but the challenges of weighing small samples in our
617 glove box creates considerable uncertainty (estimated at ~20%).

618 The laser fluorination measurements were made at the OU and are based upon
619 the established methods developed for the analyses of primitive chondritic materials with
620 high volatile and/or organic contents (typically CI- and CM-like carbonaceous chondrites)
621 and used for the study of Ryugu samples ²⁶. The method employs a “single shot”
622 approach, whereby only one sample is loaded into the sample tray in a N₂ glovebox, with
623 the sample chamber baked and pre-fluorinated before transfer to the glovebox.

624 Briefly, the single shot method involved admitting an aliquot of BrF₅ into the sample
625 chamber at room temperature for 5 min. For the analysis of meteorites and other samples
626 exposed to the terrestrial atmosphere this step is used to remove any residual moisture
627 or O₂ adsorbed on to the sample chamber walls or sample, although as per usual some
628 reaction of the sample also occurs. However, the samples analyzed in this study have
629 been protected from the terrestrial environment at all stages, except for a few tens of
630 minutes during SRC entry and decent and recovery of the capsule (but all moisture should
631 have been removed by the SRC filter system prior to any brief exposure). The oxygen
632 gas liberated in this pre-fluorination step had isotopic signatures very similar to the laser-
633 assisted fluorination step that followed, and therefore the isotopic measurements were
634 combined to provide a bulk measurement. Following the pre-fluorination, the sample itself
635 was reacted by heating in the presence of BrF₅ with a Photon Machines Inc. 50 W infrared
636 CO₂ laser (10.6 μm). Liberated O₂ from each step in the analysis was purified, including
637 removal of NF₃ on 13X molecular sieve at -130°C before being admitted to the inlet
638 system of the mass spectrometer for analysis. The isotopic composition of the purified
639 oxygen gas was analyzed using a Thermo Fisher MAT 253 dual inlet mass spectrometer.
640 Sample gas/reference gas comparisons were performed for 30 minutes, with rebalancing
641 every 10 minutes. A mass scan over m/z=52 was conducted on each sample to check no
642 NF₂ fragment ions of NF₃ were present. The errors quoted for individual measurements
643 are the 2SE on the mean of the sample-standard comparisons. The results were
644 corrected for a small blank, typically amounting to <2% of the total O₂ analyzed.

645 The total amount of oxygen liberated from the two fluorination steps is estimated
646 at approx. 15 wt% - about 50% of the expected yield, although there is some uncertainty
647 about the accuracy of these values because of the challenges of weighing small samples
648 in a glove box, where the balance conditions are not optimized. However, CI meteorites
649 weighed under optimal conditions also provide low yields, typically 17 wt.% O ²⁶. The
650 difference with Bennu samples is believed to be related to the additional oxygen present
651 in the meteorites as a result of formation of ferrihydrite and sulphates through interaction
652 with the Earth’s atmosphere, as these phases have not been observed in either the Ryugu
653 or Bennu samples, plus the abundant inter-layer water present in Cls ⁹. While the low
654 yield has the potential to induce un-wanted isotopic effects, the high temperatures
655 associated with the laser-assisted fluorination should minimize any isotopic fractionation
656 effects. Comparing laser-assisted fluorination of CI meteorites ²⁶ with those performed by
657 fluorination bomb reaction techniques ²⁵ indicate no discernible difference in the reported
658 isotopic composition of such samples.

659
660 Oxygen isotopic analyses are reported in standard δ notation, where $\delta^{18}\text{O}$ has
661 been calculated as:

663
$$\delta^{18}\text{O} = [({}^{18}\text{O} / {}^{16}\text{O})_{\text{sample}} / ({}^{18}\text{O} / {}^{16}\text{O})_{\text{VSMOW}} - 1] \times 1000 (\text{\textperthousand})$$

664
665 and similarly for $\delta^{17}\text{O}$ using the ${}^{17}\text{O} / {}^{16}\text{O}$ ratio. VSMOW is the international standard,
666 Vienna Standard Mean Ocean Water. $\Delta^{17}\text{O}$ represents the deviation from the TFL and
667 has been calculated as:

668
$$\Delta^{17}\text{O} = \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$$

669
670
671 Analytical precision for sample sizes comparable to those used in this study, as defined
672 by replicate analyses of our internal obsidian standard, is: $\pm 0.05\text{\textperthousand}$ for $\delta^{17}\text{O}$; $\pm 0.10\text{\textperthousand}$ for
673 $\delta^{18}\text{O}$; $\pm 0.02\text{\textperthousand}$ for $\Delta^{17}\text{O}$ (2 s.d.)¹⁰¹.

674
675 The bulk values for the TAGSAM material are similar to those obtained for
676 aggregate samples collected from the avionics deck as part of the QL study (average
677 $\delta^{18}\text{O} = 20.6 \pm 2.7\text{\textperthousand}$, and $\Delta^{17}\text{O} = 0.72 \pm 0.16\text{\textperthousand}$ (2SD))², despite these initial analyses
678 being performed on samples exposed to air for several weeks prior to analysis and not
679 including the pre-fluorination step. The variation in $\delta^{18}\text{O}$ in the Ryugu samples appears to
680 result from mineralogical control, exacerbated by the very small sample size used for
681 some of these samples²⁶. Very little variation is observed in the results from the samples
682 reported here, although one of the replicates of the sample (OREX-803110-0) had a
683 measurably different $\Delta^{17}\text{O}$ value that appears to indicate the presence of a rare grain with
684 distinct oxygen isotopic composition. CI chondrites contain abundant inter-layer water
685 with a terrestrial O-isotope signature²⁶ whereas Ryugu samples contain very little inter-
686 layer water⁹ (the amount of inter-layer water in Bennu samples has not been reported
687 yet). These modifications likely lead to a significant shift in the bulk O-isotope composition
688 to lower $\Delta^{17}\text{O}$ and $\delta^{18}\text{O}$ ²⁶.

689 Bennu data are compiled in Supplementary Table 4 along with non-Bennu data
690 9,25,26,102,103. The Carbonaceous Chondrite Anhydrous Mineral (CCAM) line (Figure 5 and
691 Extended Data Figure 3) and Primitive Chondrite Minerals (PCM) line (Figure 5) are
692 constructed from Clayton et al.¹⁰⁴ and Zhang et al.¹⁰⁵, respectively.

693
694 **Bulk C and N abundances and isotopes**

695 The samples analyzed at the OU were separated under nitrogen at the JSC,
696 sealed and hand-carried to the NHM in London. Still under nitrogen in a glovebox, the OU
697 allocation was weighed, then again sealed and hand-carried to Milton Keynes, where it
698 was again placed in a glovebox under nitrogen. The first sample (OREX-803058-0, 1.427
699 mg) was weighed into a cleaned Pt envelope (25 μm thick, 99.9% purity Johnson Matthey
700 Pt foil; cleaned by combustion at 1200°C) on a microbalance in the glovebox, then
701 transferred into a portable vacuum manifold which was then attached to the extraction
702 system of the OU's Finesse mass spectrometer system^{106–108}. This sample was not
703 exposed to air before analysis. The second sample (OREX-803059-0, 1.170 mg) was

704 transferred from the OU glovebox to a class 100 clean room, where it was weighed into
705 a Pt envelope prior to admission to the Finesse system. This sample was exposed to air
706 in the clean room; there were, however, no significant differences in the results at the
707 lowest temperatures of the analysis that could be ascribed to adsorbed terrestrial
708 atmosphere.

709 The main feature of the fully automated Finesse system is its ability to analyze
710 simultaneously the abundances and isotopic compositions of several light elements (He,
711 C, N, Ne, Ar, and Xe) extracted from a single sample. Finesse consists of two triple
712 collector 12 cm magnetic sector noble gas-type static mass spectrometers plus a
713 quadrupole mass spectrometer, all coupled to a common extraction system. One of the
714 magnetic sector mass spectrometers is used for the analysis of carbon as CO₂; the other
715 for molecular N₂ and Ar. The quadrupole spectrometer is used for He, Ne, and Xe. Only
716 C and N data are reported here.

717 The sample in its Pt envelope was introduced to a double-walled combustion tube
718 (inner wall of quartz glass and outer wall of corundum separated by a vacuum gap) within
719 a silicon carbide furnace. It was evacuated to a pressure of ~10⁻⁸ mbar then heated to
720 either 50°C or 100°C under vacuum to remove adsorbed terrestrial species. The
721 experiment then proceeded by heating the sample in increments to 1450°C under pure
722 oxygen (generated by heating CuO to 850°C) in the presence of a Pt catalyst (also
723 maintained at 850°C).

724 At the end of the combustion step, excess oxygen was resorbed by copper oxide
725 at 450°C. Oxygen pressure during oxidation was 5–10 mbar, and combustion time was
726 0.5 h. The products of combustion (CO₂, N₂, SO₂, H₂O, and noble gases) were separated
727 using a series of cryogenic traps. CO₂, SO₂, H₂O, and Xe were trapped in a glass finger.
728 N₂ and Ar were adsorbed onto a finger containing a 5 Å zeolite molecular sieve, while He
729 and Ne remained in the gas phase. Controlled heating of the cold fingers enabled
730 individual species to be isolated for additional purification and quantification. The noble
731 gases were held over an Al–Ti getter for 10 minutes; N₂ was held over a second Cu/CuO
732 finger and Pt catalyst for 20 minutes, to ensure reduction of any nitrogen oxides to N₂.
733 Water and SO₂ could not be measured quantitatively on the system so were pumped
734 away. The amount of CO₂ was measured using a capacitance monometer (Baratron™)
735 with a precision better than 1%; amounts of the other gases were determined from
736 calibration of the ion beam current, knowing the volumes of all the different sections of
737 the extraction manifold into which the gases were expanded.

738 The noble gas-type mass spectrometers for N₂ and CO₂ are each equipped with
739 three collectors set for masses of 28, 29, and 30 and 44, 45, and 46, respectively. The
740 measurement itself takes approximately one minute, during which ~300 data points were
741 collected for each isotope, providing a precision of 0.3–0.5‰. A volume of laboratory
742 standard gas equivalent to that of the sample was measured between each set of data
743 points to enable calculation of isotopic composition. The standards were calibrated using
744 either NBS standards (calcite for CO₂) or atmospheric nitrogen (for N₂) taken from a fixed-
745 volume gas pipette system. The sampling system for noble gas standards (air) is similar
746 and also calibrated in an appropriate manner.

747 System blank was determined by the analysis of an empty Pt foil envelope; the
748 amount of gas in the blank depends on temperature, hence the blank experiments
749 covered the same temperature range as the samples. At the highest temperatures of the

750 analyses, where the smallest quantities of gas were released from the sample, the blank
751 contribution (~0.5 ng for N₂; ~20 ng for CO₂) was still less than 10% of the sample, so
752 blank contributions were not significant.

753 Data are compiled in Supplementary Table 5. Non-Bennu data presented in
754 Extended Data Figure 4 is from the Open University, apart from Ryugu data^{18,109,110}.
755

756 **Bulk noble gases**

757 Noble gas analyses were conducted at three laboratories. He, Ne, Ar, and Xe
758 analyses were performed at Centre de Recherches Pétrographiques et Géochimiques,
759 Nancy, France, and Institute of Geochemistry and Petrology, ETH Zurich, Switzerland;
760 additional Xe analyses were conducted at the Department of Earth and Environmental
761 Sciences, The University of Manchester, UK. Data are compiled in Supplementary
762 Tables 6, 7, and 8 for Ar, Ne, and Xe, respectively.

763 The He, Ne, Ar, Kr, and Xe isotope composition of eight particles from asteroid
764 Bennu, weighing 0.095–1.42 mg, were analyzed using an all-noble-gas analytical system
765 installed at CRPG. Particles were handpicked from aggregate sample OREX-800032-100
766 in a cleanroom (ISO6) at CRPG. The particles were briefly exposed to air for precise
767 weighing before being placed into different pits of a laser chamber, which was baked at
768 100°C and pumped down to 10⁻⁹ mbar overnight to remove any adsorbed atmospheric
769 gases. Each particle was then sequentially heated using a CO₂ laser working at 10.6 μm.
770 After each incremental increase in laser power, extracted gases were purified,
771 cryogenically separated, and analyzed on the Helix MC⁺ (Thermo Scientific) following
772 previously established protocols^{17,111}. Here we present the bulk analysis of neon and
773 xenon in sample OREX-800032-105, which was the largest grain analyzed at CRPG.

774 The three aggregate samples OREX-800032-102, OREX-800032-103, and
775 OREX-800032-104 of 0.9396±0.0003, 0.8901±0.0006 and 0.0678±0.0006 mg mass,
776 respectively, were received at ETH, Zurich from the Natural History Museum in London.
777 They were weighed and loaded into the UHV system all within N₂ atmosphere to minimize
778 atmospheric noble gas contamination. Gas extraction was achieved by heating the
779 samples individually for 2 min by IR laser (continuous-wave Nd:YAG Spectron SL902TQ
780 laser emitting at 1064 nm with a maximal power of 65 W) at 82 %-87 % in two extraction
781 steps until the samples were fused to glass beads. The respective second step confirmed
782 complete gas extraction in each first main step. Sample gas cleaning, separation into He-
783 Ne, Ar, and Kr-Xe fractions and measurements in an in-house built sector field mass
784 spectrometer “Albatros”, equipped with a highly linear Baur-Signer ion source, a multiplier
785 operated in ion-counting mode and a faraday cup are detailed by^{13,112}. Blanks were
786 measured by heating the Al sample holder without sample under the same conditions as
787 the samples. Blank corrections for the main steps of the two 0.9 mg samples amounted
788 each to <1 % for all isotopes except for ⁴⁰Ar (15-22 %). Blank corrections for the 68 μg
789 sample were <1.5 % for He, ^{36,38}Ar and Xe isotopes, <7 % for Kr, ~11 % for Ne and ~19
790 % for ⁴⁰Ar. Here we present the Ar, Ne, and Xe data. Source data for Figure 1 Ryugu data
791¹⁸, CI^{19,75,112–115}, CM²⁰, CR¹¹⁶, CO¹¹⁷ chondrites.

792 The Xe isotopic composition of sample OREX-803060-01 (~60 μg) was analyzed
793 using the RELAX^{118,119} mass spectrometer at the University of Manchester. The sample
794 was too small to weigh using the balances available. The mass was estimated using
795 images taken with an optical microscope before analysis. The particle was assumed to

796 be an ellipsoid, the volume estimated from measurements of the three perpendicular
797 axes, and the mass then calculated using the initial density estimates ¹²⁰ of between 1.5
798 and 1.8 g cm⁻³. The normal procedure for loading samples into a noble gas mass
799 spectrometer involves evacuating the extraction line and sample port and then baking
800 them to temperatures ~180 °C. We did not bake the sample port, to allow us to investigate
801 any low-temperature gases that might be lost from the sample during baking ¹²¹. After
802 loading samples, the sample port and extraction line were both evacuated, the port was
803 then isolated from the line, and just the extraction line was baked. The sample port was
804 then pumped for ~2 weeks at room temperature to preserve low temperature
805 components. Analyses then proceeded following previously published methods ^{18,118}.

806 ***Isotope mapping for presolar grains and organic matter***

807 In-situ isotope mapping was conducted at two laboratories: ARES at NASA
808 Johnson Space Center (JSC) and the Lunar and Planetary Laboratory, University of
809 Arizona (UA), Tucson, USA. Organic matter was characterized at NASA JSC.
810

811 ***NASA JSC***

812 Sample OREX-501018-100 consisted of aggregate QL material pressed onto an
813 Au foil mount using a clean sapphire window. The Au foil had been annealed and HF-
814 cleaned and was mounted onto an Al stub. The CAMECA NanoSIMS 50L was used to
815 search for presolar grains and isotopically anomalous organic matter in this sample by
816 raster ion imaging. The isotopic standards used to correct for instrumental mass
817 fractionation were USG24 graphite, KG17 kerogen, and San Carlos olivine. These
818 standards were prepared in the same manner as the OREX-501018-100 sample. The
819 $\delta^{13}\text{C}$ value of USG24 is -16.05 ‰. KG17 has a $\delta^{13}\text{C}$ value of -24.1 ‰, $\delta^{15}\text{N}$ value of 5.2
820 ‰, and δD value of -108 ‰. San Carlos olivine has $\delta^{17}\text{O}$ and $\delta^{18}\text{O}$ values of 2.73 ‰ and
821 5.25 ‰. The isotopic compositions of these standards, and those reported for the presolar
822 grains and organic matter in Bennu, are relative to standard mean ocean water (SMOW)
823 for O and H, Pee Dee Belemnite (PDB) for C, and atmospheric N₂ for N.

824 The CAMECA NanoSIMS 50L at NASA JSC was used to search for presolar grains
825 and isotopically anomalous organic matter in OREX-501018-100 by raster ion imaging.
826 An ~1.8 pA, ~150 nm diameter primary beam was rastered over regions of interest. The
827 C and N (measured as ¹²CN) isotopes, ²⁸Si, ³⁰Si, and ³²S were measured simultaneously
828 as negative ions in electron multipliers. In a subsequent session, the C and O isotopes,
829 ²⁸Si, and ²⁴Mg¹⁶O were measured using an ~0.9 pA, ~100 nm Cs⁺ primary beam. H
830 isotopes, ¹³C, and ¹⁸O were then measured using an ~14 pA primary beam. The mass
831 resolving power of ~10,000 (CAMECA NanoSIMS definition ¹²²) allowed for resolution of
832 isobaric interferences, particularly on masses ¹³C, ¹⁷O, and ¹²C¹⁵N.

833 Each 20 × 20 μm^2 region of analysis was first pre-sputtered, over areas of 22 × 22
834 μm^2 , using a 16 keV Cs⁺ primary ion beam of high current (~180 pA) to clean the sample
835 surface, implant Cs⁺, and ensure that secondary ion count rates reached a steady state.
836 An electron flood gun (~300 nA) was used to mitigate sample charging. An ~1.8 pA, ~150
837 nm diameter primary beam was rastered over the regions, which consisted of 256 × 256
838 pixels. The C and N (measured as ¹²CN) isotopes, ²⁸Si, ³⁰Si, and ³²S were measured
839 simultaneously as negative ions in electron multipliers. Each ion image consisted of 256
840 × 256 pixels, which were analyzed at 3000 $\mu\text{s}/\text{pixel}$ for 40 frames. In a subsequent session

841 in regions that were not previously measured, the C and O isotopes, ^{28}Si , and $^{24}\text{Mg}^{16}\text{O}$
842 were measured using an ~ 0.9 pA, ~ 100 nm Cs^+ primary beam. Each ion image consisted
843 of 256×256 pixels, which were analyzed at $4200 \mu\text{s}/\text{pixel}$ for 40 frames. H isotopes, ^{13}C ,
844 and ^{18}O were then measured using an ~ 14 pA primary beam. Multiple frames were
845 acquired for each analysis region. Each ion image consisted of 256×256 pixels, analyzed
846 at $1800 \mu\text{s}/\text{pixel}$ for 32 frames.

847 The C, N, and O isotopic ratios were corrected for instrumental mass fractionation
848 using USG-24 graphite, KG17 kerogen, and San Carlos olivine, respectively. Kerogen
849 was also used to correct the H isotope ratios. The $^{30}\text{Si}/^{28}\text{Si}$ ratios were normalized to the
850 Si-rich material that was not isotopically anomalous. Data processing was conducted
851 using the L'Image software (developed by L. Nittler). Grains were considered presolar if
852 their isotopic composition differed from the reference ratios by $>5\sigma$ and if the isotopic
853 anomaly was present in multiple consecutive frames (Supplementary Table 11).
854 Preliminary phase identifications were made based on the NanoSIMS $^{28}\text{Si}/^{12}\text{C}$, $^{28}\text{Si}/^{16}\text{O}$,
855 and $^{24}\text{Mg}^{16}\text{O}/^{16}\text{O}$ ratios. Grains with Si/C ratios > 0.2 were considered to be SiC and
856 grains with Si/C ratios < 0.2 were classified as graphite. Presolar grains with Si/O ratios
857 similar to the surrounding matrix (~ 0.01), which is dominated by silicates, were considered
858 to be silicates and grains with low Si/O ratios (< 0.001) were oxides. Two O-rich presolar
859 grains were also analyzed by SEM-EDS to further constrain the phase and to confirm the
860 phase identifications made based on the NanoSIMS data. Organic grains were defined
861 by manual and automated means and were considered isotopically anomalous, relative
862 to the bulk composition, if they deviated by $>3\sigma$ from the average (bulk) isotopic
863 compositions. Abundances of isotopically anomalous organic matter are given in area%
864 (area of anomalous organics divided by total area analyzed) (Supplementary Table 13).

865 Presolar grain abundances are reported as parts per million (ppm) and include all
866 grains identified at NASA JSC and at UA (Supplementary Table 12). The abundance of
867 each presolar phase (SiC, graphite, and O-rich) was determined by dividing the summed
868 area of the presolar phase by the total area of material analyzed. These areas were
869 assessed from the NanoSIMS ion images. The total area analyzed was determined by
870 placing thresholds on the ^{16}O , ^{28}Si and ^{12}C images (pixels with low counts were excluded).
871 The total areas mapped for C and O isotopes was $25,794 \mu\text{m}^2$, and for C and N isotopes
872 was $8,323 \mu\text{m}^2$. Abundances of isotopically anomalous organic matter are given in area%
873 (area of anomalous organics divided by total area analyzed). The total area measured for
874 C and N isotopes was $8,323 \mu\text{m}^2$. For H isotopes, the threshold was placed on the H
875 maps and the total area measured was $7,053 \mu\text{m}^2$.
876

877 *University of Arizona (UA)*

878 Samples OREX-501049-100 and OREX-501080-0 were prepared at the University
879 of Arizona. OREX-501049-100 was prepared by pressing aggregate particles into gold
880 foil on top of an aluminum stub. This sample was not polished. OREX-501080-0 was
881 prepared as a polished section by embedding aggregate particles in Struers epoxy. This
882 sample was ground dry using SiC paper and polished dry using diamond paste. The
883 sample was cleaned only using compressed air and white paper shop towel.

884 A terrestrial kerogen standard deposited onto gold foil was used for tuning and to
885 correct instrumental mass fractionation for C and N isotopes, and surrounding matrix was
886 used to normalize O isotopes assuming solar system values (SMOW). The terrestrial

887 kerogen is from chert of the Warrawoona group (002-1-RK-M) with $\delta^{13}\text{C}$ value of $-34.3\text{\textperthousand}$
888 and $\delta^{15}\text{N}$ of $\sim 2\text{\textperthousand}$, relative to PDB and atmospheric, respectively. It is a well-characterized
889 standard used for over a decade at WUSTL as tuning and reference material for
890 NanoSIMS and Auger Nanoprobe work (e.g., ¹²³).

891 Bennu samples were imaged using the Keyence VHX7000 digital optical
892 microscope. Reflected light whole-sample maps were produced to aid navigation in
893 subsequent instruments. Both samples were coated with carbon prior to SEM and
894 NanoSIMS analysis. Both samples were examined in the Hitachi TM4000plus scanning
895 electron microscope using a 15keV electron beam. Backscattered electron mosaic
896 images of the samples were collected to identify suitable fine-grained matrix areas for
897 subsequent isotopic analysis.

898 Isotopically anomalous grains were located in OREX-501049-100 and OREX-
899 501080-0 using the CAMECA NanoSIMS High-Resolution (HR) in the Kuiper-Arizona
900 Laboratory for Astromaterials Analysis (K-ALFAA). Both samples were coated with carbon
901 prior to analysis. We carried out raster ion imaging using a focused Cs^+ primary beam of
902 $\sim 1\text{--}1.2\text{ pA}$ and $\sim 100\text{nm}$ in diameter. An electron flood gun was not used. Secondary ions
903 of $^{12,13}\text{C}^-$, $^{16,17,18}\text{O}^-$, and $^{12}\text{C}^{14,15}\text{N}^-$, and secondary electrons (SE), were simultaneously
904 acquired in multicollection mode. The mass resolving power was between 9,000-12,000
905 for all detectors (CAMECA definition ¹²²). To remove the carbon coat and to implant
906 primary ions, we first rastered a high beam current ($\sim 150\text{pA}$) over $11 \times 11\text{ }\mu\text{m}^2$ areas on
907 the NanoSIMS-HR. Each measurement then consisted of 10–20 scans of $10 \times 10\text{ }\mu\text{m}^2$
908 (256×256 pixels) areas within the pre-sputtered region, with dwell times of 10,000–
909 15,000 μs per pixel.

910 C, O, and N isotope data were processed using the WinImage from Cameca and
911 L'Image software. A grain was considered presolar if its isotopic compositions deviated
912 from the average surrounding material by more than 4σ , and if the anomaly was present
913 in at least three consecutive frames. While the thresholds for presolar grain identification
914 differ between the UA and JSC labs, previous studies have independently reported similar
915 abundances for the same meteorites using these different thresholds. For example, in
916 ALHA 77307, Nguyen et al. ¹²⁴ reported a presolar silicate abundance of $161 \pm 16\text{ ppm}$
917 and Haenecour et al. ¹²⁵ of $171 \pm 21\text{ ppm}$.

918 Presolar grain abundances are reported as parts per million (ppm) and include all
919 grains identified at NASA JSC and at UA. The abundance of each presolar phase (SiC,
920 graphite, and O-rich) was determined by dividing the summed area of the presolar phase
921 by the total area of material analyzed. These areas were assessed from the NanoSIMS
922 ion images. The total area analyzed was determined by placing thresholds on the ^{16}O ,
923 ^{28}Si and ^{12}C images (pixels with low counts were excluded). For H, the threshold was
924 placed on the H maps. The total area mapped for O isotopes was $42,900\text{ }\mu\text{m}^2$ and for C
925 and N isotopes was $43,600\text{ }\mu\text{m}^2$. Since Si isotopes were not measured at UA, the UA C-
926 rich presolar grains are assumed to be SiC.

927 In Fig. 4, Ryugu data are from ^{30,39} and CI and CM chondrites ^{38,126–128}. Data on
928 presolar grain isotopic compositions, presolar grain abundances, and the compositions
929 of organics are compiled in Supplementary Tables 11, 12, and 13, respectively.

930

931 ***In situ* chemical composition and O isotopes of anhydrous minerals**

932 In situ O isotope analyses were made at three different laboratories: Centre de
933 Recherches Pétrographiques et Géochimiques, Nancy, France; Isotope Imaging
934 Laboratory (IIL), Hokkaido University, Sapporo, Japan; and Planetary and Space
935 Sciences at the The Open University, UK. All data are compiled in Supplementary Table
936 14. Non-Bennu data in Figure 5 are from ³³.

937 ***Centre de Recherches Pétrographiques et Géochimiques (CRPG, Nancy)***

938 Samples OREX-800045-103 and OREX-800045-107 were prepared by Guy
939 Liborel at Université Côte d'Azur. Aggregate particles (<1mm) were mounted in epoxy,
940 polished and were subsequently carbon coated.

941 Scanning electron microscope observations were performed on the samples using
942 a JEOL JSM-6510 with 3 nA primary beam at 15 kV. We also performed multi-element
943 EDS mapping (Mg, Si, Fe, Ni, S, Na, Ca, and Al) of the different grains. Quantitative
944 chemical analyses were performed using a JEOL JXA-8230 electron microprobe analyzer
945 (EPMA) equipped with five wavelength-dispersive spectrometers (WDS) and one silicon
946 drift detector energy dispersive spectrometer. Quantitative analyses were performed with
947 an accelerating voltage of 20 kV, a probe current of 10 nA and beam diameter of 1 μm .
948 For carbonates, we rastered the beam over $5 \times 5 \mu\text{m}^2$. We used two different settings to
949 determine the chemical compositions of minerals: (i) Al, Ti, Ca, Cr, Mn, Ni, Mg, Fe, and Si
950 (session #1) and (ii) Na, K, Al, Ti, Ca, Cr, Mn, Ni, Mg, Fe, and Si (session #2). We used
951 different standards for tuning the EPMA: Springwater olivine (Mg, Si), fayalite (Fe),
952 wollastonite (Ca), albite (Na, Al), orthoclase (K), rutile (Ti), Ni metal (Ni), chromite (Cr)
953 and rhodochrosite (Mn). The total peak + background counting time was 200 ms for Al,
954 Ti, Ca, Mn and Cr, and 20 ms for Mg, Fe and Si. Detection limits were 0.025 wt% (Mg),
955 0.025 wt% (Fe), 0.05 wt% (Si, K, Na), 0.005 wt% (Ca), 0.02 wt% (Al), 0.005 wt% (Ti),
956 0.015 wt% (Cr), and 0.008 wt% (Mn).

957 Oxygen isotopic compositions of olivine and pyroxene were measured in OREX-
958 800045-103 and OREX-800045-107 during two analysis sessions by secondary ion mass
959 spectrometry (SIMS) using a CAMECA IMS 1270 E7 at CRPG-CNRS ¹²⁹. $^{16}\text{O}^-$, $^{17}\text{O}^-$, and
960 $^{18}\text{O}^-$ ions produced by a Cs^+ primary ion beam ($\sim 1.5 \mu\text{m}$, 30 pA) were measured in
961 multicollection mode using off-axis Faraday cups (FCs) for $^{16}\text{O}^-$, the axial electron
962 multiplier (EM) for $^{17}\text{O}^-$, and an off-axis EM for $^{18}\text{O}^-$. To remove $^{16}\text{OH}^-$ interference on the
963 $^{17}\text{O}^-$ peak and achieve maximum flatness atop the $^{16}\text{O}^-$ and $^{18}\text{O}^-$ peaks, the entrance
964 and exit slits of the central EM were adjusted to achieve a mass resolving power (MRP =
965 $M/\Delta M$) of $\sim 7,000$ for $^{17}\text{O}^-$ (CAMECA definition ¹²²). The multi-collection FC was set on exit
966 slit 1 (MRP = 2,500). The total measurement duration was 20 min, comprising 10 min of
967 pre-sputtering and 10 min of measurement.

968 Five terrestrial standard materials (San Carlos olivine, Dolomite dolomite, JV1
969 clinopyroxene, Saint-Paul enstatite, and Rockport fayalite) were used to define the
970 instrumental mass fractionation (IMF) line for the three oxygen isotopes and correct for
971 IMF due to matrix effects in olivine.

972 To monitor any instrumental drift and to achieve good precision, the San Carlos
973 olivine was analyzed before and after every series of 10 to 15 sample analyses. To
974 monitor any instrumental drift and to achieve good precision, the San Carlos olivine or the
975 JV1 clinopyroxene were analyzed before and after every series of 10-15 sample
976 analyses. We measured the oxygen isotopic compositions of 7 isolated olivine in three

977 different particles of OREX-800045-103. We also measured the oxygen isotopic
978 compositions of 10 isolated olivine and 1 pyroxene grains in two different particles of
979 OREX-800045-107. We additionally performed five analyses on matrix for reference.

980 To precisely localize the small olivine grains (~10 μm), barely visible on the
981 CAMECA IMS 1280-HR SIMS CCD camera, we first made a few sputtered craters near
982 the supposed locations of the targets using the 30 pA-Cs beam and imaged the area with
983 a scanning electron microscope (SEM) following the method described in ¹²⁹. Using ^{16}O -
984 ion images, we then localized the craters and calculate the position of the olivine targets
985 using the SEM images. Oxygen isotopic compositions are expressed in δ -notation as
986 $\delta^{17,18}\text{O} = ([^{17,18}\text{O}/^{16}\text{O}]_{\text{sample}}/[^{17,18}\text{O}/^{16}\text{O}]_{\text{V-SMOW}} - 1) \times 1000\text{\textperthousand}$, where V-SMOW is the
987 Vienna Standard Mean Ocean Water value. Samples related by mass fractionation to the
988 V-SMOW composition plot along a line with a slope of 0.52, defining the terrestrial
989 fractionation line (TFL), whereas mass-independent variations are described by $\Delta^{17}\text{O} =$
990 $\delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$, representing vertical deviations from the TFL in a triple oxygen isotope
991 diagram. Typical 2σ uncertainties, accounting for internal errors on each measurement
992 and the external reproducibility of the standard, were estimated to be (i) ~0.5‰ for $\delta^{18}\text{O}$,
993 ~0.6‰ for $\delta^{17}\text{O}$, and ~0.6‰ for $\Delta^{17}\text{O}$ (session #1) and (ii) ~1.1‰ for $\delta^{18}\text{O}$, ~0.8‰ for $\delta^{17}\text{O}$,
994 and ~0.9‰ for $\Delta^{17}\text{O}$ (session #2). The error on $\Delta^{17}\text{O}$ was calculated by quadratically
995 summing the errors on $\delta^{17}\text{O}$ and $\delta^{18}\text{O}$. All SIMS analytical spots were checked thoroughly
996 by SEM, and any spots near fractures or not completely within olivine/pyroxene grains
997 were excluded from the data set.

998

999 *Hokkaido University, Japan*

1000 A polished section of OREX-803114-0 was used for mineralogical and petrological
1001 observations and in situ O-isotope measurements by SIMS. The sample preparation
1002 procedure was established by ³³. The ten Bennu grains were embedded in a 1-inch epoxy
1003 disk using the Buehler EpoxiCure 2 Resin. After embedding, its sample surface side was
1004 also impregnated with the resin in vacuum, to avoid collapsing the fragile samples during
1005 polishing. The sample disk was polished with an automatic polishing machine (Musashino
1006 Denshi MA-200e) at Hokkaido University. Diamond slurry with polycrystalline diamond
1007 particles of ~3 μm dissolved in ethylene glycol sprayed on a copper polishing plate was
1008 used to obtain flat surface of the sample disk. During the flattening, the sample surface
1009 was impregnated with the resin in vacuum a few times. Subsequently, ~1 μm diamond
1010 slurry sprayed on a tin-antimony alloy polishing plate and on polishing cloth were used to
1011 finalize the polishing. Only >99.5% ethanol was used for cleaning during and after the
1012 polishing. The polished sections were coated with a thin (~20 nm) carbon film for BSE
1013 and X-ray imaging, and elemental analysis before in situ O-isotope measurements.

1014 BSE images were obtained using a field-emission scanning electron microscope
1015 (FE-SEM; JEOL JSM-7000F) at Hokkaido University. X-ray elemental analyses were
1016 conducted with a 15 keV electron beam using an EDS (Oxford X-Max 150) installed on
1017 the FE-SEM. Beam currents of ~2 nA and ~1 nA were employed for the X-ray mapping
1018 and quantitative analysis, respectively. Quantitative calculations were conducted using
1019 Oxford AZtec software. X-ray elemental maps covering the entire polished section of
1020 OREX-803114-0 were obtained with pixel size of 0.24 μm to systematically find out olivine
1021 and pyroxene grains that can be measured for O isotopic compositions with SIMS. After

1022 electron microscopy was completed, the polished sections were recoated with an
1023 additional thin (~70 nm) gold film for SIMS measurements. The O isotopic compositions
1024 of 58 grains of olivine and 7 pyroxenes in OREX-803114-0 were measured in situ with the
1025 Cameca ims-1280HR SIMS instrument at Hokkaido University. The analytical and
1026 instrumental settings were established by 130 and were similar to those described in 33 .

1027 In detail, a $^{133}\text{Cs}^+$ primary beam accelerated to 20 keV was employed. Negative
1028 secondary ions ($^{16}\text{O}^-$, $^{17}\text{O}^-$, and $^{18}\text{O}^-$) were measured simultaneously in the
1029 multicollection mode. The mass resolution of $M/\Delta M$ for $^{17}\text{O}^-$ was set at >6000 to resolve
1030 $^{17}\text{O}^-$ from $^{16}\text{OH}^-$, while that for $^{16}\text{O}^-$ and $^{18}\text{O}^-$ was ~2000 (CAMECA definition 122). The
1031 automatic centering program was applied before data collection. A normal-incidence
1032 electron flood gun was used for electrostatic charge compensation of the analyzing areas
1033 during the measurements. Analyzed areas were precisely determined according to
1034 scanning ion image of $^{16}\text{O}^-$ collected by a multicollector electron multiplier (EM;
1035 designated as L2), which was not used for the data collection, using a procedure
1036 established in 131 . Before measurements, we made a few sputtered craters near
1037 measurement targets using ~30 pA primary beam by the SIMS and then acquired electron
1038 images with the FE-SEM to obtain distances from the sputtered craters to the
1039 measurement targets. The craters were visible in $^{16}\text{O}^-$ scanning images and were used
1040 to locate the target minerals.

1041 The reported uncertainties in the O-isotopic compositions were the larger of the
1042 external reproducibility of standard measurements (two standard deviation, 2SD) or
1043 internal precision (two standard error of cycle data) of samples. Measurement spots were
1044 observed by the FE-SEM after SIMS measurements. The data from spots with inclusions
1045 and overlapping matrix minerals were rejected.

1046 We used two conditions with different primary beam currents depending on mineral
1047 sizes. An ~1.5 nA primary beam with elliptical shape of $6 \times 9 \mu\text{m}$ was used for the
1048 measurement of three large olivine grains. The primary beam was rastered over an 8×8
1049 μm^2 area during the pre-sputtering for 60 seconds, and then the raster size was reduced
1050 to $1 \times 1 \mu\text{m}^2$ for the data collection. $^{16}\text{O}^-$, $^{17}\text{O}^-$, and $^{18}\text{O}^-$ were measured using a
1051 multicollector Faraday cup (FC; $10^{10} \Omega$, designated as L'2), an axial FC ($10^{12} \Omega$), and a
1052 multicollector FC ($10^{12} \Omega$, designated as H1), respectively. The secondary ion intensity of
1053 $^{16}\text{O}^-$ was $\sim 1.0 \times 10^9$ cps. The data were collected for 40 cycles with 4 seconds integration
1054 time per cycle. Obtained count rates were corrected for FC background, monitored during
1055 the pre-sputtering of every measurement, and relative yield of each detector. The $^{16}\text{OH}^-$
1056 count rate was measured immediately after the measurements, but we did not make a
1057 tail correction on $^{17}\text{O}^-$ because its contribution to $^{17}\text{O}^-$ was calculated as ~0.002‰. Typical
1058 uncertainties for $\delta^{17}\text{O}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$ were 0.7‰, 0.5‰, and 0.6‰ (2σ), respectively.

1059 An ~30 pA primary beam with elliptical shape of $\sim 1.7 \times 2.7 \mu\text{m}$ ($\sim 2.3 \times 3.6 \mu\text{m}$
1060 including beam halo) was used for the measurement of the smaller grains of olivine and
1061 pyroxene in Bennu. $^{16}\text{O}^-$, $^{17}\text{O}^-$, and $^{18}\text{O}^-$ were measured using a multicollector FC ($10^{11} \Omega$,
1062 designated as L1), an axial EM, and a multicollector EM (designated as H2),
1063 respectively. The secondary ion intensities of $^{16}\text{O}^-$ were $\sim 1.7\text{--}2.6 \times 10^7$ cps and $\sim 1.8 \times$
1064 10^7 cps for olivine and pyroxene, respectively. The data were collected for 60 cycles with
1065 4 seconds integration time per cycle. Obtained count rates were corrected for FC
1066 background, EM dead time, and relative yield of each detector. The $^{16}\text{OH}^-$ count rate was

1067 measured immediately after the measurements, but we did not make a tail correction on
1068 $^{17}\text{O}^-$ because its contribution to $^{17}\text{O}^-$ was calculated as $\sim 0.02\text{\textperthousand}$. Typical uncertainties for
1069 $\delta^{17}\text{O}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$ were $1.5\text{\textperthousand}$, $0.9\text{\textperthousand}$, and $1.6\text{\textperthousand}$, respectively.

1070 San Carlos olivine (Mg# = 89; $\delta^{18}\text{O} = 5.2\text{\textperthousand}$) and synthetic enstatite 132 ($\delta^{18}\text{O} =$
1071 $10.55\text{\textperthousand}$) were used as standards to correct the instrumental mass fractionation for olivine
1072 and pyroxene, respectively. Since the Mg# of olivine grains is > 83 , variations in IMFs
1073 correlated with Mg# of olivine from that of San Carlos olivine 133 are insignificant
1074 considering the analytical uncertainties of this study.

1075

1076 *The Open University, UK*

1077 The samples OREX-501054-0 and OREX-501059-0 were mounted in resin blocks
1078 and polished at the Natural History Museum, London (NHM), during which process the
1079 samples fragmented into particles, identified as P1 and P2. Following characterization by
1080 SEM/EPMA additional carbon coat was added for a total thickness of ~ 30 nm.

1081 Olivine and pyroxene grains were identified and characterized at the NHM. Major
1082 and minor element abundances were acquired using a Cameca SX100 electron
1083 microprobe. Analyses were performed at 20 kV, using a focused $1\text{ }\mu\text{m}$ beam. Typical
1084 detection limits for transition metals were around 250 ppm. Additional quantitative data
1085 were acquired using a Zeiss EVO 15LS analytical SEM with an Oxford Instruments X-
1086 Max80 energy-dispersive X-ray silicon drift detector (EDS). The EDS system was
1087 calibrated using an elemental cobalt standard and a Kakanui augite mineral standard at
1088 an acceleration voltage of 20 kV and a beam current of 3 nA.

1089 At the Open University (OU), oxygen isotope measurements of 15 grains of olivine
1090 and two pyroxenes in OREX-501054-0 and OREX-501059-0 were made on the CAMECA
1091 NanoSIMS 50L at the OU. The location of each grain was readily identified using the
1092 optical system of the NanoSIMS and a 2 pA Cs^+ beam total ion current imaging of the
1093 carbon coat. Analyses were performed with a focused 100 pA Cs^+ probe ($<0.5\text{ }\mu\text{m}$
1094 diameter). Seven secondary ion species were collected simultaneously, with $^{16}\text{O}^-$
1095 measured on a Faraday detector while $^{17}\text{O}^-$, $^{18}\text{O}^-$, $^{30}\text{Si}^-$, $^{26}\text{Mg}^{16}\text{O}^-$, $^{42}\text{Ca}^{16}\text{O}^-$, and $^{56}\text{Fe}^{16}\text{O}^-$
1096 were measured on electron multipliers. A mass resolving power of $\sim 10,000$ (CAMECA
1097 definition 122) was used that is sufficient to resolve the $^{16}\text{OH}^-$ interference from the $^{17}\text{O}^-$
1098 signal. Prior to analysis, each area was pre-sputtered with a focused 16 kV 100 pA Cs^+
1099 probe for 3 min over an area of $4.5 \times 4.5\text{ }\mu\text{m}$. Analyses were performed with a focused
1100 100 pA Cs^+ probe ($<0.5\text{ }\mu\text{m}$ diameter) rastered repeatedly over $2.5 \times 2.5\text{ }\mu\text{m}$ in “spot”
1101 mode (a 64×64 pixel raster lasting 0.54 s). Each analysis, including centering routines,
1102 lasted ~ 7 min, providing a total of $\sim 8 \times 10^9$ counts for $^{16}\text{O}^-$. The $^{16}\text{OH}^-$ signal was
1103 determined at the start and end of each analysis and a tailing correction applied to the
1104 ^{17}O signal, although in all cases the correction was $<0.1\text{\textperthousand}$ apart from one analysis where
1105 the correction was $0.4\text{\textperthousand}$.

1106 Olivine analyses were corrected for instrumental mass fractionation against a
1107 standard sample of Fo_{90} San Carlos olivine ($\delta^{18}\text{O} = 4.91\text{\textperthousand}$, as measured by laser
1108 fluorination), and pyroxene samples corrected to a sample of enstatite from the Shallow
1109 Water aubrite (SHW-En from 15 , $\delta^{18}\text{O} = 5.69$) that were analyzed before and/or after each
1110 block of unknown samples. Analytical uncertainty (all 2σ), using quadratic combination of
1111 internal counting statistics from the sample measurement and external precision from
1112 standard replicates analyzed before and/or after the samples, is typically $\pm 1.5\text{\textperthousand}$ for $\delta^{17}\text{O}$,

1113 $\pm 1.1\%$ for $\delta^{18}\text{O}$, and $\pm 1.0\%$ for $\Delta^{17}\text{O}$. Matrix correction was applied to account for
1114 differences in the Fe/Mg of the samples of olivine. As the pyroxene sample composition
1115 was close to the pure enstatite standard no additional matrix correction was applied.

1116 The location of each raster pit, as well as absence of any significant cracks or
1117 inclusions, was verified using the SEM following analyses. Two analyses were discarded
1118 because of very irregular sputter pit geometry.

1119
1120

1121 Data Availability

1122 The instrument data supporting the experimental results in this study are available at
1123 <https://astromat.org> at the DOIs given in Supplementary Table 1 and/or within the
1124 manuscript and its Supplementary Information. Source data used to generate figures is
1125 collated in the Supplementary Information Tables and cited in the Methods.

1126

1127 Acknowledgements

1128 We acknowledge the entire OSIRIS-REx team for enabling the return and analysis of
1129 samples from Bennu. This research was also made possible by the careful work of
1130 Curation staff at NASA's Johnson Space Center to whom we are extremely grateful. This
1131 material is based upon work supported by NASA Award NNH09ZDA007O and under
1132 Contract NNM10AA11C issued through the New Frontiers Program J.J.B., A.N.N., E.B.,
1133 P.H., T.S.P., K.T.K., K.C.W., A.B., C.M.O'D.A., L.S., L.C., M.W.C., J.P.D., D.I.F., D.P.G.,
1134 V.E.H., D.H., C.H.H., C.E.J., L.P.K., T.J.M., K.N., R.O., I.J.O., S.S., Z.E.W., T.J.Z.,
1135 D.N.D., C.W.V.W., H.C.C. and D.S.L. We acknowledge NASA's Participating Scientist
1136 Program grant #80NSSC22K1689 to K.W. and P.K. Part of this work was funded by
1137 Science and Technology and Facilities Council (STFC) grants #ST/V000675/1 and
1138 #ST/Y002369/1 S.C. and J.G. The Centre national d'études spatiales (CNES) supported
1139 the work of L.P., Y.M., J.V., D.B., M.B. and E.F. Part of this work was performed under
1140 the auspices of the U.S. Department of Energy by Lawrence Livermore National
1141 Laboratory under contract #DE-AC52-07NA27344 with release number #LLNL-JRNL-
1142 866850 G.A.B., J.R., Q.R.S., J.W., E.A.W., L.E.B., and T.S.K. Part of this work was
1143 carried out within the framework of the NCCR PlanetS supported by the Swiss NSF under
1144 grant #51NF40_205606 and Swiss NSF grant #200020_219860 D.K. and H.B. Work at
1145 the Open University was supported by STFC funding (grant #ST/Y000188/1) I.A.F.,
1146 M.M.G., R.C.G., X.Z., F.A.J.A. and A.V. NASA Emerging Worlds grants
1147 #80NSSC20K0344 and #80NSSC21K0654 supported D.I.F and C.M.O'D.A, and D.I.F is
1148 also funded through Exobiology grant 80NSSC21K0485. We gratefully acknowledge the
1149 NASA Planetary Science Enabling Facilities (PSEF) program (grant #80NSSC23K0327),
1150 the Lunar and Planetary Laboratory, the College of Science, and The Office for Research,
1151 Innovation, and Impact for supporting K-ALFAA operations at the University of Arizona.
1152 We also thank the NASA Planetary Major Equipment Program (#NNX12AL47G and
1153 #NNX15AJ22G), NASA's Early Career Award (#80NSSC20K1087), the NSF Major
1154 Research Instrumentation Program (#1531243 and #0619599), the Gordon and Betty
1155 Moore Foundation (grant #9514), the State of Arizona Technology and Research Initiative

1156 Fund, and an anonymous donor for supporting the instrumentation in K-ALFAA T.J.Z.,
1157 J.J.B., P.H., and D.S.L.

1158

1159 **Author contributions**

1160 Conceptualization of the study, J.J.B, A.N.N., D.V.B., G.A.B., H.B., S.A.C., I.A.F.,
1161 E.F., J.D.G., M.M.G., R.C.G., P.H., N.K., P.K., Y.M., B.M., T.S.P., L.P., J.R., S.S.R., M.S.,
1162 Q.R.S., L.S., J.V., K.W., K.W., J.W., E.A.W., H.Y., C.M.O'D.A., A.M., A.B., P.B., L.E.B.,
1163 R.B., L.C.C., P.L.C., D.F., C.H.H., G.R.H., T.I., C.J-R., F.J., L.P.K., T.S.K., V.L., O.I.J.,
1164 S.R., W.D.A.R., D.S., N.T., D.W., Z.E.W., H.C.C., D.S.L; Methodology and Investigation,
1165 J.J.B., A.N.N., F.A.J.A., K.B., D.V.B., E.B., G.A.B., H.B., J.S.C., S.A.C., M.E., L.J.F.,
1166 M.A.F., I.A.F., E.F., J.D.G., M.M.G., R.C.G., P.H., N.K., P.K., D.K., L.L., K.M.L., C.M.,
1167 J.M., Y.M., B.M., L.A.E.M., T.S.P., L.P., J.R., S.S.R., M.R., M.S., Q.R.S., L.S., N.S., K.T.-
1168 K., A.B.V., J.V., K.W., J.W., E.A.W., Y.H., L.Z., X.Z., D.H.; Writing – Original Draft, J.J.B.,
1169 A.N.N., D.V.B., G.A.B., H.B., S.A.C., I.A.F., E.F., J.D.G., M.M.G., R.C.G., P.H., N.K.,
1170 P.K., Y.M., B.M., T.S.P., L.P., J.R., S.S.R., M.S., Q.R.S., J.V., K.W., J.W., E.A.W., Y.H.;
1171 Writing – Review & Editing, all co-authors.

1172

1173

1174 **These authors contributed equally:** Jessica J. Barnes and Ann N. Nguyen

1175

1176 **Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA**

1177 J. J. Barnes, P. Haenecour, D. Hill, L. Smith, E. Bloch, I. J. Ong, Z. E. Wilbur, L. C.
1178 Chaves, D. S. Lauretta, H. C. Connolly, Jr., T. J. Zega, D. N. DellaGiustina, C.W.V
1179 Wolner

1180

1181 **ARES, NASA Johnson Space Center, Houston, TX, USA**

1182 A. N. Nguyen, L. P. Keller

1183

1184 **Goddard Space Flight Center, Maryland, USA**

1185 D. P. Glavin, J. P. Dworkin

1186

1187 **NASA AMES, California, USA**

1188 S. Sandford

1189

1190 **Barrios/JETS II contract, Houston, TX, USA**

1191 K. Thomas-Keptra

1192

1193 **Amentum/JETS II contract, Houston, TX, USA**

1194 L. Le, T.S. Peretyazhko

1195

1196 **Department of Geology, Rowan University, Glassboro, NJ, USA**

1197 H. C. Connolly, Jr.

1198

1199 **Lawrence Livermore National Laboratory, Livermore, CA, USA**

1200 G.A. Brennecka, J. Render, Q.R Shollenberger, J. Wimpenny, T.S. Kruijer, E.A.
1201 Worsham, L.E. Borg
1202
1203 **Washington University in St. Louis, Missouri, USA**
1204 K. Wang, P. Koefoed, R. Ogiore
1205
1206 **University of Hawaii, Honolulu, HI, USA**
1207 G. R. Huss, K. Nagashima
1208
1209 **Pennsylvania State University, University Park, PA, USA**
1210 A. Baczyński, C. H. House
1211
1212 **University of California Berkeley, Berkeley, CA, USA**
1213 K. Welten, K. Nishiizumi
1214
1215 **Purdue University, West Lafayette, IN, USA**
1216 M. Caffee
1217
1218 **Smithsonian Institution, Washington, DC, USA**
1219 T. J. McCoy
1220
1221 **Southwest Research Institute, Boulder, CO, USA**
1222 V. E. Hamilton
1223
1224 **American Museum of Natural History, New York, NY, USA**
1225 H. C. Connolly, Jr.
1226
1227 **Dept. of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada**
1228 P. L. Clay
1229
1230 **Pacific Centre for Isotopic and Geochemical Research, University of British
1231 Columbia, Vancouver, Canada**
1232 D. Weis, V. Lai, M. Amini
1233
1234 **Research Center Pétrographiques Et Géochimiques (CRPG), Université de
1235 Lorraine, Nancy, France**
1236 B. Marty, E. Füri, D. V. Bekaert, Y. Marrocchi, J. Villeneuve, L. Piani, L. Zimmermann
1237
1238 **The Institute of Geochemistry and Petrology, ETH Zurich, Zurich, Switzerland**
1239 M. Rüfenacht, L. A. E. Meyer, M. Ek, K. M. Liszewska, M. A. Fehr, M. Schönbächler, H.
1240 Busemann, D. Krietsch, C. Maden
1241
1242 **School of Physical Sciences, The Open University, Milton Keynes, UK**
1243 I. A. Franchi, R. C. Greenwood, M. M. Grady, A. B. Verchovsky, F. A. J. Abernethy, J.
1244 Malley, X. Zhao
1245

1246 **Natural History Museum, London, UK**
1247 S. S. Russell
1248
1249 **Department of Earth and Environmental Sciences, The University of Manchester, UK**
1250 S. A. Crowther, J. D. Gilmour, R. Burgess, J. Cowpe, L. Fawcett, P. L. Clay
1252
1253 **Earth and Planetary Sciences, Hokkaido University, Sapporo, Japan**
1254 H. Yurimoto, N. Kawasaki, N. Sakamoto, K. Bajo
1255
1256 **Space Science and Technology Centre, Curtin University, Perth, Australia**
1257 F. Jourdan, N. E. Timms, P. Bland, S. Reddy, D. Saxe
1258
1259 **John de Laeter Centre, Curtin University, Perth, Australia**
1260 S. Reddy, W. D. A. Rickard, D. Saxe
1261
1262 **School of the Environment, University of Queensland, St Lucia, Australia**
1263 T. Ireland
1264
1265 **Isotope Imaging Laboratory (IIL), Hokkaido University, Sapporo, Japan**
1266 H. Yurimoto
1267
1268 **Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, DC, USA**
1269 C.M.O'D. Alexander, D. Foustoukos
1270
1271
1272 **Department of Earth and Planetary Sciences, Stanford, CA USA**
1273 C.E. Jilly
1274
1275
1276 **Competing Interests**
1277 The authors declare no competing interests

1278 **Figure Legends/Captions (for main text figures)**

1279

1280 ***Figure 1: Bulk Ne isotopic composition of Bennu samples (OREX-800032-102, -103, -104, -105) compared with Ryugu and carbonaceous chondrites.***

1282 Neon three-isotope plot (a) and restricted isotope ratio range plot (b). The Ne isotopic
1283 composition of a sample represents mixing between solar wind (SW), cosmogenic,
1284 phase-Q (Q), and presolar (HL, R/G) components of Ne in varying proportions, as well
1285 as terrestrial air. Black dashed lines represent the mixing lines between these
1286 components. The pink dashed box in (a) denotes the bounds of panel (b).
1287 Carbonaceous chondrites are abbreviated as follows: CI, Ivuna-type; CM, Mighei-type;

1288 CR, Renazzo-type. See Methods for sources of non-Bennu data. Error bars represent 1
1289 sigma measurement uncertainties.

1290

1291

1292 **Figure 2: Elemental abundance ratios versus isotopic composition of Cu, Zn, and**
1293 **K in Bennu sample OREX-803015-0 compared with Ryugu and carbonaceous**
1294 **chondrites.**

1295 The inverse Mg-normalized values are used to compensate for the variable (i) metal-
1296 silicate fractionation, (ii) refractory inclusion abundances, and (iii) extent of alteration
1297 (H_2O content) across the different samples. CK, Karoonda-type; CV, Vigarano-type; CO,
1298 Ornans-like, and C ung., ungrouped carbonaceous chondrites. Ordinary chondrites
1299 include H, L, and LL types. See Methods for sources of non-Bennu data. Data are
1300 presented as mean values with 2SE error bars.

1301

1302

1303 **Figure 3: Bulk titanium and oxygen isotopic compositions of Bennu samples**
1304 **(OREX-803015-100, OREX-803015-101) in relation to other astromaterials.**

1305 (a) Bulk $\epsilon^{50}\text{Ti}$ versus oxygen isotopic composition. (b) Bulk $\epsilon^{50}\text{Ti}$ versus $\epsilon^{46}\text{Ti}$ isotopic
1306 composition. CB are Bencubbin-like CCs. OC, ordinary chondrites; RC, Rumuruti
1307 chondrites; EC, enstatite chondrites; Aub, aubrites; Win, winonaites; Ang, angrites;
1308 HED/Mes, howardite–eucrite–diogenite and mesosiderite; Aca/Lod, acapulcoite and
1309 lodranite; Urei, ureilite. See Methods for sources of non-Bennu data. The symbols at the
1310 center of ovals represent the center of the range of values. The sizes of the ovals
1311 represent the range of data for each material, including reported 2SD uncertainty on
1312 measurements.

1313

1314

1315 **Figure 4: Isotopic mapping to identify presolar grains in Bennu samples (OREX-**
1316 **501018-100, OREX-501049-0, OREX-501080-0) and comparison of their**
1317 **abundances with other carbonaceous astromaterials.**

1318 (a) NanoSIMS $\delta^{17}\text{O}/^{16}\text{O}$ ratio image of a region containing an isotopically anomalous O-
1319 rich presolar grain. (b) NanoSIMS $\delta^{13}\text{C}/^{12}\text{C}$ ratio image of a region containing a presolar
1320 SiC grain. (c) Abundances of presolar SiC, O-rich grains and graphite in Bennu (this
1321 study) compared to Ryugu, CI, and CM chondrites (see Methods for sources of non-
1322 Bennu data). The presolar O-rich abundance for CI chondrites is an upper limit. Error
1323 bars are 1SD around mean values.

1324

1325 **Figure 5: Petrography, oxygen isotopic and chemical compositions of anhydrous**
1326 **silicate minerals in Bennu samples (OREX-501054-0, OREX-501059-0, OREX-**
1327 **803114-0, OREX-800045-103, OREX-800045-107).**

1328

1329 (a) Backscattered electron (BSE) image of a chondrule-like olivine grain ($\Delta^{17}\text{O} = -7\text{\textperthousand}$)
1330 and (b) an AOA-like olivine grain ($\Delta^{17}\text{O} = -23\text{\textperthousand}$). (c) Oxygen isotopic compositions of

1331 individual olivine (Ol) and low-Ca pyroxene (Lpx). Oxygen isotopic compositions reflect
1332 three different groupings: a solar-like composition as found in primitive components of
1333 other CCs (CAIs, AOAs), a ^{16}O -enhanced composition at $\Delta^{17}\text{O} = -5 \text{ ‰}$, and a near-
1334 terrestrial (planetary) composition. TF, terrestrial fractionation line; CCAM, carbonaceous
1335 chondrite anhydrous mineral line; PCM, primitive chondrule mineral line (see Methods).
1336 (d) CaO contents (wt%) vs. oxygen isotopic compositions ($\Delta^{17}\text{O}$) of olivine grains in Bennu
1337 (this study), Ryugu and the Ivuna CI chondrite³³. The right panel is a histogram of $\Delta^{17}\text{O}$
1338 values in Bennu olivine grains. Error bars presented in (c) and (d) are 2SD measurement
1339 errors.

1340

1341

1342

1343

1344 References

- 1345 1. Lauretta, D. S. *et al.* Spacecraft sample collection and subsurface excavation of
1346 asteroid (101955) Bennu. *Science* **377**, 285–291 (2022).
- 1347 2. Lauretta, D. S. *et al.* Asteroid (101955) Bennu in the laboratory: Properties of the
1348 sample collected by OSIRIS-REx. *Meteorit. Planet. Sci.* **59**, 2453–2486 (2024).
- 1349 3. Bottke, W. F. *et al.* In search of the source of asteroid (101955) Bennu: Applications
1350 of the stochastic YORP model. *Icarus* **247**, 191–217 (2015).
- 1351 4. Hamilton, V. E. *et al.* Evidence for widespread hydrated minerals on asteroid
1352 (101955) Bennu. *Nat. Astron.* **3**, 332 (2019).
- 1353 5. Kaplan, H. H. *et al.* Bright carbonate veins on asteroid (101955) Bennu: Implications
1354 for aqueous alteration history. *Science* **370**, eabc3557 (2020).
- 1355 6. Kaplan, H. H. *et al.* Composition of organics on asteroid (101955) Bennu. *Astron.*
1356 *Astrophys.* **653**, L1 (2021).
- 1357 7. Zega, T. J. *et al.* Mineralogical evidence for hydrothermal alteration of Bennu
1358 samples. *Nat. Geosci.*, Accepted, this special package.
- 1359 8. Glavin, D. P. *et al.* Abundant ammonia and nitrogen-rich soluble organic matter in
1360 samples from asteroid (101955) Bennu. *Nat. Astron.* **9**, 199–210 (2025).

1361 9. Yokoyama, T. *et al.* Samples returned from the asteroid Ryugu are similar to Ivuna-
1362 type carbonaceous meteorites. *Science* **379**, eabn7850 (2022).

1363 10. Yokoyama, T. *et al.* Water circulation in Ryugu asteroid affected the distribution of
1364 nucleosynthetic isotope anomalies in returned sample. *Sci. Adv.* **9**, eadi7048
1365 (2023).

1366 11. Lodders, K. Solar System Abundances and Condensation Temperatures of the
1367 Elements. *Astrophys. J.* **591**, 1220–1247 (2003).

1368 12. McCoy, T. J. *et al.* An evaporite sequence from ancient brine recorded in Bennu
1369 samples. *Nature* **637**, 1072–1077 (2025).

1370 13. Busemann, H., Baur, H. & Wieler, R. Primordial noble gases in “phase Q” in
1371 carbonaceous and ordinary chondrites studied by closed-system stepped etching.
1372 *Meteorit. Planet. Sci.* **35**, 949–973 (2000).

1373 14. Huss, G. R. & Lewis, R. S. Noble gases in presolar diamonds II: Component
1374 abundances reflect thermal processing. *Meteoritics* **29**, 811–829 (1994).

1375 15. Nittler, L. R. & Ciesla, F. Astrophysics with Extraterrestrial Materials. *Annu. Rev.*
1376 *Astron. Astrophys.* **54**, 53–93 (2016).

1377 16. Alexander, C. M. O. *et al.* The Provenances of Asteroids, and Their Contributions to
1378 the Volatile Inventories of the Terrestrial Planets. *Science* **337**, 721–723 (2012).

1379 17. Broadley, M. W. *et al.* The noble gas and nitrogen relationship between Ryugu and
1380 carbonaceous chondrites. *Geochim. Cosmochim. Acta* **345**, 62–74 (2023).

1381 18. Okazaki, R. *et al.* Noble gases and nitrogen in samples of asteroid Ryugu record its
1382 volatile sources and recent surface evolution. *Science* **379**, eabo0431 (2022).

1383 19. Riebe, M. E. I., Busemann, H., Wieler, R. & Maden, C. Closed System Step Etching
1384 of CI chondrite Ivuna reveals primordial noble gases in the HF-solubles. *Geochim.*
1385 *Cosmochim. Acta* **205**, 65–83 (2017).

1386 20. Krietsch, D. *et al.* Noble gases in CM carbonaceous chondrites: Effect of parent
1387 body aqueous and thermal alteration and cosmic ray exposure ages. *Geochim.*
1388 *Cosmochim. Acta* **310**, 240–280 (2021).

1389 21. Barrat, J. A. *et al.* Geochemistry of CI chondrites: Major and trace elements, and Cu
1390 and Zn Isotopes. *Geochim. Cosmochim. Acta* **83**, 79–92 (2012).

1391 22. Paquet, M. *et al.* Contribution of Ryugu-like material to Earth’s volatile inventory by
1392 Cu and Zn isotopic analysis. *Nat. Astron.* **7**, 182–189 (2023).

1393 23. Koefoed, P. *et al.* The potassium isotopic composition of CI chondrites and the origin
1394 of isotopic variations among primitive planetary bodies. *Geochim. Cosmochim.*
1395 *Acta* **358**, 49–60 (2023).

1396 24. Leya, I., Schönbachler, M., Wiechert, U., Krähenbühl, U. & Halliday, A. N. Titanium
1397 isotopes and the radial heterogeneity of the solar system. *Earth Planet. Sci. Lett.*
1398 **266**, 233–244 (2008).

1399 25. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of carbonaceous chondrites.
1400 *Geochim. Cosmochim. Acta* **63**, 2089–2104 (1999).

1401 26. Greenwood, R. C. *et al.* Oxygen isotope evidence from Ryugu samples for early
1402 water delivery to Earth by CI chondrites. *Nat. Astron.* **7**, 29–38 (2023).

1403 27. Busemann, H. *et al.* Interstellar chemistry recorded in organic matter from primitive
1404 meteorites. *Science* **312**, 727–730 (2006).

1405 28. Nguyen, A. N. *et al.* Micro- and nanoscale studies of insoluble organic matter and C-
1406 rich presolar grains in Murchison and Sutter's Mill in preparation for Bennu sample
1407 analysis. *Meteorit. Planet. Sci.* **59**, 2831–2850 (2024).

1408 29. Nittler, L. R. *et al.* Microscale hydrogen, carbon, and nitrogen isotopic diversity of
1409 organic matter in asteroid Ryugu. *Earth Planet. Sci. Lett.* **637**, 118719 (2024).

1410 30. Nguyen, A. N. *et al.* Abundant presolar grains and primordial organics preserved in
1411 carbon-rich exogenous clasts in asteroid Ryugu. *Sci. Adv.* **9**, eadh1003 (2023).

1412 31. Yabuta, H. *et al.* Macromolecular organic matter in samples of the asteroid (162173)
1413 Ryugu. *Science* **379**, eabn9057 (2023).

1414 32. De Gregorio, B. T. *et al.* Isotopic anomalies in organic nanoglobules from Comet
1415 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies
1416 induced in terrestrial organics by electron irradiation. *Geochim. Cosmochim. Acta*
1417 **74**, 4454–4470 (2010).

1418 33. Kawasaki, N. *et al.* Oxygen isotopes of anhydrous primary minerals show kinship
1419 between asteroid Ryugu and comet 81P/Wild2. *Sci. Adv.* **8**, eade2067 (2022).

1420 34. Liu, M.-C. *et al.* Incorporation of 16O-rich anhydrous silicates in the protolith of
1421 highly hydrated asteroid Ryugu. *Nat. Astron.* **6**, 1172–1177 (2022).

1422 35. Morin, G. L. F., Marrocchi, Y., Villeneuve, J. & Jacquet, E. 16O-rich anhydrous
1423 silicates in CI chondrites: Implications for the nature and dynamics of dust in the
1424 solar accretion disk. *Geochim. Cosmochim. Acta* **332**, 203–219 (2022).

1425 36. Nakamura, T. *et al.* Chondrulelike Objects in Short-Period Comet 81P/Wild 2.
1426 *Science* **321**, 1664–1667 (2008).

1427 37. Rüfenacht, M. *et al.* Genetic relationships of solar system bodies based on their
1428 nucleosynthetic Ti isotope compositions and sub-structures of the solar
1429 protoplanetary disk. *Geochim. Cosmochim. Acta* **355**, 110–125 (2023).

1430 38. Davidson, J. *et al.* Abundances of presolar silicon carbide grains in primitive
1431 meteorites determined by NanoSIMS. *Geochim. Cosmochim. Acta* **139**, 248–266
1432 (2014).

1433 39. Barosch, J. *et al.* Presolar Stardust in Asteroid Ryugu. *ApJL* **935**, L3 (2022).

1434 40. Floss, C. & Haenecour, P. Presolar silicate grains: Abundances, isotopic and
1435 elemental compositions, and the effects of secondary processing. *Geochem. J.* **50**,
1436 3–25 (2016).

1437 41. Nakamura, T. *et al.* Formation and evolution of carbonaceous asteroid Ryugu: Direct
1438 evidence from returned samples. *Science* **379**, eabn8671 (2022).

1439 42. Alexander, C. M. O., Cody, G. D., De Gregorio, B. T., Nittler, L. R. & Stroud, R. M.
1440 The nature, origin and modification of insoluble organic matter in chondrites, the
1441 major source of Earth's C and N. *Geochemistry* **77**, 227–256 (2017).

1442 43. Bloom, H. *et al.* Potassium isotope compositions of carbonaceous and ordinary
1443 chondrites: Implications on the origin of volatile depletion in the early solar system.
1444 *Geochim. Cosmochim. Acta* **277**, 111–131 (2020).

1445 44. Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the
1446 Earth and Mars: A subordinate role for carbonaceous chondrites. *Earth Planet. Sci.
1447 Lett.* **311**, 93–100 (2011).

1448 45. Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the
1449 distinct genetics and formation times of meteorites. *Proc. Natl Acad. Sci. USA* **114**,
1450 6712–6716 (2017).

1451 46. Brasser, R. & Mojzsis, S. J. The partitioning of the inner and outer Solar System by a
1452 structured protoplanetary disk. *Nat. Astron.* **4**, 492–499 (2020).

1453 47. Lichtenberg, T., Drążkowska, J., Schönbächler, M., Golabek, G. J. & Hands, T. O.
1454 Bifurcation of planetary building blocks during Solar System formation. *Science*
1455 **371**, 365–370 (2021).

1456 48. Hopp, T. *et al.* Ryugu’s nucleosynthetic heritage from the outskirts of the Solar
1457 System. *Sci. Adv.* **8**, eadd8141 (2022).

1458 49. Desch, S. J., Kalyaan, A. & Alexander, C. M. O. The Effect of Jupiter’s Formation on
1459 the Distribution of Refractory Elements and Inclusions in Meteorites. *ApJS* **238**, 11
1460 (2018).

1461 50. Marty, B. *et al.* Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets
1462 contributed to Earth’s atmosphere. *Science* **356**, 1069–1072 (2017).

1463

1464

1465 **Additional references in the methods**

1466

1467 51. Bierhaus, E. B. *et al.* The OSIRIS-REx Spacecraft and the Touch-and-Go Sample
1468 Acquisition Mechanism (TAGSAM). *Space Sci. Rev.* **214**, 107 (2018).

1469 52. Neuman, M. *et al.* High temperature evaporation and isotopic fractionation of K and
1470 Cu. *Geochim. Cosmochim. Acta* **316**, 1–20 (2022).

1471 53. Chen, H., Liu, X.-M. & Wang, K. Potassium isotope fractionation during chemical
1472 weathering of basalts. *Earth Planet. Sci. Lett.* **539**, 116192 (2020).

1473 54. Luck, J. M., Othman, D. B., Barrat, J. A. & Albarède, F. Coupled ^{63}Cu and ^{16}O
1474 excesses in chondrites. *Geochim. Cosmochim. Acta* **67**, 143–151 (2003).

1475 55. Moynier, F., Blichert-Toft, J., Telouk, P., Luck, J.-M. & Albarède, F. Comparative
1476 stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron
1477 meteorites. *Geochim. Cosmochim. Acta* **71**, 4365–4379 (2007).

1478 56. Savage, P. S. *et al.* Copper isotope evidence for large-scale sulphide fractionation
1479 during Earth's differentiation. *Geochem. Perspect. Lett.* 53–64 (2015)
1480 doi:10.7185/geochemlet.1506.

1481 57. Hu, Y. *et al.* Pervasive aqueous alteration in the early Solar System revealed by
1482 potassium isotopic variations in Ryugu samples and carbonaceous chondrites.
1483 *Icarus* **409**, 115884 (2024).

1484 58. Jiang, Y. *et al.* Early solar system aqueous activity: K isotope evidence from Allende.
1485 *Meteorit. Planet. Sci.* **56**, 61–76 (2021).

1486 59. Jiang, Y., Koefoed, P., Wang, K. & Weibiao, H. High precision potassium isotopic
1487 study of Chinese Antarctic chondrites. *Acta Geol. Sin.* **95**, 2878–2888 (2021).

1488 60. Nie, N. X. *et al.* Imprint of chondrule formation on the K and Rb isotopic
1489 compositions of carbonaceous meteorites. *Sci. Adv.* **7**, eabl3929 (2021).

1490 61. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy giant
1491 impact origin of the Moon. *Nature* **538**, 487–490 (2016).

1492 62. Ku, Y. & Jacobsen, S. B. Potassium isotope anomalies in meteorites inherited from
1493 the protosolar molecular cloud. *Sci. Adv.* **6**, eabd0511 (2020).

1494 63. Koefoed, P. *et al.* Potassium isotope systematics of the LL4 chondrite Hamlet:
1495 Implications for chondrule formation and alteration. *Meteorit. Planet. Sci.* **55**,
1496 (2020).

1497 64. Luck, J.-M., Othman, D. B. & Albarède, F. Zn and Cu isotopic variations in chondrites
1498 and iron meteorites: Early solar nebula reservoirs and parent-body processes.
1499 *Geochim. Cosmochim. Acta* **69**, 5351–5363 (2005).

1500 65. Mahan, B., Moynier, F., Beck, P., Pringle, E. A. & Siebert, J. A history of violence:
1501 Insights into post-accretionary heating in carbonaceous chondrites from volatile
1502 element abundances, Zn isotopes and water contents. *Geochim. Cosmochim. Acta*
1503 **220**, 19–35 (2018).

1504 66. Pringle, E. A., Moynier, F., Beck, P., Paniello, R. & Hezel, D. C. The origin of volatile
1505 element depletion in early solar system material: Clues from Zn isotopes in
1506 chondrules. *Earth Planet. Sci. Lett.* **468**, 62–71 (2017).

1507 67. Moynier, F. *et al.* Nature of volatile depletion and genetic relationships in enstatite
1508 chondrites and aubrites inferred from Zn isotopes. *Geochim. Cosmochim. Acta* **75**,
1509 297–307 (2011).

1510 68. Paniello, R. C. Volitization of Extraterrestrial Materials as Determined by Zinc
1511 Isotopic Analysis. (Washington University in St Louis, 2013).

1512 69. Alexander, C. M. O. Quantitative models for the elemental and isotopic fractionations
1513 in chondrites: The carbonaceous chondrites. *Geochim. Cosmochim. Acta* **254**,
1514 277–309 (2019).

1515 70. Alexander, C. M. O. Quantitative models for the elemental and isotopic fractionations
1516 in the chondrites: The non-carbonaceous chondrites. *Geochim. Cosmochim. Acta*
1517 **254**, 246–276 (2019).

1518 71. Williams, N. H., Fehr, M. A., Parkinson, I. J., Mandl, M. B. & Schönbächler, M.
1519 Titanium isotope fractionation in solar system materials. *Chem. Geol.* **568**, 120009
1520 (2021).

1521 72. Niederer, F. R., Papanastassiou, D. A. & Wasserburg, G. J. Absolute isotopic
1522 abundances of Ti in meteorites. *Geochim. Cosmochim. Acta* **49**, 835–851 (1985).

1523 73. Torrano, Z. A. *et al.* Titanium isotope signatures of calcium-aluminum-rich inclusions
1524 from CV and CK chondrites: Implications for early Solar System reservoirs and
1525 mixing. *Geochim. Cosmochim. Acta* **263**, 13–30 (2019).

1526 74. Shollenberger, Q. R. *et al.* Titanium isotope systematics of refractory inclusions:
1527 Echoes of molecular cloud heterogeneity. *Geochim. Cosmochim. Acta* **324**, 44–65
1528 (2022).

1529 75. Bischoff, A. *et al.* The old, unique C1 chondrite Flensburg – Insight into the first
1530 processes of aqueous alteration, brecciation, and the diversity of water-bearing
1531 parent bodies and lithologies. *Geochim. Cosmochim. Acta* **293**, 142–186 (2021).

1532 76. Burkhardt, C. *et al.* In search of the Earth-forming reservoir: Mineralogical, chemical,
1533 and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400
1534 and selected chondrites. *Meteorit. Planet. Sci.* **52**, 807–826 (2017).

1535 77. Burkhardt, C. *et al.* Terrestrial planet formation from lost inner solar system material.
1536 *Sci. Adv.* **7**, eabj7601 (2021).

1537 78. Davis, A. M. *et al.* Titanium isotopes and rare earth patterns in CAIs: Evidence for
1538 thermal processing and gas-dust decoupling in the protoplanetary disk. *Geochim.*
1539 *Cosmochim. Acta* **221**, 275–295 (2018).

1540 79. Gerber, S., Burkhardt, C., Budde, G., Metzler, K. & Kleine, T. Mixing and Transport of
1541 Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among
1542 Chondrules. *ApJL* **841**, L17 (2017).

1543 80. Mandl, M. B. Titanium isotope fractionation on the Earth and Moon: Constraints on
1544 magmatic processes and Moon formation. (ETH Zurich, 2019).

1545 81. Render, J., Ebert, S., Burkhardt, C., Kleine, T. & Brennecke, G. A. Titanium isotopic
1546 evidence for a shared genetic heritage of refractory inclusions from different
1547 carbonaceous chondrites. *Geochim. Cosmochim. Acta* **254**, 40–53 (2019).

1548 82. Sanborn, M. E. *et al.* Carbonaceous achondrites Northwest Africa 6704/6693:
1549 Milestones for early Solar System chronology and genealogy. *Geochim.*
1550 *Cosmochim. Acta* **245**, 577–596 (2019).

1551 83. Schrader, D. L. *et al.* Tarda and Tagish Lake: Samples from the same outer Solar
1552 System asteroid and implications for D- and P-type asteroids. *Geochim.*
1553 *Cosmochim. Acta* **380**, 48–70 (2024).

1554 84. Torrano, Z. A. *et al.* The relationship between CM and CO chondrites: Insights from
1555 combined analyses of titanium, chromium, and oxygen isotopes in CM, CO, and
1556 ungrouped chondrites. *Geochim. Cosmochim. Acta* **301**, 70–90 (2021).

1557 85. Williams, N. H. Titanium isotope cosmochemistry. (The University of Manchester,
1558 2015).

1559 86. Williams, C. D. *et al.* Chondrules reveal large-scale outward transport of inner Solar
1560 System materials in the protoplanetary disk. *Proc. Natl Acad. Sci. USA* **117**,
1561 23426–23435 (2020).

1562 87. Zhang, J., Dauphas, N., M. Davis, A. & Pourmand, A. A new method for MC-ICPMS
1563 measurement of titanium isotopic composition: Identification of correlated isotope
1564 anomalies in meteorites. *J. Anal. At. Spectrom.* **26**, 2197–2205 (2011).

1565 88. Zhang, J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A. The proto-Earth as a
1566 significant source of lunar material. *Nat. Geosci.* **5**, 251–255 (2012).

1567 89. Goodrich, C. A. *et al.* Petrogenesis and provenance of ungrouped achondrite
1568 Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and
1569 titanium isotopes, and mid-IR spectroscopy. *Geochim. Cosmochim. Acta* **203**, 381–
1570 403 (2017).

1571 90. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. *Geochim.*
1572 *Cosmochim. Acta* **60**, 1999–2017 (1996).

1573 91. Clayton, R. N., Mayeda, T. K. & Rubin, A. E. Oxygen isotopic compositions of
1574 enstatite chondrites and aubrites. *J. Geophys. Res. Solid Earth* **89**, C245–C249
1575 (1984).

1576 92. Clayton, R. N., Mayeda, T. K., Goswami, J. N. & Olsen, E. J. Oxygen isotope studies
1577 of ordinary chondrites. *Geochim. Cosmochim. Acta* **55**, 2317–2337 (1991).

1578 93. Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma
1579 oceans on asteroidal bodies in the early Solar System. *Nature* **435**, 916–918
1580 (2005).

1581 94. Jenniskens, P. *et al.* Radar-Enabled Recovery of the Sutter's Mill Meteorite, a
1582 Carbonaceous Chondrite Regolith Breccia. *Science* **338**, 1583–1587 (2012).

1583 95. Jenniskens, P. *et al.* Fall, recovery, and characterization of the Novato L6 chondrite
1584 breccia. *Meteorit. Planet. Sci.* **49**, 1388–1425 (2014).

1585 96. Popova, O. P. *et al.* Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery,
1586 and Characterization. *Science* **342**, 1069–1073 (2013).

1587 97. Tang, H. *et al.* The Oxygen Isotopic Composition of Samples Returned from Asteroid
1588 Ryugu with Implications for the Nature of the Parent Planetesimal. *Planet. Sci. J.* **4**,
1589 144 (2023).

1590 98. Cooper, G. W., Onwo, W. M. & Cronin, J. R. Alkyl phosphonic acids and sulfonic
1591 acids in the Murchison meteorite. *Geochim. Cosmochim. Acta* **56**, 4109–4115
1592 (1992).

1593 99. Pizzarelli, S., Yarnes, C. T. & Cooper, G. The Aguas Zarcas (CM2) meteorite: New
1594 insights into early solar system organic chemistry. *Meteorit. Planet. Sci.* **55**, 1525–
1595 1538 (2020).

1596 100. Yoshimura, T. *et al.* Chemical evolution of primordial salts and organic sulfur
1597 molecules in the asteroid 162173 Ryugu. *Nat. Commun.* **14**, 5284 (2023).

1598 101. Starkey, N. A. *et al.* Triple oxygen isotopic composition of the high-³He/⁴He mantle.
1599 *Geochim. Cosmochim. Acta* **176**, 227–238 (2016).

1600 102. Ito, M. *et al.* A pristine record of outer Solar System materials from asteroid Ryugu's
1601 returned sample. *Nat. Astron.* **6**, 1163–1171 (2022).

1602 103. Nakamura, E. *et al.* On the origin and evolution of the asteroid Ryugu: A
1603 comprehensive geochemical perspective. *PJA Series B* **98**, 227–282 (2022).

1604 104. Clayton, R. N., Onuma, N., Grossman, L. & Mayeda, T. K. Distribution of the pre-
1605 solar component in Allende and other carbonaceous chondrites. *Earth Planet. Sci.*
1606 *Lett.* **34**, 209–224 (1977).

1607 105. Zhang, M. *et al.* SIMS matrix effects in oxygen isotope analysis of olivine and
1608 pyroxene: Application to Acfer 094 chondrite chondrules and reconsideration of the
1609 primitive chondrule minerals (PCM) line. *Chem. Geol.* **608**, 121016 (2022).

1610 106. Verchovsky, A. B. *et al.* C, N, and Noble Gas Isotopes in Grain Size Separates of
1611 Presolar Diamonds from Efremovka. *Science* **281**, 1165–1168 (1998).

1612 107. Verchovsky, A. B. *et al.* A primordial noble gas component discovered in the Ryugu
1613 asteroid and its implications. *Nat. Commun.* **15**, 8075 (2024).

1614 108. Wright, I. P., Boyd, S. R., Franchi, I. A. & Pillinger, C. T. High-precision
1615 determination of nitrogen stable isotope ratios at the sub-nanomole level. *J. Phys.*
1616 *E: Sci. Instrum.* **21**, 865 (1988).

1617 109. Naraoka, H. *et al.* Soluble organic molecules in samples of the carbonaceous
1618 asteroid (162173) Ryugu. *Science* **379**, eabn9033 (2023).

1619 110. Oba, Y. *et al.* Uracil in the carbonaceous asteroid (162173) Ryugu. *Nat. Commun.*
1620 **14**, 1292 (2023).

1621 111. Bekaert, D. V., Avice, G., Marty, B., Henderson, B. & Gudipati, M. S. Stepwise
1622 heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous
1623 noble gas component on the Moon. *Geochim. Cosmochim. Acta* **218**, 114–131
1624 (2017).

1625 112. Riebe, M. E. I. *et al.* Cosmic-ray exposure ages of six chondritic Almahata Sitta
1626 fragments. *Meteorit. Planet. Sci.* **52**, 2353–2374 (2017).

1627 113. King, A. J. *et al.* The Yamato-type (CY) carbonaceous chondrite group: Analogues
1628 for the surface of asteroid Ryugu? *Geochemistry* **79**, 125531 (2019).

1629 114. Zähringer, J. Isotopie-Effekt und Häufigkeiten der Edelgase in Steinmeteoriten und
1630 auf der Erde. *Zeitschrift für Naturforschung A* **17**, 460–471 (1962).

1631 115. Zähringer, J. Rare gases in stony meteorites. *Geochim. Cosmochim. Acta* **32**, 209–
1632 237 (1968).

1633 116. Mazor, E., Heymann, D. & Anders, E. Noble gases in carbonaceous chondrites.
1634 *Geochim. Cosmochim. Acta* **34**, 781–824 (1970).

1635 117. Eckart, L. *et al.* Noble gases in CO chondrites: Primordial components, effects of
1636 parent body thermal alteration, and cosmic ray exposure ages. *Geochim.*
1637 *Cosmochim. Acta* (Accepted). <https://doi.org/10.1016/j.gca.2025.04.021>

1638 118. Crowther, S. A. *et al.* Characteristics and applications of RELAX, an ultrasensitive
1639 resonance ionization mass spectrometer for xenon. *J. Anal. At. Spectrom.* **23**, 938
1640 (2008).

1641 119. Gilmour, J. D., Lyon, I. C., Johnston, W. A. & Turner, G. RELAX: An ultrasensitive,
1642 resonance ionization mass spectrometer for xenon. *Rev. Sci. Instrum.* **65**, 617–625
1643 (1994).

1644 120. Ryan, A. J., Ballouz, R.-L., Macke, R. J., Connolly, H. C. & Lauretta, D. S. Physical
1645 and Thermal Properties of OSIRIS-REx Samples: Insight into the Evolution of
1646 Bennu and Its Regolith. in *55th Lunar and Planetary Science Conference* vol. 3040
1647 1594 (2024).

1648 121. Crowther, S. A., Cowpe, J. S., King, A. J., Clay, P. L. & Gilmour, J. D. Xenon and I-
1649 Xe Analysis of the Winchcombe (CM2) Meteorite. in *6th Annual Meeting of the*
1650 *Meteoritical Society* vol. 86 6235 (2023).

1651 122. Hoppe, P., Cohen, S. & Meibom, A. NanoSIMS: Technical Aspects and Applications
1652 in Cosmochemistry and Biological Geochemistry. *Geostand. Geoanal. Res.* **37**,
1653 111–154 (2013).

1654 123. Floss, C., Stadermann, F. J., Mertz, A. F. & Bernatowicz, T. J. A NanoSIMS and
1655 Auger Nanoprobe investigation of an isotopically primitive interplanetary dust
1656 particle from the 55P/Tempel-Tuttle targeted stratospheric dust collector. *Meteorit.*
1657 *Planet. Sci.* **45**, 1889–1905 (2010).

1658 124. Nguyen, A. N., Nittler, L. R., Stadermann, F. J., Stroud, R. M. & Alexander, C. M. O.
1659 Coordinated Analyses of Presolar Grains in the Allan Hills 77307 and Queen
1660 Elizabeth Range 99177 Meteorites. *Astrophys. J.* **719**, 166–189 (2010).

1661 125. Haenecour, P. *et al.* Presolar silicates in the matrix and fine-grained rims around
1662 chondrules in primitive CO3.0 chondrites: Evidence for pre-accretionary aqueous
1663 alteration of the rims in the solar nebula. *Geochim. Cosmochim. Acta* **221**, 379–405
1664 (2018).

1665 126. Huss, G. R., Meshik, A. P., Smith, J. B. & Hohenberg, C. M. Presolar diamond,
1666 silicon carbide, and graphite in carbonaceous chondrites: implications for thermal
1667 processing in the solar nebula. *Geochim. Cosmochim. Acta* **67**, 4823–4848 (2003).

1668 127. Leitner, J. *et al.* The presolar grain inventory of fine-grained chondrule rims in the
1669 Mighei-type (CM) chondrites. *Meteoritics & Planetary Science* **55**, 1176–1206
1670 (2020).

1671 128. Nittler, L. R., Alexander, C. M. O., Patzer, A. & Verdier-Paoletti, M. J. Presolar
1672 stardust in highly pristine CM chondrites Asuka 12169 and Asuka 12236. *Meteorit.*
1673 *Planet. Sci.* **56**, 260–276 (2021).

1674 129. Marrocchi, Y. *et al.* Isotopic evolution of the inner solar system revealed by size-
1675 dependent oxygen isotopic variations in chondrules. *Geochim. Cosmochim. Acta*
1676 **371**, 52–64 (2024).

1677 130. Kawasaki, N., Simon, S. B., Grossman, L., Sakamoto, N. & Yurimoto, H. Crystal
1678 growth and disequilibrium distribution of oxygen isotopes in an igneous Ca-Al-rich
1679 inclusion from the Allende carbonaceous chondrite. *Geochim. Cosmochim. Acta*
1680 **221**, 318–341 (2018).

1681 131. Nagashima, K., Krot, A. N. & Huss, G. R. Oxygen-isotope compositions of
1682 chondrule phenocrysts and matrix grains in Kakangari K-group chondrite:
1683 Implication to a chondrule-matrix genetic relationship. *Geochim. Cosmochim. Acta*
1684 **151**, 49–67 (2015).

1685 132. Tachibana, S., Tsuchiyama, A. & Nagahara, H. Experimental study of incongruent
1686 evaporation kinetics of enstatite in vacuum and in hydrogen gas. *Geochim.*
1687 *Cosmochim. Acta* **66**, 713–728 (2002).

1688 133. Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T. & Weisberg, M. K. Oxygen
1689 isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust
1690 enrichment and H₂O during chondrule formation. *Geochim. Cosmochim. Acta* **148**,
1691 228–250 (2015).

1692 134. Lodders, K. Relative Atomic Solar System Abundances, Mass Fractions, and
1693 Atomic Masses of the Elements and Their Isotopes, Composition of the Solar