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ABSTRACT

Nickel is a bioessential metal that is used in enzymes important to the C, N, and O cycles, and
changes in its marine abundance and bioavailability may have affected the evolutionary
trajectory of early life. Changes over time in the Ni isotope composition (§°°Ni) of surface
seawater, which reflects biological demand for Ni, could allow for the reconstruction of the
dynamics of Ni demand over Earth’s history, but this approach would require geologic records of
surface seawater. Here, we investigate the fidelity of shallow-water carbonates as a record of the
Ni isotope composition of surface seawater by determining how Ni is first partitioned into
natural carbonates and then how post-depositional processes influence the Ni signal. Our
samples come from the Great Bahama Bank, which is a well-studied, modern carbonate platform
often used to study ancient platforms. We found that Ni is fractionated from seawater upon
incorporation into carbonates capturing shallow (<18 cm), recent deposition (0.1%o to 0.4%o
lighter than seawater). Variation among these [Ni] and 3°Ni values may be controlled by
variation in mineral proportions. Meteoric diagenesis shifts 3°°Ni to lower values, which we
attribute to isotopically light meteoric fluids. In contrast, carbonates that experienced sediment-
buffered marine diagenesis with respect to Ca isotopes and Sr/Ca ratios do not appear to differ in
8%Ni values from sediments generally representative of their initial deposition. The sensitivity of
8%Ni to diagenetic reset in these samples appears comparable to the sensitivities of Ca isotopes
and Sr/Ca ratios, to first order. Thus, in general, carbonates that experienced sediment-buffered
marine diagenesis with respect to these elements may hold the most promise as a record of the
8%Ni of coeval surface seawater. Additionally, we use our results to infer that the fraction of Ni
removed from seawater into carbonates is less than 10% of the total Ni output from the global
oceans and incorporation of this Ni sink into global biogeochemical models will only have a
minor impact on the modeled modern Ni budget.

KEYWORDS: nickel isotopes, carbonate diagenesis, nickel marine budget, Great Bahama Bank
carbonates

1 Introduction

The co-evolution of Earth and life has resulted in some of the most profound changes in our
planet’s history (e.g., oxygenation, long-term climate changes). We know few details about how
the dynamic relationship between Earth’s surface conditions and life operated during pivotal
time periods because quantitative reconstruction of crucial element cycles in the distant past is
extremely challenging. Much work has focused on reconstructing the cycling of macronutrients,
such as C, N, and P, but the bioavailability of certain trace metals was likely similarly important.

Specifically, trace metals are crucial components of the enzymes that enable use of
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macronutrients (e.g., Anbar and Knoll, 2002; Dupont et al., 2010; Glass and Orphan, 2012;
Robbins et al., 2016; Zerkle et al., 2006). More comprehensive knowledge of the dynamic
relationships between the atmosphere, oceans, and biosphere requires development of tools for

reconstructing the cycles of bioactive trace metals.

One trace metal that has almost certainly fluctuated from replete to limited bioavailability over
geologic time is Ni. Nickel is crucial to several biological processes in the C, N, and O cycles,
including N fixation, C acquisition as CO, and methanogenesis (Alfano and Cavazza, 2020;
Glass and Dupont, 2017; Ragsdale, 2009, 1998 and references therein). A substantial change in
Ni bioavailability may favor some organisms and inhibit others, due to varied Ni requirements.
For example, N-fixing cyanobacteria and methanogens have particularly high Ni demands (e.g.,
Diekert et al., 1981; Glass and Dupont, 2017; Ho, 2013; Nuester et al., 2012; Schonheit et al.,
1979), while certain flagellates need less and even find high Ni abundances to be toxic (Oliveira
and Antia, 1986; Twining et al., 2012). Furthermore, fluctuations in marine Ni concentrations
have likely affected the evolution of marine ecology and played a role in global redox and
climate events (e.g., Great Oxidation Event: Konhauser et al., 2009, 2015; S.-J. Wang et al.,
2019; Snowball Earth events: S.-J. Wang et al., 2019; Zhao et al., 2021; Permian-Triassic
extinction: Rothman et al., 2014; Li et al., 2021). Thus, we need reliable tools for interpreting
geochemical signatures of Ni supply and demand dynamics as we aim to more thoroughly

reconstruct critical intervals of Earth-life history.

Ideally, we could quantify supply and demand for Ni by taking advantage of biological isotope
fractionation. For example, biological Cd uptake produces an isotopic composition in surface
seawater that is a function of nutrient supply (from deep seawater), the degree of utilization, and

the fractionation imparted by organisms. Druce et al. (2022) leveraged these relationships to



83 infer supply and demand for Cd by reconstructing the isotope compositions of surface seawater
84  and deep seawater derived from geologic records. A similar approach could be applied for Ni but
85  requires: (1) information about how different Ni consumers fractionate Ni isotopes and (2)

86  records of the Ni isotope compositions of surface and deep seawater. In the modern oceans,

87  different Ni consumers appear to have different biological fractionation factors. In waters

88  dominated by diatoms, surface biota do not appear to fractionate Ni isotopes, and the Ni isotope
89  compositions of surface and deep seawater are identical (Cameron and Vance, 2014; R. M.

90 Wangetal., 2019; Archer et al., 2020; Yang et al., 2020; Lemaitre et al., 2022). However, in

91  waters dominated by cyanobacteria, surface biota do appear to fractionate Ni isotopes, and

92  surface seawater has a heavier Ni isotope composition than deep seawater (Takano et al., 2017;
93 Archer et al., 2020; Yang et al., 2020; Lemaitre et al., 2022). This suggests that comparing the Ni
94  isotope compositions of coeval surface and deep seawater over time can provide information

95  about Ni utilization and even constrain the identity of the dominant Ni consumers. One of the

96  remaining challenges to applying this tool is identifying sedimentary archives of the Ni isotope

97  composition of contemporaneous surface and deep seawater.

98  Progress towards identifying sedimentary Ni isotope archives has focused primarily on deep

99  seawater. Two previous studies proposed that organic-rich sediments may preserve the Ni
100  isotope composition of deep seawater (Ciscato et al., 2018; He et al., 2023). These authors
101  measured the Ni isotope compositions of authigenic Ni in modern organic-rich sediments from
102  productive upwelling regions. They found that, when corrected for detrital contributions, the Ni
103 isotope compositions of the sediments closely matched that of modern deep seawater and may

104  therefore serve as a direct record. Research into possible post-depositional alteration is
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warranted, but, at present, organic-rich sediments from upwelling regions appear to be a

plausible record of the Ni isotope composition of deep seawater.

Here, we investigate the fidelity of shallow-water carbonates as a record of the Ni isotope
composition of surface seawater, as carbonates have several attributes that could make them an
appropriate sedimentary record. Carbonates have a wide temporal and spatial distribution and
may be used as an archive of shallow or deep seawater chemistry, as they precipitate in
abundance in both shallow and deep marine settings. Because carbonates already serve as a
record of ancient seawater for several other proxies (e.g., '°C, 8'%0: Veizer et al., 1986; §%°Zn:
Pichat et al., 2003; 8°3Cr: Gilleaudeau et al., 2016), they provide a valuable opportunity for
multi-proxy comparisons to further constrain global feedback mechanisms. Like other
sedimentary records, carbonates are susceptible to diagenetic alteration. Fortunately, others have
made significant advancements in detecting and characterizing diagenesis in carbonates that may
help us differentiate diagenetic and seawater signals (e.g., Allan and Matthews, 1982; Banner
and Hanson, 1990; Swart, 2015; Ahm et al., 2018; Higgins et al., 2018; Oehlert and Swart, 2019;

Fantle et al., 2020; Lau and Hardisty, 2022; Smith et al., 2022; Fantle and Lloyd, 2025).

Before we can interpret the Ni isotope composition record in carbonates, we must first address
two questions. How do Ni isotopes initially partition upon incorporation into carbonates from
seawater, and how does diagenesis alter the primary Ni isotope signal? No previous studies can
adequately answer either question, although we briefly acknowledge work with tangential
relevance. The only Ni isotope measurements of natural carbonates are from carbonate-
containing, lagoonal muds (Ciscato et al. 2018), carbonates derived from riverine suspended
particulate matter (Revels et al., 2021), and a Permian dolomite standard (Wu et al., 2019), none

of which have been calibrated or applied for paleoceanographic purposes. One experimental
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study examined Ni isotope partitioning between solution and growing calcite crystals (Alvarez et
al. 2021), but their experiments were conducted at pH 6 and pCO; of 1 atm in a simpler solution
than seawater. While their results are helpful context, the applicability to natural carbonates is

not yet clear.

To address these goals, we analyzed the Ni isotope compositions of shallow-water carbonate
sediments from various diagenetic regimes and stages from the Great Bahama Bank. The Great
Bahama Bank is an extensively studied, modern carbonate platform often used as an analog for
ancient, shallow-water carbonate platforms (e.g., Eberli et al., 1997; Hardisty et al., 2017;
Higgins et al., 2018; Kenter et al., 2001; Liu et al., 2019; Manfrino and Ginsburg, 2001; Melim
et al., 2002; Swart and Melim, 2000; Swart and Oechlert, 2018; Wang et al., 2020). This location
is thus particularly well suited for our purpose. To determine how Ni isotopes partition initially
into carbonates from seawater, we compared the Ni isotope compositions of carbonates
representing shallow, early burial (<18 cm) to inferred Bahamian seawater and to each other,
keeping mineralogical variations and crystallographic controls in mind. We next investigated
how Ni and its isotopes repartition upon further diagenetic alteration of these shallow carbonates
by comparing their Ni compositions to carbonates from initially similar environments that have
since undergone common diagenetic reactions (e.g., meteoric or marine burial diagenesis and/or
dolomitization). Finally, to better constrain the conditions that preserve or alter the seawater Ni
signal, we performed simple modeling that simulates progressive diagenetic alteration and
evaluated the sensitivity of Ni to alteration relative to established indicators of diagenesis (e.g.,

813C, Sr/Ca and 5'%0).
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2 Samples and Methods

2.1 Sample Description
The sample set includes carbonates that approximate initial deposition (shallow sediment cores,

< 18 cm) and a range of diagenetic regimes: meteoric and marine diagenesis (Clino core), and
dolomitization (Unda core) (Fig. 1). During early marine diagenesis, less stable carbonate
polymorphs (i.e., high-magnesium calcite and aragonite) recrystallize or neomorphose into more
stable forms (i.e., low-magnesium calcite and dolomite). The composition of the diagenetic
carbonate with respect to each element or isotope ratio is largely influenced by (1) the
compositions of the precursor sediment and diagenetic fluid, (2) whether diagenesis is fluid-
buffered (occurring towards the beginning of the fluid flow path with relatively unaltered
diagenetic fluid) or sediment-buffered (occurring later in the flow path with a diagenetic fluid
that has evolved in composition along the path), accounting for each element’s or isotope ratio’s
unique susceptibility to alteration, and (3) the degree of alteration.. With this sample set, we can
determine whether the water column Ni isotope signals are preserved in our least altered
carbonates and characterize the influence of meteoric and marine diagenesis, as well as

dolomitization.
2.1.1 Shallow, Bank-top Sediment Cores

Near-surface modern carbonates in the Great Bahama Bank region are most likely to represent
initial deposition of shallow-water carbonates among our samples (Hardisty et al., 2017; Pogge
von Strandmann et al., 2019; Romaniello et al., 2013; Zhang et al., 2017). Detailed information
about their collection methods and sample locations may be found in Hardisty et al. (2017). The
short cores are < 20 cm bank-top cores near the Little Darby and Lee Stocking Islands (labeled

C1, C4, and C5) (Fig. 1). The short cores are composed of inorganic carbonates such as ooids,
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grapestones, and peloids and contain mainly aragonite with secondary amounts of high-
magnesium calcite (HMC) (Hardisty et al., 2017). Radiocarbon dating of ooids from the Great
Bahama Bank, but not directly from our sediments, indicate that the short-core carbonates have

formed over the past 3,000 years (Duguid et al., 2010).

2.1.2 Clino and Unda

Several authors have extensively reviewed the mineralogy, sedimentology, and diagenetic
history of the Clino and Unda cores, so we provide only a brief summary here (e.g., Eberli et al.,
1997; Higgins et al., 2018; Kenter et al., 2001; Manfrino and Ginsburg, 2001; Melim et al., 2002,
1995; Murray et al., 2021; Swart et al., 2012; Swart and Melim, 2000; Swart and Oehlert, 2018).
The Clino and Unda cores were retrieved from the platform interior of the western flank of the
Great Bahama Bank (Fig. 1) (Swart and Melim, 2000). The Unda and Clino cores were
recovered from approximately 10 meters below sea level to 442 and 662 meters below seafloor
(mbsf), respectively, extending back to the late Miocene (Eberli et al., 1997; Swart and Melim,

2000).

Carbonate mineral proportions vary greatly in both cores. The majority of the Clino core is
dominated by low magnesium calcite (LMC), but some intervals contain >50% aragonite (e.g.,
~200 mbsf to 350 mbsf) (Melim et al., 1995; Hardisty et al., 2017). Dolomite occurs as a
secondary component, mostly below 350 mbsf. The section of interest in the Unda core contains

significant amounts of dolomite (often nearly 100% between 275 mbsf and 350 mbsf).

The Clino core contains well documented aragonite-to-LMC neomorphism in contact with
meteoric and marine fluids. During repeated sea-level changes in the Pleistocene, meteoric fluids
infiltrated the upper portions of Clino, resulting in negative oxygen and carbon isotope

excursions (Melim et al., 1995; Swart and Oechlert, 2018; Eberli et al., 1997). The C and O
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isotopes simultaneously become heavier downcore from 90 mbsf to 180 mbsf which could
represent progressive mixing of carbonates that had experienced meteoric and marine diagenesis.
Alternatively, the increase in C and O isotope ratios may instead be produced by varying degrees
of diagenetic alteration driven by higher rates of organic matter oxidation at the intersection of
the phreatic and vadose zones (Swart and Oehlert, 2018). Deeper in the core, early and late
marine burial diagenesis are the dominant diagenesis regimes (e.g., marine hardgrounds,
neomorphism, compaction; Eberli et al., 1997; Higgins et al., 2018; Melim et al., 2001).
Variations in mineralogy at these depths represent combinations of diagenetic aragonite-LMC
neomorphism but also variations in shelf-to-slope aragonite transport and deposition during sea

level variations (Swart and Eberli, 2005).

We targeted samples in the massive dolomite zone in the Unda core (between ~275 and 305
mbsf). The dolomites formed from sediments that had previously experienced aragonite-to-LMC
neomorphism (Swart and Melim, 2000). Dolomitization occurred near enough to the sediment-
water interface for advective exchange between seawater and pore fluid (Swart and Melim, 2000;
Higgins et al., 2018; Dellinger et al., 2020; Murray et al., 2021; Wang et al., 2021). Low
I/Ca+Mg ratios indicate the dolomites experienced anoxic (or at least iodate reducing) conditions

in their diagenetic history (Hardisty et al., 2017).

2.2 Sample Preparation and Purification
All reagents were prepared with high purity water (18.2 MQ cm) and were either distilled in

house or purchased and individually assessed for purity (see procedural blanks below). Plastic
items were acid cleaned in 1 M HCI and then 3 M HNOs for 24 hours each before use. PFA vials
were soaked in dilute detergent (Citranox) and acid-cleaned in 150 °C baths of 6 M HCI and then

8 M HNOs, each for 8 hours.
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Approximately 0.1 g to 1 g of each carbonate sample was dissolved in 40 mL of 1 M HNOs and
allowed to react at room temperature overnight (following Chen et al. 2018). Additional acid was
added as needed to ensure complete dissolution of carbonate monitored by CO; evolution.
Samples were dried and redissolved in 0.1 M HNOs. Residual, undissolved material was
removed by centrifugation (4000 RPM for 10 minutes). Samples were aliquoted to achieve 75 to
360 ng of Ni. To correct for isotope fractionation during ion exchange chromatography and
instrumental mass fractionation, the samples were spiked with a $'Ni-®?Ni double spike. Samples
were spiked to achieve the optimal sample:spike ratio of 36:64 determined by the double spike
toolbox algorithm from Rudge et al. (2009). Sample and spike were heated and allowed to

equilibrate overnight.

We purified samples using a sequential, three-step ion exchange chromatography procedure. In
the first column, Ca and Mg were removed using Nobias PA-1 resin, following the protocol
outlined in Yang et al. (2020). Approximately 0.6 mL of precleaned resin was loaded into a Bio-
Spin® Chromatography Column. The resin was cleaned on the column by adding 5 mL each of 1
M HNO:s, water, and 0.05 M ammonium acetate (pH 6.0 + 0.2). Samples were loaded onto the
resin in 10 mL of 0.05 M ammonium acetate (pH 6.0 & 0.2), and then the resin was rinsed with 5
mL of 0.006 M ammonium acetate (pH 6.0 + 0.2). Nickel was eluted with 5 mL of 1 M HNO:s.
In the second column, remaining Ca and Mg and many transition metals (e.g., Mn, Fe) were
removed following the protocol in Strelow (1990). Poly-Prep® Chromatography Columns were
loaded with 0.8 mL of precleaned AG50W-X8 200-400 mesh resin. The resin was cleaned on the
column using 6 mL each of 3 M HCI, water, and 3 M NH4OH — 0.1 M diammonium citrate.
Samples were loaded onto the resin in 6 mL of 3 M NH4OH — 0.1 M diammonium citrate, and

then, the resin was rinsed with 6 mL of water. Nickel was eluted in 6 mL of 3 M HCIL. In the

10
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third column, Zn, Cu, and any remaining Fe were removed using protocols based on Kraus and
Moore (1953). Poly-Prep® Chromatography Columns were loaded with 1.0 mL of precleaned

AGI-X8 100-200 mesh resin. The resin was cleaned and conditioned on the column using 8 M
HCI. Samples were loaded onto the resin in 2 mL of 8 M HCI and then an additional 4 mL of 8

M HCI was added. Nickel was immediately eluted and collected.

We determined whether the sample purities were adequate by comparing the Ni/element ratios
(Na, Mg, Ca, Mn, Fe, Zn, and Cu) to acceptable thresholds defined previously for our analytical
method (Spivak-Birndorf et al., 2018). Individual column protocols were repeated as needed to
isolate Ni. Procedural blanks were always < 3.5 ng and typically < 2 ng. Our Ni yields were
nearly always >80%, with a minimum yield of 48%, but perfect yields are not necessary for

double-spiked samples.

2.3 Sample Analyses
Major and trace element concentrations were measured using an Agilent 7900 quadrupole

inductively coupled plasma mass spectrometer (ICP-MS). Doubly charged ions and oxide
formation were monitored during instrument tuning using Ce™/Ce" and CeO/Ce and were below
3%. At least three calibrating standards were used for each run and sample element
concentrations were always bracketed by the calibrating standards. A multi-element internal
standard was used to account for beam intensity fluctuations during measurement. Beam
suppression was monitored by checking the percent recovery for the internal standard elements

and was always within the range of 80-120% of the original blank solution measurement.

Nickel isotope analyses were performed on a ThermoScientific Neptune Plus multi-collector
ICP-MS at Lawrence Livermore National Laboratory and on a Nu Plasma 3 multi-collector ICP-

MS at Northern Arizona University. On the Neptune, samples were introduced at a rate of 50 pL.

11
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min! using an Apex Omega and ESI introduction system (Sc-u DX). A Jet sample cone and X-
skimmer cone were used. Voltages for masses 57, 58, 60, 61, and 62 were measured for Fe and
Ni in high-resolution mode at the low mass side of the peaks to avoid Ar oxide interferences on
STFe (**Ar'0O'H) and *®Ni (*°Ar'80). Isobaric interferences from Ca oxides can also intrude on
Ni masses (e.g., #Ca'®O on ®“Ni and #*Ca'®0 on *Ni). We tuned to minimize oxide formation,
which was monitored using CeO/Ce, to 0.4% to 0.8% across the different run days. We modeled
how interferences from a 100 ppb Ca solution would impact the Ni isotope composition for our
run conditions (Z.e., 0.4% to 0.8% oxide formation rates). The Ni isotope composition increased
by 0.07%o which is at the edge of our analytical uncertainty. This value is likely an upper bound
because post-chemical purification measurements of our samples indicate that they contained
less than 100 ppb Ca. In addition, our measurements appear robust considering samples were
repeatedly measured across different days with different oxide formation rates, and their Ni
isotope compositions were consistent across runs. Samples and bracketing standards were run at
a Ni concentration of 250 ppb. Each sample analysis was bracketed by a blank acid
measurement, for background subtraction, and a bracketing standard (NIST SRM 986) spiked the

same way as the samples.

For analysis on the Nu Plasma 3 multi-collector ICP-MS, samples were introduced using a Cetac
Aridus 1II introduction system. Masses 57, 58, 60, 61, and 62 were measured for Fe and Ni in
low-resolution mode. Tuning was performed to minimize oxide formation to below <0.1% by
monitoring CeO/Ce. Samples were measured in the same manner as described above, except for

the background correction which only occurred at the beginning of each run.

Data processing included a correction on the *®Ni voltages for isobaric interference from *Fe

using the monitored >’Fe ion beam. Instrumental mass bias correction was performed using an

12
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iterative, geometric approach to the double-spike equations as described in Siebert et al. (2001).
Ni isotope compositions are reported relative to the Ni isotope standard NIST SRM 986 in %o

using delta notation, where

(°°ni/>8Ni)

(°°ni/58Ni)

SRM 986

5%ONi = ( sample _ 1) x 1000.

We took several different approaches to monitoring the quality of the data. Standards and
selected samples were measured using both instruments and yielded analytically
indistinguishable results (as noted in Table 1 and below). The long-term reproducibility of
repeatedly analyzing the Ni isotope standard NIST SRM 986 was §°°Ni = 0.00 + 0.06%o, =283
on the Neptune and 8%°Ni = 0.00 + 0.09%o, =925 on the Nu Plasma 3. We also purified an
aliquot of NIST SRM 986 alongside the samples and measured an average 5°°Ni = 0.03 +
0.03%o, n=8. To determine the efficacy of the purification protocol, we prepared three aliquots of
a secondary Ni standard (Ni AAS standard solution, Alfa Aesar Specpure, lot# 9178435): one
without purification, one with purification, and one doped with Ca, Mg, Fe, Mn, and Zn and then
purified. The samples were measured on the Neptune, and the average 8°°Ni of all three are
analytically indistinguishable from each other measured (8%°Ni = -0.43 + 0.08%o, n=64; -0.44%0
+ 0.08%o0, n=9; -0.42 + 0.07%o, n=16, respectively). For comparison, repeated measurements of
unprocessed Ni AAS on the Nu Plasma 3 yielded identical results (8°°Ni = -0.44 + 0.10%o,
n=180). Finally, we purified and analyzed mixtures of NIST SRM 986 and Ni AAS (3:1, 1:1,
1:3). A linear regression of the expected versus the measured 5°Ni for the mixtures produced a
slope of 1.06 and an R? of 0.89. We also bulk digested, spiked, purified, and measured the Ni

isotope composition of a plankton standard (BCR-414). The average 8°Ni is -0.01 £ 0.15%o and

13



308  matches well with previously reported values (8°°Ni=0.11 % 0.06%o, Takano et al., 2017; 5°°Ni =

309 0.07 £ 0.06%0, Yang et al., 2020).
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Table 1: Mineralogy, major and trace element and Ni isotope compositions of the short-core carbonates, and Clino and Unda

core carbonates.

Isotopic

composition (%o)

Mineralogy (wt. %)*

Major and trace element concentrations (ppm)*

Core Name glfll::tl; Instrument! 3%Ni 26 N Arag. HMC LMC Dolo. Mg Al Ca Mn  Fe Sr Nit Ni/Al Calij;(e
360" 109.73 A 0.63 0.13 3 0 0 59.32 40.68 55650 108 339035 9.7 134 1313 0.89 0.004 9.27
3772" 114.96 A 1.52 0.14 2 8.62 0 51.31 40.07 26297 26 337784 7.2 115 1447 0.38 0.007 391
450'6" 137.31 A 1.35 0.01 2 0 0 87.8 12.2 18572 34 363370 9.9 71 1075 0.3 0.004 2.86
901" 274.62 A 0.77 0.04 3 0 0 38.11 61.89 60482 106 300891 13.4 99 376 2.37 0.01 27.69
904'4" 275.64 A 0.89 0.16 3 0 0 64.1 359 57702 84 302821 11.8 117 373 1.13 0.006 13.07
915'10" 279.15 A 0.83 0.02 3 0 0 39.7 60.3 73267 98 305832 11.1 82 396 1.2 0.006 13.8
Unda 9252" 281.99 B 0.52 0.07 3 0 0 0.65 99.35 129431 134 270178 134 128 272 2.36 0.008 30.61
944'8" 287.93 B 0.87 0.07 2 0 0 31.69 68.31 95916 129 258328 114 120 304 2.86 0.01 38.8
95012" 287.93 A 0.73 0.45 3 0 0 0.51 99.49 132953 194 276755 15.6 210 262 5.36 0.013 67.95
970'10" 294.88 AB 0.97 02 4 0 0 1.1 98.9 119228 33 240984 9.7 106 191 2.76 0.038 40.18
990'3" 301.83 A 0.76 0.12 3 0 0 1.06 98.94 123912 40 250259 13.3 145 219 2.1 0.024 29.43
1000’ 304.8 AB 0.47 0.05 3 0 0 0 100 123359 33 243496 134 130 205 2.23 0.031 32.11
79.6 24.12 AB 1.01 0.08 3 47.68 0 52.32 0 1492 56 353469 2.7 51 4329 0.88 0.007 8.73
90' 27.43 A 1.12 0.01 2 24.89 0 75.11 0 0.24
93' 28 B 1.2 1 0 0 0 0 0.4
110'6" 33.57 A 1.31 0.06 2 0 0 100 0 4492 163 323290 8.3 140 1343 0.99 0.003 10.71
Clino 1122" 33.68 A 1.18 0.05 2 0 0 100 0 0.33
123'5" 37.62 A 1.14 0.11 3 13.78 0 86.22 0 4843 53 363494 3.8 47 1832 0.39 0.003 3.75
130" 39.62 B 1.11 1 0 0 100 0 2741 124 274613 5.9 52 990 0.69 0.003 8.87
133" 40.54 A 0.86 0o 2 9.52 0 87.53 2.94 3625 51 356965 4.3 75 1689 0.28 0.003 2.78
171' 4" 52.22 B 0.76 1 0 0 100 0 0.21
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207'2" 63.2 B 1.19 0.15 0 0 0 0 3587 19 319149 3.6 73 1289 0.3 0.007 3.35
318 97 B 1.04 0.05 4588 24 390828 52 134 1011 0.4 0.008 3.56
361" 110.03 B 0.54 0 0 100 0 0.24
406' 5" 123.88 B 0.95 0.14 0 0 100 0 6400 23 387491 8.9 57 1634 0.3 0.006 2.7
468 142.65 B 1.5 0.01 0 0 100 0 7165 6 310351 6.6 - 1278 0.5 0.038 5.62
500 152.4 A 1.67 0.01 9.84 0 86.79 3.37 11115 7 330671 6.8 0 1130 0.3 0.02 3.19
590'8" 180.04 A 1.58 0.03 22.19 0 75.62 2.2 10899 20 354268  12.1 9 1629 0.46 0.01 4.51
642'4.5" 195.79 A 1.67 0.01 88.51 0 11.49 0 4320 9 340985 4.1 22 6055 3.99 0.204 41.07
673'4" 205.23 AB 1.33 0.04 39.11 0 60.89 0 5250 25 355737 2.6 37 2283 0.63 0.012 6.24
703" 214.27 A 1.46 0.07 2.74 0 97.26 0 0.27
736'1" 222.53 B 1.24 0.06 18.56 0 79.9 1.55 7083 88 328777 4 32 3006 0.58 0.003 6.16
752'9.5" 228 B 1.39 0.22 15.85 0 84.15 0
764'3.5" 232.96 B 1.28 0.1 46.8 0 51.65 1.55 5790 56 332018 34 33 3689 0.81 0.007 8.57
1005'5" 306.45 B 1.19 0.08 65.43 36.6 -2.02 0 4858 84 377380 4 145 6425 1.35 0.007 12.51
1046'8" 319.02 AB 1.19 0.04 64.98 0 35.02 0 5527 92 365112 23 145 6207 1.61 0.008 15.47
1078 328.57 AB 1.32 0.06 72.83 0 26.22 0.96 6782 102 378693 3 189 6206 1.53 0.007 14.21
1087'11" 331.6 A 1.32 0.14 84.5 0 14.08 1.42 5877 90 369280 24 171 8161 1.77 0.009 16.87
1125'8" 343.1 A 1.21 0 51.81 0 47.62 0.57 6392 142 369874 3.7 205 6306 1.87 0.006 17.74
1189 362.6 B 0.93 51.68 0 48.32 0 6179 570 374274  19.8 832 9891 2.8 0.002 26.24
1214'10"  370.28 B 13 0.11 0 0 66.13 33.87 19524 101 322143 6 127 2229 1.11 0.005 12.04
1229'6" 374.75 B 1.32 0.03 8.27 0 54.35 37.38 25560 140 340045 6.1 178 2664 1.7 0.006 17.59
1241 378.4 B 1.22 5.79 0 89.31 4.9 14543 159 401739 9.7 269 2802 1.53 0.004 13.37
1248'7" 380.7 B 0.73 0.02 33 0 81.46 15.24 24431 469 345542 5.6 83 2849 0.87 0.001 8.88
1262'4" 384.76 A 1.54 0.07 0 0 78.03 21.97 23807 120 372070 45 104 2630 0.36 0.001 3.36
C10.2 0.01 A 1.42 0.08 75.96 22.79 1.25 0 10337 238 390250 42 112 6677 0.85 0.002 7.67
Short Cl2. 4 0.03 A 1.27 0.06 92.86 6.61 0.53 0 12031 213 515969 42 102 9571 0.62 0.001 4.19
g(l)re - Cl4.6 0.05 A 1.32 0.08 91.23 8.45 0.32 0 7971 166 337650 32 78 7048 0.54 0.002 5.65
C18_10 0.09 A 1.29 0.09 87.7 12.04 0.26 0 9334 396926 6995 0.64 5.7
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Short
Core -
C4

Short
Core -
C5

1. A refers to samples measured on a Neptune MC-ICP-MS. B refers to samples measured on a Nu Plasma 3 MC-ICP-MS. AB refers to samples measured on both instruments.
2. Mineralogy data are from Melim et al. (1995) and Hardisty et al. (2017).

3. Element concentrations for Clino and Unda are from Liu et al. (2019).
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3 Results

3.1 Shallow, Bank-top Sediment Cores
All Ni concentration and isotope data as well as mineralogy and major and trace element

concentrations are presented in Table 1 and Figures 2, 3, and 4. The short cores, which record
early carbonate deposition, have a range of [Ni] from 0.30 to 1.36 ppm with an average of 0.75 +
0.40 ppm (1o, Fig. 2). The 6°°Ni values range from 1.11 to 1.61%o with an average of 1.31 +
0.14%o (15), which is lighter than inferred Bahamian seawater (1.4 - 1.7%o). In general, both [Ni]
and 8%°Ni are more similar within a core than between cores. There are no obvious trends in
isotopic compositions downcore, suggesting no significant alteration due to early oxidation of
organic matter and that oxidation of organic matter is not an important contributor of Ni in these
sediments. In addition, there is a strong correlation between 8°°Ni and 1/[Ni] (R? =0.81). Ni
concentrations and 8°°Ni values both increase with higher proportions of HMC ([Ni]~HMC R?=

0.60 and 8°Ni~HMC R? = 0.54).

3.2 Clino and Unda Cores

The Clino and Unda cores experienced meteoric and marine diagenesis and extensive
dolomitization (Fig. 3). For the Clino core, Ni concentrations range from 0.21 ppm to 3.99 ppm
with an average [Ni] = 0.93 + 0.85 ppm (10). The range of §°°Ni from the entire Clino core is
0.54%o to 1.67%o, with lighter values commonly between 0 to 150 mbsf (meteoric diagenesis)
and heavier values below 350 mbsf (marine diagenesis). For the Unda core, Ni concentrations
range from 0.30 ppm to 5.36 ppm with an average [Ni] of 1.99 + 1.38 ppm (10). The 3*Ni
values range from 0.48%o to 1.52%o0 and average 0.86 + 0.31%o. Our few datapoints from outside
of the massive dolomitization interval within Unda suggest a significant increase in 8°°Ni across
the meteoric-marine diagenesis boundary at approximately 110 mbsf. The highest Ni

concentrations and lowest 6°°Ni values are from the massive dolomitization interval.
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4 Discussion

4.1 Possible influence of non-carbonate inclusions

In the first steps towards establishing the utility of carbonates as a record of 8**Niscawater, We must
determine how Ni isotopes initially partition into carbonates from seawater and how early marine
diagenesis influences the primary Ni signal. The shallow, bank-top carbonates and diagenetically
altered carbonates from the Clino and Unda cores allow us to address these questions, provided
we consider whether our bulk digests of the samples truly represent Ni hosted by carbonate
minerals or by inclusions of silicate detrital matter or Fe or Mn oxyhydroxides. Fortunately, the
matrices analyzed here are almost entirely carbonate material (Melim et al., 1995; Hardisty et al.,
2017), but we considered other phases because carbonates are not very rich in Ni compared to

the aforementioned phases.

To assess the influence of non-carbonate Ni, we determined whether the Ni content of our
carbonates is as expected for Ni solely derived from carbonates by comparing the measured bulk
distribution coefficients (Dni-carbonate = [N1]/[Ca]carbonate/[N1]/[Ca]fuia) for our samples to
previously published distribution coefficients for natural and experimental carbonates. We used
the Ni/Ca of nearby Atlantic surface seawater (2.9 x 107; Archer et al., 2020; Lemaitre et al.,
2022; Summerhayes and Thorpe, 1996) and the Ni/Ca measured in the carbonates (6.8 x 10”7 to
1.9 x 10, Table 1) to compute a bulk distribution coefficient for each sample. Our calculated

Dni-carbonate and preViOHSly lebIIShed Dhni-carbonate Values are Compiled in Table 2.

Table 2: Distribution coefficients for Ni and carbonates from previously published studies
and this study.

Sample Description Dni-ca Reference

Natural Short cores, bulk, aragonite and HMC 3to 15 This study
Samples Short cores, HMC endmember (see 4.3.2) 33to 44 This study
Short cores, aragonite endmember (see 4.3.2) 2 This study

Clino, aragonite and LMC 3to41 This study
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374

Unda, dolomite 3 to 68 This study

Riverine suspended particulate matter 3to 30 Revels et al. (2021)
Experimental  (j|cite 1.09+0.36  Alvarez et al. (2021)
or Theoretical 2.00 Carlsson and Aalto (1998)
0.8t0 6 Curti (1999)
1.04+£0.11 Lakshtanov and Stipp (2007)
3.47 Wang and Xu (2001)
1.0£0.5 Munsel et al. (2010)
Aragonite 0.55 Boéttcher and Dietzel (2010)

Brazier and Mavromatis
0.00013 (2022)

2.88 Wang and Xu (2001)

Our Dni-carbonate Values for calcite and aragonite are somewhat higher than what previous
theoretical and experimental studies would lead us to expect (Table 2), but generally consistent
with Ni derived only from carbonates. The highest Dni-carbonate Values are from dolomite-rich
samples within Unda and from HMC-rich samples in the short-core carbonates (Table 1 and 2).
Distribution coefficients have not been determined experimentally for Ni in dolomite or HMC.
Both can be expected to contain more Ni compared to aragonite or pure calcite, because Ni** can
readily substitute for Mg?", and both are divalent cations with similar atomic radii (Shannon,

1976).

To further investigate the potential Ni contributions from detrital matter or Fe or Mn
oxyhydroxides, we compared Ni concentrations and §°°Ni to Mn, Fe, and Al concentrations. The
results of these comparisons and corresponding discussion are detailed in the supplemental

material, and a brief summary is given here.

The strongest correlations are observed for [Ni], 8°°Ni, and [Mn] in the short cores, which both
exhibit positive correlations (Fig. S2) and for [Ni] and [Fe] in the marine diagenesis section of
Clino, which is positive (Fig. S5). For the short cores, we conclude that it is unreasonable for

Mn-oxide inclusions to be a large source of Ni because of the relatively high Ni/Mn ratios of the
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short-core carbonates compared to other Mn-rich sediments and because of the similar [Mn]
between the short-core samples and other carbonates. In addition, the Mn/Ca ratios of our
samples (2.5 x 10°to 1.7x107) are generally consistent with calculated Mn/Ca ratios if the Mn is
derived only from carbonate (5.0 x 107 to 3.5 x 10) based on Dwin-ca values for calcite (from 1
up to 70; Lorens, 1981; Pingitore et al., 1988; Dromgoole and Walter, 1990; Mills et al., 2021)
and Mn concentrations of nearby seawater (5.1 + 0.4 nM, n=4; Kelly et al., 2022). Alternatively,
there could be another mechanism imparting the relationship, such as a mixture of minerals with
distinct compositions (discussed in section 4.3.2). For the marine diagenesis section of Clino, the
positive correlation between [Ni] and [Fe] suggests that Fe-oxide inclusions host a nontrivial
amount of Ni in the bulk carbonate. Thus, we must consider how Fe-oxide hosted Ni may
influence the 3°°Ni data and our interpretations. We find that the samples with lowest [Fe] (< 50
ppm, Fig. S6), which are most representative of the pure carbonate endmember, have 3°Ni
values (1.24%o — 1.67%o) that do not differ much from samples with higher [Fe] (nearly all
between 1.19%o0 — 1.54%0). Importantly, because of the similarity between low and high [Fe]

samples, our interpretations in section 4 are unaffected.

As a final measure, we considered whether our Ni isotope data are consistent with Ni derived
only from carbonates based on previously published data. We have few relevant Ni isotope data
from carbonates with which to contextualize our samples, but the data we do have suggest that
our Ni isotope data are entirely in agreement with Ni derived only or mostly from carbonates.
We specifically focus on comparing the isotope fractionation between carbonate and fluid of our
samples to those reported in the literature because of the diverse array of fluids from which the
carbonates precipitated. The short-core carbonates representing early deposition are generally

skewed towards lighter §°°Ni values relative to the inferred Bahamian seawater range (discussed
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below in section 4.2, A°“Nifuid-solid from -0.21%o to 0.59%o, where A®Nifyid-solid = 6°*Nifiuid -
8%Nisolia), which is generally consistent with previous findings. Revels et al. (2021) measured the
Ni isotope compositions of dissolved riverine Ni and of Ni associated with different phases
within the riverine suspended particulate load. The carbonate phases within the suspended
particulate loads consistently had lighter Ni than the coexisting water, with fractionation factors
from dissolved Ni ranging from 0.2%o to 1.6%o.. Ciscato et al. (2018) measured 5°°Ni values from
0.0%o to 0.6%o in carbonate-rich, lagoonal muds. They did not measure coexisting fluids, so we
cannot calculate an isotope fractionation. However, their measured, bulk §°°Ni values may reflect
inclusion of detrital matter, and thus are not comparable to our data, because their samples have
Ni/Al ratios that are similar to the upper continental crust (~0.1%o, Cameron et al., 2009; Wu et
al., 2019). An experimental study of Ni coprecipitated with calcite at different precipitation rates
found a range of A®Niyid-caicite from 0.3%o to 0.9%o, with higher A®Nifyid-calcite cOrresponding to
slower precipitation rates (Alvarez et al., 2021). Although we cannot eliminate the possibility of
inclusions having been in some samples, the reasoning above gives us confidence to interpret our

results as reflections of initial precipitation and diagenetic history of the samples.

4.2 Inferring the Ni isotope composition of Bahamian Seawater
To calculate the isotope fractionation between seawater and shallow-water carbonates, we must

constrain the Ni isotope composition of Bahamian seawater. We did not measure Bahamian
seawater, so we infer a plausible range of §°°Ni values from measurements of seawater that are
closest in latitude and depth to the carbonate coring sites, keeping in mind processes that control
the Ni isotope composition of surface seawater. Bank-top waters in the study area are flushed
with nearby Atlantic surface seawater (Zhang et al., 2017; Pogge von Strandmann et al., 2019).
Low latitude, Atlantic surface seawater §°°Ni values average 1.5 + 0.1%o (16, <500 mbsl) and
increase with decreasing Ni concentrations due to biological activity (Archer et al., 2020;
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Lemaitre et al., 2022). We expect this average value to be a lower bound on the true §°Ni of
Bahamian seawater because all published low latitude Atlantic surface seawater samples with Ni
concentrations <2.5 nM have 8°°Ni values >1.6%o (Archer et al., 2020; Lemaitre et al., 2022),
and published Ni concentrations from within 200 miles of our study area are low (2.1 £ 0.2 nM,
lo, n=3, <1 mbsl; Kelly et al., 2022). In addition, we propose that 1.7%eo is a plausible upper
bound on the 3°°Ni of Bahamian seawater; Ni is never fully depleted in surface seawater either
because the remaining Ni pool is not biologically available (Archer et al., 2020) or because of
nutrient co-limitations (John et al., 2022), and this remaining Ni pool is modeled to have a 3°'Ni
~1.7%o (Archer et al., 2020; Lemaitre et al., 2022). Indeed, all measured low-latitude surface
seawater 8°°Ni values converge to approximately 1.7%o (Takano et al., 2017; Archer et al., 2020;
Yang et al., 2020, 2021; Lemaitre et al., 2022). Thus, for the purposes of our discussion, we infer

the modern Bahamian seawater 6°°Ni to be between 1.4%o and 1.7%o.

There is no evidence to suggest that the Ni isotope composition of seawater has changed
significantly since the time of our samples’ depositions. As noted, radiocarbon dating of nearby
ooids sediments suggest that the short, bank-top cores formed within the past 3,000 years
(Duguid et al., 2010). The residence time of Ni in the oceans is on the order of 10,000 to 40,000
years (Sclater et al., 1976; Gall et al., 2013; Cameron and Vance, 2014; Little et al., 2020). The
age of the short-core carbonates, representing early burial, is well within the residence time of Ni
in the oceans, and thus the Ni isotope composition of seawater has not changed since the time of
deposition. All carbonates measured here from the Clino and Unda cores originally precipitated
within the past 5.3 my (Eberli et al., 1997). Core-to-rim transects of Fe-Mn crust cores have
relatively constant 6°°Ni values for the past 10 Ma, which is consistent with constant seawater

8%Ni values since carbonate deposition up to the modern day (Gall et al., 2013; Gueguen et al.,
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2016). The 3°Ni of seawater would have to change significantly over the past 5 mya to explain

the range of 1%o in 6°°Ni values of our carbonate sediments.

Importantly, our discussion comparing the 3°Ni values of recently deposited and diagenetic
carbonates is unaffected by the true Bahamian seawater 6°°Ni. All of our samples appear to have
originally precipitated from the same or similar seawater §°'Ni values. Thus, any differences in
the measured 6°°Ni values are not due to differences in the 3°°Ni values of the primary fluids. Ni
isotope measurements of carbonates and coeval seawater will certainly be important to conduct
in the future to better constrain the exact isotope fractionation between carbonates and seawater.
For now, our proposed range for Bahamian seawater appears reasonable, and the exact value is
not needed for our discussion of the controls on Ni isotope partitioning during early deposition

and subsequent diagenetic alteration of carbonate sediments.

4.3 Early Deposition
Given our best estimate of Bahamian surface seawater’s §°°Ni of 1.4%o to 1.7%o, we can now

compare that to the shallow, bank-top core samples, which are nearest to initial carbonate
deposition among our samples, to estimate the fractionation factor when Ni is initially
incorporated within sediments. We found that the §°°Ni values are consistently isotopically
lighter than seawater (1.31 & 0.14%o, 10) indicating an average isotope fractionation of 0.1%eo to

0.4%eo.

While the short-core carbonates closely represent primary precipitation, they may have
experienced some early diagenetic alteration, and we must consider the potential influence of
that on the 8°°Ni values. As recrystallization and neomorphism occurs in the sediment column,
porewaters may shift in composition, which in turn could shift chemical signatures in sediments.

Indeed, sulfate reduction lowers pH and increases H>S in shallow pore fluids from other cores
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near our study area (Romaniello et al., 2013; Kalderon-Asael et al., 2024), affecting trace
element compositions and isotope ratios (e.g., [/Ca+Mg and U isotopes; Romaniello et al., 2013;
Hardisty et al., 2017). However, unlike these other elements, Ni is not redox-sensitive under
environmental conditions and thus may be less sensitive to impacts from early diagenesis. Still,
changes in Ni speciation could cause isotope partitioning among aqueous Ni species and
influence the Ni isotope composition of recrystallized carbonates. In this case, we would expect
that, as porewater becomes more sulfidic, diagenetic carbonates would become isotopically
heavier because Ni sulfide species are lighter than all other dominant, inorganic aqueous Ni
species, as determined by density functional theory (Fujii et al., 2014). Yet, we do not observe
this trend in the 3°'Ni values of the short-core carbonates; we would expect H>S and aqueous Ni
sulfide complexes to increase with depth, but 8°°Ni values down-core do not very systematically
with depth (Fig. 2A). In addition, density functional theory estimations suggest that the pH
variability in porewaters from our study area (range of 7 to 8; Romaniello et al., 2013) would not
induce significant changes in Ni speciation (modeled for oxygenated waters; Fujii et al., 2014).
Even if the short-core sediments do not precisely represent pristine carbonate precipitates, the Ni
isotope compositions of carbonates may be resistant to very early diagenetic processes, and thus

the shallow bank-top cores appear to be a reasonable first approximation of initial deposition.

Unexpectedly, given that all the short cores likely originally precipitated from well-mixed
seawater and experienced similar alteration, we observed small but resolvable isotopic variations
among the cores (~0.5%o, Fig. 2A). Our eventual goal is to be able to infer §°°Ni of ancient
seawater from carbonates, so next we consider two options for the mechanism causing the core-

to-core variation: different precipitation rates or different mineral proportions.
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4.3.1 Does precipitation rate control initial fractionation from fluid?

Evaluating this hypothesis is very challenging due to scarcity of information. The precipitation
rates for our samples are unknown, and only one previous study has examined the relationship
between precipitation rates and isotopic fractionation for Ni. In that study, Alvarez et al. (2021)
proposed that AS°Niguid-calcite is highly sensitive to calcite precipitation rate, having observed a
correlation in calcite-Ni coprecipitation experiments where slower precipitation rates
corresponded to larger A°*Nigyid-caicite values. This experimental result may have limited
applicability regarding our short-core samples representing early burial, which contain more
aragonite than calcite, even though the calcite should have higher concentrations of Ni than
aragonite. The experiments also occurred at pH 6.2, pCO; = 1 atm, and ionic strength fixed at 0.2
M, and the effects of these differences in conditions on Ni isotopic behavior are unknown.
Nevertheless, we proceed with an attempt to determine whether precipitation rates could impart

the variation observed in our data.

The available information suggests that the short-core samples and experimental samples of
Alvarez et al. (2021) may have had comparable precipitation rates. Broecker and Takahashi,
1966 estimated that precipitation rates for the Great Bahama Bank ranged from 4x10-%to 4x1077
mol CaCO3; m? s!, Rates in the Alvarez et al. (2021) experiments range from 5x10to 1x1077
mol CaCOs m 5!, so the faster growth experiments, which correspond to smaller fractionations,
had rates overlapping those for the Great Bahama Bank carbonates. Using the relationship
between calcite precipitation rate and isotopic fractionation presented in Alvarez et al. (2021),
the range of precipitation rates in the Great Bahama Bank should correspond to A*Niid-solid

from -0.17 to 0.44%o. We observed A“Niscawater-carbonate from -0.21%o to 0.59%o, which overlaps
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with our estimated range, suggesting that a similar relationship between precipitation rate and

isotopic fractionation might explain the variation we observed in the short cores.

We did not see, however, what we would expect for Ni partition coefficients if precipitation rate
controlled the isotopic composition of the shallow, bank-top carbonates. Precipitation rate
influences the apparent Dx.ca for a given trace metal (X) because, at slower rates, the apparent
Dx-ca should be closer to the equilibrium value, while, at faster rates, the apparent Dx.ca is
influenced by diffusion in solution and/or movement from the mineral surface to the bulk crystal
(Watson, 2004; DePaolo, 2011). For elements with equilibrium Dx.ca much smaller or much
larger than 1, the apparent Dx.ca will be highly rate-dependent, as observed for Mn and Sr, for
example (6Dwmn-ca/0logR = 0.27, 0Dsr.ca/0logR = 0.25, where R is the precipitation rate; Lorens,
1981). For elements with Dx.ca similar to 1, like Ni, the apparent Dx.ca should be relatively
unaffected by precipitation rate (0Dni-ca/0logR = -0.04 to 0.04, Alvarez et al., 2021; Lakshtanov
and Stipp, 2007). From the experimental study, we would therefore expect to see no correlation
or only very weak correlation between A“Nigid-solia and Di-ca, but a strong, negative correlation
between A®“Nifuig-solid and precipitation rate (OA**Nifuid-calcite/OlogR = -0.58, Alvarez et al., 2021).
Yet, we did observe a modest positive correlation between §°°Ni and Dni.ca (R? = 0.29, or 0.89 if
points outside of 1o of residuals from best-fit line are omitted; Table 1). The relationship

between Dyi-ca and A*Nigeawater-carbonate 18 therefore more likely imparted by another mechanism.

4.3.2 Is Ni uptake different among carbonate mineralogies?

We hypothesize that differing proportions of minerals, such as aragonite and HMC, with distinct
[Ni] and 8%Ni values, could explain the observed variation from between shallow, bank-top
cores. Others have found previously that trace elements exhibit distinct partition coefficients and

isotope fractionations among different, coexisting carbonate minerals (e.g., Mg, Ca, and Li;
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Marriott et al., 2004; Gussone et al., 2005; Saenger and Wang, 2014; Lau and Hardisty, 2022),
and thus Ni and its isotopes may also partition differently depending on the carbonate mineral.
Our short core carbonates contain 64 to 94 wt.% aragonite and 5 to 31 wt.% HMC (Hardisty et
al., 2017), and we do observe broad correlations between [Ni], 3°°Ni, and aragonite content (Fig.
2A), suggesting that our samples may contain different proportions of two distinct mineral

endmembers.

To assess our hypothesis, we tested whether the trends in our data can be reproduced by
calculating conservative mixtures of aragonite and HMC endmembers. If we cannot fit a mixing
model to the data, mineralogy is not likely a major control on the Ni composition of the short-
core carbonates. Lau and Hardisty (2022) used a similar approach to test whether carbonate
mineralogy is a major control on trace element and isotope compositions from the Clino and
Unda cores. For our model calculation, we used the measured mineral proportions, [Ni], and
8%Ni for each sample from the Bahamas short cores to calculate potential endmember
compositions using singular value decomposition (Glover et al., 2012). The calculated [Ni] and
8%Ni of the aragonite and HMC endmembers are 0.2 ppm and 0.7%o and 3.6 ppm and 1.5%,
respectively. We then used the calculated §°°Ni and [Ni] endmember values and the measured
carbonate mineralogy to determine a simulated 3°°Ni for each sample. We observe the expected
1:1 linear relationship between simulated and measured 3°°Ni (Fig. 2B, Fig. S7, R?mnij = 0.60,
RZ%560ni = 0.59) indicating that our samples’ [Ni] and 8%°Ni values can be explained largely as

combinations of the two endmembers.

The endmembers we defined with our own data set appear reasonable because they roughly
agree with the few constraints available in the literature. Theoretically and experimentally

determined partition coefficients for Ni into aragonite or calcite are compiled in Table 2. While
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previously published values of Dni-aragonite are highly varied, they are generally smaller than Dni-
caleite (Table 2). Thus, the low [Ni] in our modeled aragonite endmember relative to calcite is

consistent with these previous observations.

Similarly, the Ni isotope compositions of our endmembers match our expectation for the relative
difference in Ni isotope composition between aragonite and calcite. For the endmember isotopic
compositions, we turn to isotope partitioning theory in the absence of any experimental studies
of 8%°Ni in calcite and aragonite precipitated from solutions like seawater. We do know that, at
equilibrium, heavier isotopes partition preferentially into mineral cation sites or dissolved species
with shorter, stiffer bonds or with lower coordination numbers (Schauble, 2004). In the absence
of direct information about Ni coordination geometry as a trace constituent in carbonate
minerals, we assume Ni?" substitutes directly for Ca?* in CaCOj3 as other metals of similar radius
and charge do (Reeder et al., 1999). The Ca-O bond lengths are longer in aragonite than calcite
(Ca-O in aragonite = 2.53 A versus 2.36 A in calcite; e. g., Falini et al., 1998; Jarosch and Heger,
1986). The coordination number with oxygen atoms of Ni in calcite should be six. If Ni** does
substitute directly for Ca®" in aragonite, the coordination number is nine. For these reasons, we
expect Ni in aragonite to be isotopically lighter than Ni in HMC, and this is what we observed in
our samples; short-core carbonates with higher HMC content have higher 6°°Ni values (fig. 2).
An important caveat is that Mg?*, which is similar in ionic radius to Ni**, unexpectedly has a
shorter Mg-O bond length in aragonite than calcite (e.g., Finch and Allison, 2007) and is
isotopically heavier in aragonite than calcite (summarized in Saenger and Wang, 2014). This
may be because Mg?* fits poorly in a nine-fold site and may instead be bound at aragonite

surfaces or as nano-inclusions that differ structurally from aragonite (Finch and Allison, 2007).
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We acknowledge that our dataset is small and that this method overfits the model to the data but,

with the information at hand, we consider our hypothesis to be reasonable.

4.4 Influence of Diagenesis
While seawater composition and primary mineralogy may be the main factors governing the Ni

isotope composition of primary shallow-water carbonates, they are certainly not the only factors
to consider when attempting to infer the 3°°Ni of seawater from ancient carbonates. The Ni
isotope compositions preserved in the geologic record likely reflect additional influences, such as
diagenesis, that may overprint the primary signal. We explore the effects of different diagenetic

processes in the next section.
4.4.1 Meteoric Diagenesis

During sea level changes, shallow-water carbonates are susceptible to episodes of subaerial
exposure and meteoric fluid penetration that can drive carbonate phase changes and either add or
subtract Ni from the sediments. These processes could very likely alter the Ni isotopic signature
recorded in primary carbonates. In the section of the Clino core with meteoric alteration,
extensive neomorphism has resulted in near complete conversion of aragonite to LMC (Melim et
al., 2001, 1995, Fig. 3). The meteoric diagenesis sections of the Clino and Unda cores have a
combined average Ni concentration of 0.47 + 0.26 ppm (15), somewhat lower than the average
0f 0.75 = 0.40 ppm in the short cores, which are assumed to represent what the Clino and Unda
carbonates were like prior to meteoric diagenesis. The 8°°Ni values in the meteoric sections
(range of 0.5%o to 1.5%0 and average of 1.04 + 0.26%o, 10) shift to lighter values relative to the
short cores (range of 1.1%o to 1.6%0 and average 1.31 + 0.14%o, 15) (Fig. 3 and 4). To determine
whether these differences are significant, we compared the values for [Ni] and §°°Ni of

carbonates that experienced meteoric diagenesis to those of the short cores using a multiple
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pairwise comparison test (Tukey-Kramer). While the Ni concentrations are not significantly

different, §°°Ni values are significantly different (95% confidence level; Fig. 4).

The carbonates in the meteoric diagenesis region may have adopted their lighter Ni isotopic
compositions while in contact with meteoric fluids, if such fluids are indeed isotopically light.
Unfortunately, no data are yet available for relevant fluids. Others have analyzed groundwater
from a lateritic regolith (Ratié et al., 2015) and from a basaltic aquifer (Takano et al., 2021), but
we consider these samples too dissimilar to be applicable here. A handful of rainwater and snow
Ni isotope measurements suggest meteoric waters are isotopically light (-0.8%o to 0.8%o) relative
to seawater, but these values correlate tightly with indicators of heavy oil combustion and
therefore do not represent unpolluted meteoric water (Takano et al., 2021). Instead, we use rivers
as a reference for meteoric fluids. Measurements of §°°Ni of dissolved riverine Ni vary
significantly, from 0.18%o to 1.35%., with an abundance-weighted average of 0.9%o (Cameron
and Vance, 2014; Revels et al., 2021). Importantly, all Ni isotope measurements for rivers are
lighter than the inferred Bahamian seawater range, from which the short-core carbonates
precipitated (1.4%o to 1.7%o), and thus diagenetic carbonates precipitated from meteoric fluids

should be isotopically lighter than those precipitated from seawater.

Ni concentration data also support this interpretation. We do not expect a significant difference
in Ni concentrations between carbonates precipitated from seawater and those precipitated from
meteoric fluids, because rivers typically have Ni concentrations between 1 and 15 nM (Gaillardet
et al., 2014; Cameron and Vance, 2014; Revels et al., 2021) that are comparable to nearby
seawater Ni concentration measurements (2.1 nM, from within 250 km of our study site; Kelly et
al., 2022) and Atlantic surface seawater (~2 nM; Cameron and Vance, 2014; Archer et al., 2020;

Lemaitre et al., 2022). As expected, there is not a statistically significant difference between the
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Ni concentrations of the short-core carbonates and those influenced by meteoric diagenesis (Fig.
4). Taken together, we propose that meteoric diagenesis lowers 6°°Ni by contributing isotopically
light Ni from fluid but does not necessarily significantly alter the Ni concentration of the
diagenetic carbonate. Preliminary diagenetic modeling also supports this conclusion (discussed

in section 4.4.3).
4.4.2 Marine Diagenesis

Unlike the carbonates in the meteoric diagenesis section, most of the samples from the marine
diagenesis section (150 to 400 mbsf) match the Ni isotope compositions of the shallow, bank-top
carbonates nearest to initial deposition. Samples from the Clino core have an average [Ni] = 1.31
+0.95 ppm and 8%°Ni = 1.31 + 0.23%o (1), which are within uncertainties of the short-core
carbonate Ni compositions (0.75 £+ 0.40 ppm and 1.31 £ 0.14%o, 1c). Tukey-Kramer pair-wise
comparison tests indicate no significant differences for either 6°°Ni or [Ni] (p > 0.05 for both;

Fig. 4).

The degree of alteration is not homogeneous throughout this range, however. From 200 to 350
mbsf, there is a significant amount of preserved aragonite, indicating a mild extent of alteration,
unlike the meteoric diagenesis region of Clino, which experienced near complete aragonite-to-
LMC neomorphism (Fig. 3; Melim et al., 1995). Several diagenetic indicators suggest that the
chemical composition of the primary aragonite was retained (e.g., light Ca isotope compositions,
heavy C isotope compositions, and high Sr/Ca ratios; Ahm et al., 2018; Higgins et al., 2018;
Melim et al., 1995). Samples from this section of the Clino core have an average [Ni] = 1.16 +
0.59 ppm and 8%°Ni = 1.29 + 0.09%o, which is again very similar to the compositions of the

short-core carbonates.
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648  In contrast, samples from outside this well-preserved interval show signs of extensive alteration
649  and sediment-buffered diagenesis for several common diagenetic indicators (150 to 200 mbsf
650  and 350 to 400 mbsf), as evidenced by higher LMC content, presence of dolomite, lower Sr/Ca
651  ratios, lighter C isotope compositions, and slightly heavier Ca isotope compositions (Melim et
652  al, 1995; Ahm et al., 2018; Higgins et al., 2018). In support of this interpretation, Lau and

653  Hardisty (2022) calculated endmember chemical compositions of primary aragonite/HMC,

654  sediment-buffered LMC, and fluid-buffered dolomite with respect to several diagenetic

655 indicators (e.g., Ca isotope ratios, Sr/Ca ratios). They modeled the mixing of these minerals in
656  the proportions of the Clino core and generally reproduced the measured Ca isotope

657  compositions and Sr/Ca ratios, indicating that the Clino core experienced dominantly sediment-
658  buffered diagenesis with respect to Ca isotope and Sr/Ca ratios (dolomite is typically <20% in
659  the Clino core). Despite the greater extent of alteration compared to samples between 200-350
660  mbsf, samples from 150-200 and 350-400 mbsf have an average [Ni] of 1.46 + 1.24 ppm and
661  5°ONi of 1.33 + 0.33%o, which is nearly identical to that found in the less altered region and the

662  short-core carbonates.

663  Based on these observations, we can hypothesize that marine diagenesis, even where the degree
664  of alteration is high, did not reset the Ni signature of the Clino core sediments. We can further
665  hypothesize that diagenetic alteration was sediment-buffered with respect to Ni, as well as with
666  respect to Ca isotopes and Sr/Ca ratios. If true, then perhaps carbonates in which Ca isotopes and
667  Sr/Ca ratios indicate sediment-buffered diagenesis can reasonably be assumed to have Ni

668  signatures reflecting sediment-buffered diagenesis, which would greatly aid the identification of

669  carbonate sediments that preserve pre-diagenetic signatures.
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The potential for Ca isotope and Sr/Ca ratios to indicate accurately whether certain carbonate
samples have likely preserved original Ni signatures depends on whether Ni is more or less
susceptible to reset than those diagenetic indicators and whether the transition from sediment- to
fluid-buffered diagenesis for Ni occurs at approximately the same extent of alteration. A detailed
explanation of why the boundary region between fluid- and sediment-buffered diagenesis is
different for every element or isotope system is provided in Fantle et al. (2010) and Fantle and
Lloyd (2025), as well as quantitative methods for determining relative susceptibility for various
diagenetic indicators. For our purposes, the most important comparison to make is among the Kq
values for the elements of interest (where Kq = [Element]soiia/[ Element]auid). An element with a
larger Kq (stronger partitioning of the element or isotope into the solid) will generally be less
susceptible to reset by diagenetic fluid than an element with a lower Kq. To approximate the Kq
for Ni, we can consider Dni.ca (Table 2) and assume our diagenetic system contains
stoichiometric calcite in equilibrium with seawater which yields a Kq for Ni on the order of 10°.
This is similar to the Kq4 for Ca (10%) and larger than the Kq for Sr (10%; e.g., Baker et al., 1982
and references therein; Huang and Fairchild, 2001; Tang et al., 2008). Thus, we expect Ni to
behave similarly or be less sensitive to alteration relative to Sr and Ca, at least to first order.
Importantly, our use of these diagenetic indicators to contextualize the diagenetic behavior of Ni

isotopes appears reasonable.

We infer from our work on the Clino core that when marine diagenesis is mild enough that
samples retain aragonite and have high Sr/Ca ratios, light Ca isotopes, and heavy C isotopes,
those samples are likely to have retained Ni isotope signatures from early deposition. These
signatures may also remain following moderate alteration that is predominantly sediment-

buffered with respect to the noted diagenetic indicators.
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693
694 4.4.3 Modeling the relative sensitivity of Ni to alteration during diagenesis

695  We can also explore what processes or conditions preserve primary Ni signatures by modeling
696  how the Ni isotope composition and other diagenetic indicators change during diagenesis. As
697  stated above, diagenetic indicators such as §'°C, Sr/Ca, 5**Ca, and 3'®0 can indicate the

698 likelihood of primary signal preservation for other elements based on their relative sensitivities
699  to diagenetic overprinting at varying fluid-to-rock ratios. As a simplistic example, if an isotope
700  ratio "X/™X is less resistant to a specific type of alteration than 8'30 at a given fluid-rock ratio,
701  then when 8'%0 is reset after experiencing that type of alteration, "X/™X is likely reset as well.
702  Thus, we compared the influence of diagenesis on §°°Ni to common diagenetic indicators by

703  modeling the progressive alteration of fresh carbonate sediment.

704  Given the limited knowledge of the behavior of Ni in carbonates, we avoided more complex

705  modelling approaches (such as recommended by Fantle and Lloyd, 2025) and instead opted for a
706  simple model approximating a single diagenetic process (aragonite-to-calcite neomorphism in a
707  fluid-buffered, open system; Banner and Hanson, 1990). This approach does not explicitly

708  consider important aspects of diagenesis such as reaction rate or fluid evolution, but, for this first

709  exploratory approach, it provides an interesting lens through which to consider our data.

710  In this model, our system is initially composed of fresh fluid and primary aragonite. We allow
711  solid and fluid to equilibrate in terms of Ni partitioning and isotope exchange, and then we

712 replace the altered fluid with fresh fluid for further equilibration with the sediment (now with a
713 smaller proportion of aragonite). This was repeated until steady state was achieved with respect
714 to the C isotope composition (i.e., one of the signatures most resistant to diagenetic alteration).

715  We track the cumulative fluid-to-rock ratio, N, defined as
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N = # of equilibration steps X % ,

where F is the mass fraction of fluid in the system determined by the solid’s and fluid’s densities

and the solid’s porosity.

Our model parameters are derived from the results presented here and from the literature. All
values and model parameters are listed in Table S1. We assumed the initial sediment had the
average [Ni] and 8%Ni of the short-core carbonates. The marine and meteoric diagenetic fluids
are assumed to be similar to nearby Atlantic surface water and the global average for rivers,
respectively (Gaillardet et al., 2014; Cameron and Vance, 2014; Revels et al., 2021). We used
the distribution coefficient for Ni and calcite as reported in the literature (see Table 2) and
applied two isotope fractionation factors for Ni: the value described by Alvarez et al. (2021) as
most representative of equilibrium isotope fractionation between fluid and calcite (0.9%o) and the
average isotope fractionation between the measured short-core carbonates and the upper end of

the inferred Bahamian seawater §°°Ni range (~0.4%o).

The modeled results generally reflect our measurements (i.e., little to no change in 8°°Ni values
during marine diagenesis and lower 8°°Ni values after meteoric diagenesis relative to our shallow
bank-top core 3°°Ni values representing early deposition) and suggest Ni is moderately sensitive
to diagenesis relative to other systems (e.g., more resistant than §'80, but less so than §!3C).
Meteoric diagenesis results in lower 6°°Ni values than marine diagenesis, which reflects the light
8%°Ni we infer for meteoric fluids (Fig. 5). Marine diagenesis modeled with the isotope
fractionation calculated from the short-core carbonates results in constant 3°°Ni, unchanged from
the short-core value. For all other scenarios, progressive alteration typically results in lower
8%Ni. The modeled 3°°Ni begins to deviate from the initial range of §°°Ni around N ~ 102, which

is less sensitive to alteration than 8'%0 and Sr/Ca, but more so than §'*C. In addition, a previous
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study performed a similar exercise for other trace constituents and redox sensitive elements (Lau
and Hardisty, 2022). In comparison, 6°°Ni is more sensitive to reset than U isotope ratios or Cr
isotope ratios, but less so than carbonate-associated sulfate concentrations, for example (e.g.,
deviation from primary occurs at Ns23gu ~ 103, Nssscr ~ 104, Ncas < 10! assuming oxic seawater
as the diagenetic fluid; Lau and Hardisty, 2022). This suggests that °°Ni is poorly rock buffered
during diagenesis in open systems (i.e., easily changed at moderate fluid-to-rock ratios). Our
results are generally consistent with the 3°°Ni values of the meteorically altered portion of Clino,
which experienced diagenesis in a relatively open system. In this case, the Ni isotope
composition deviates from shallow, bank-top carbonates, presumably because the alteration fluid
had a significantly different 3°°Ni relative to seawater. As more information about Ni
incorporation into carbonates becomes available, we would greatly benefit from more realistic
models that track fluid evolution, extents of alteration, and styles of alteration (i.e., fluid- versus
sediment-buffered diagenesis), as have been applied previously for other isotope systems (e.g.,

Ahm et al., 2018; Lau and Hardisty, 2022; Murphy et al., 2022; Holmden et al., 2024).
4.4.4 Dolomitization

The massive dolomite section of the Unda core provides an opportunity to evaluate how
dolomite formation, which is common in the rock record, influences or overwrites the precursor
sediment 8%°Ni. The dolomites contain some of the highest Ni concentrations (1.13 ppm to 5.36
ppm) and lowest 3°°Ni values in our sample set (0.48-0.76%o; Fig. 3 and 4), unlike the short-core
carbonates which are assumed to represent the precursor sediment. Such low §°°Ni values
immediately suggest that dolomitization either strongly fractionated Ni while incorporating it
during mineral transformation or directly inherited isotopically light Ni, without fractionation,

from an isotopically light external source.
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Seawater is one possible source of Ni; these dolomites very likely formed with a seawater-like
fluid in a relatively open system, with several elemental and isotopic ratios exhibiting fluid-
buffered conditions, as indicated by Sr concentrations (Swart and Melim, 2000) and multiple
isotope systems (e.g., Ca, Mg, Li, S; Higgins et al., 2018; Dellinger et al., 2020; Murray et al.,
2021). Considering that enough seawater fluxed the sediments to reset the isotopes of a major
element like Ca, it is likely that seawater also delivered a significant amount of Ni and reset the
Ni isotopic composition. The heavy Ni isotope composition of seawater (1.3%o to 1.7%o Lemaitre
et al., 2022, and references therein) compared to the dolomite, however, would require very
strong Ni isotope fractionation during dolomite formation. For such a fractionation to occur,
assuming a close approach to equilibrium, the lattice site for Ni should have longer Ni-O bonds
and slower bond vibrations, and/or a larger coordination number than the aqueous species of Ni
that is directly incorporated into dolomite (most likely Ni(H20)¢*" or hydrated NiCOs%). While
we do not have direct measurements of the Ni-O bond length in dolomite, we can make
inferences based on the coordination environment of other cations that occupy the same
crystallographic site. Dolomite contains alternating layers of Ca and Mg octahedra. We expect
Ni to substitute more readily for Mg than Ca because Ni** (0.69 A) is more similar in size to
Mg?* (0.72 A) than Ca®" (1.00 A) when octahedrally coordinated (Shannon, 1976). The Mg-O
bond length is ~2.08 A (Reeder, 1983), which is at most 0.03 A longer than the Ni-O bond length
for Ni(H20)6>" (2.05 A to 2.08 A; Fujii et al., 2011, and references therein). Such a small
difference in bond length would not likely produce a ~1%o difference in A*“Nigcawater-dolomite,
which is approximately the order of magnitude needed to be consistent with our observations.

The calculated reduced partition function ratios for several species of Ni in Fujii et al., 2011,
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indicate a maximum fractionation of only ~0.7%o between many possible aqueous species of Ni,
y yp q Y

including dissolved NiCO3(H,0)4°, which should be among the most isotopically heavy species.

If fractionation from seawater cannot produce the observed low 3°Ni dolomite values, then
perhaps Ni-rich inclusions such as Mn oxide particles could have been reductively dissolved
during diagenesis, resulting in incorporation of their Ni into the dolomite. Wang et al. (2021)
concluded that the redox conditions in these sediments were likely suitable for Mn-oxide
reduction by comparing two redox proxies, I/Ca+Mg and carbonate-associated sulfate sulfur
isotope ratios (8**Scas). Iodate reduction occurs at approximately the same redox potential as
Mn(III/IV), whereas sulfate reduction occurs at lower potential (Rue et al., 1997). In the massive
dolomite section, low I/Ca+Mg ratios (Hardisty et al., 2017) but seawater-like 5**Scas (Murray et
al., 2021) suggested that the redox conditions during dolomitization were between iodate and
sulfate reduction. Ni released during reductive dissolution could supply substantial amounts of
isotopically light Ni. Mn-oxides are very Ni-rich (up to a few wt.%; Manheim and Lane-
Bostwick, 1989), and recent analyses of Mn-rich sediments indicate light §°'Ni (-0.8%o to
+1.0%o; Little et al., 2020; Gueguen and Rouxel, 2021; Fleischmann et al., 2023). As we would
expect, [Mn] and [Ni] in this region have a positive correlation, but a weak one (R? = 0.32). We
would also expect to see unusually high [Mn] for carbonates, but the [Mn] values are only
slightly elevated (average [Mn] = 12.5 ppm; Liu et al., 2019). For comparison, the average Mn
concentration for the short-core carbonates is 4.1 ppm and for the Clino core carbonates is 5.7
ppm. The weak correlation between [Mn] and [Ni] and low [Mn] tend to refute the possibility of

light Ni inherited from Mn oxide inclusions but cannot rule it out entirely.

Data from the massive dolomitization section of Unda suggests that dolomite readily

incorporates Ni from elsewhere and likely does not record the original chemical composition of
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807  the precursor sediment. Interpretations of dolomite 3°°Ni are not recommended unless

808  independent information about external Ni sources is available.

809 4.5 Implications for the Marine Ni Budget
810  Our study is a step forward toward reconstructing Ni budgets for ancient oceans but can also

811  inform modeling of the modern marine Ni budget. Recent papers present highly discrepant

812  estimates of how much Ni is removed from the oceans globally into carbonates. Ni is buried with
813  carbonates in both the organic carbon fraction (i.e., Ni within organic matter associated with

814  carbonates) or the inorganic carbon fraction (i.e., Ni bound within carbonate minerals). Ciscato
815  etal. (2018) calculated the first Ni carbonate flux by multiplying the amount of organic carbon
816  buried with carbonates by the Ni/TOC ratio found in carbonate-rich lagoonal sediments (Table
817  3). They inferred from this calculation that carbonates account for only 0.1% to 7% of the total
818  Ni output. Alternatively, Alvarez et al. (2021) estimated the Ni output with the inorganic

819  carbonate fraction by multiplying the total amount of CaCO; buried each year by the Ni

820  concentration of carboniferous marine limestones (Table 3). Their estimate resulted in a much

821  larger value, making up 10% to 50% of the total Ni output.

822 Table 3: Carbonate fluxes and Ni concentrations used to calculate the modern carbonate Ni
823  output.

Carbon Carbonate flux Ni concentration Total Ni flux
Source fraction (mol Ni/yr)
Value Unit Ref." Value  Unit Ref." vy
Ciscato et al. (2018)*  Organic 6.0 x 10" g Corg/yr 1 0.00014 ppm N/TOC % 2 1.4x 107
Alvarez et al. (2021)  Inorganic 3.2to 14.7x 10"  mol CaCOs/yr  1,3,4,5,6 2.69 ppm Ni 7 1.5t06.7x 10
This study Inorganic  1.1t03.8x 10"  mol CaCOs/yr 3,8 0.74 ppm Ni this study 1.4 to 4.8 x 107

1. Hedges and Keil, (1995); 2. Ciscato et al. (2018); 3. Milliman and Droxler, (1996); 4. Milliman et al. (1999); 5. Schneider et al. (2000); 6. Berelson et
al. (2007); 7. Zhao and Zheng (2014); 8. Cartapanis et al. (2018) and references therein.
a. The output calculated for the organic fraction of carbonates only includes the organic output associated with carbonates and not with other sediments.

824  Our data provide a new opportunity to constrain the carbonate Ni output. We first calculated an
825  inorganic-carbon carbonate flux by multiplying the total CaCOs buried each year and the average

826  Ni concentration of the short-core carbonates, which most closely reflect initial precipitation
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(Table 3). This produces an output of 1.4 to 4.8 x 107 mol Ni/yr. When combined with the
organic-associated flux from Ciscato et al. (2018), our new estimate yields a bulk carbonate flux
of 2.8 to 6.2 x107 mol Ni/yr. This estimate does not take into account that pelagic carbonates,
which make up half of the total CaCOj3 flux, may have a different average Ni concentration
(Milliman and Droxler, 1995; Schneider et al., 2000; Berelson et al., 2007; Cartapanis et al.,
2018; Hayes et al., 2021). Even so, in the context of the marine Ni budget, carbonates do not
appear to be a significant output. The bulk carbonate flux composes only 3% to 8% of the total
Ni output presented in Ciscato et al. (2018) and is less than half of the estimate proposed in

Alvarez et al. (2021).

Although an experimental study of Ni-calcite coprecipitation suggested that fractionation of Ni
isotopes during incorporation into carbonates may significantly influence the Ni isotope
composition of seawater (Alvarez et al., 2021), our data indicate the opposite. Having found that
experimentally grown calcite can be very light compared to solution (A*Nifuid-catcite > 0.9%o),
they proposed that removal of Ni to carbonates can exert significant leverage on the isotope
composition of seawater. However, our results suggest that primary or near-primary, shallow-
water carbonates (1.31%o £ 0.14%o) are fractionated by approximately 0.1 to 0.4%o from
coexisting seawater. Therefore, changes in carbonate deposition fluxes will not substantially

influence the Ni isotope composition of seawater.

S Summary

Shallow-water carbonates are one of the most widespread and well-studied geologic archives of
ocean chemistry, but diagenetic alteration complicates their use as a record. To assess their use

as a record of the Ni isotope composition of surface seawater, we measured element
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concentrations and the Ni isotope compositions of shallow, bank-top cores (<18 cm) and
diagenetically altered carbonates from the Great Bahama Bank. We found that Ni is isotopically
fractionated from seawater upon incorporation into carbonates that approximate initial deposition
(A Nifig-sediment On average between 0.1%o to 0.4%o), and relative proportions of aragonite and
calcite may dictate the primary 8'Ni, since isotopically heavier Ni is associated with higher
proportions of calcite. Meteoric diagenesis alters the Ni isotope composition towards lighter
values, which we conclude is because meteoric fluids are isotopically lighter than seawater. In
contrast, we found that marine diagenesis does not appear to significantly alter the Ni signal
imparted during deposition. We showed that the relative susceptibility of Ni signatures to
diagenetic reset is approximately comparable to those for Ca isotopes and Sr/Ca ratios, such that
carbonate samples in which those indicators point to preservation of the primary signal or
sediment-buffered diagenesis likely also reflect the primary Ni signatures. Our work highlights
the potential for shallow-water carbonates to serve as records of contemporaneous seawater, as

long as the possible influence of diagenetic reset is first evaluated.
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7 Appendix A. Supplementary Material

This material includes information on the influence of non-carbonate phases on the measured Ni
concentration and isotope composition and model parameters for the exercise described in

section 4.4.3.

8 Data Availability

Data are available through Mendeley Data at https://doi.org/10.17632/w22g2k4t2n.1.

9 Figures
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Figure 1: Sample Sites. Core locations are shown in red. Depths greater than 500 meters below sea
level are shown in dark blue. Coordinate data are from Hardisty et al. (2017) and Ginsburg et al.
(2001).
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Figure 2: (A) Mineral proportions (colored fields), 8°°Ni (x-axis values), and [Ni] (color gradient)
down short cores C1, C4, and C5. The two vertical dashed lines enclose the inferred Bahamian
seawater 8%°Ni range as discussed in section 4.2. The mineralogy data are from Hardisty et al.
(2017). The error bars represent 2c on replicate analyses of the sample or 26 on the long-term
reproducibility for a Ni standard, whichever is greater. (B) depicts measured §°°Ni and 1/[Ni] for
the short-core carbonates (circles) and calculated 3°°Ni and 1/[Ni] values for aragonite and high-
magnesium calcite endmembers (triangles, calculated as described in section 4.3.2). The black,
solid line is the calculated mixing model from the two endmember compositions.
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line corresponds to the average Ni isotope composition of the short-core carbonates. The two
vertical dashed lines enclose the inferred Bahamian seawater §°°Ni range as discussed in section
4.2. The horizontal, dash-dot line corresponds to the boundary between meteoric and marine
diagenesis as defined by Melim et al. 2001, 1995. However, we acknowledge that meteoric fluids
may have penetrated below this point (Swart and Oehlert, 2018). In panel A, the grey, shaded area
denotes the region in which the sediments reflect the primary carbonate composition which
suggests minimal alteration of the sediment (see section 4.4.2). Mineralogical data are from
Hardisty et al. (2017) and Melim et al. (1995). The error bars represent 2¢ on replicate analyses of
the sample or 26 on the long-term reproducibility for our Ni standard, whichever is greater.
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