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Polyester Product Characterization

Infroduction

The current production of polyester polymers involve a reaction between a carboxylic acid
and diol. However, synthesis of carboxylic acid itself is a energy intense process. Although
these methods are well-established, there are benefits to simplifying polyester synthesis to a
one-step process to minimize resource utilization, reduce energy consumption, and improve
process efficiencies. Despite these advantages, a single step process has yet to be reported.
However, our research discovered a direct route to polyesters from 1,6-hexanediol (HDO)
using a heferogeneous CuCeO, catalyst in a semi-batch reactor system used by Gu et al. fo
make polycarbonates using a CeO, catalyst.? This study seeks to provide insights into the
reaction mechanism of the direct polyester synthesis reaction by characterizing and

evaluating different Cu supported materials, Cu weight loadings, and process conditions.
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IR peak around 1735 cm! confirmed the presence of the carbonyl group.

« CI3NMR analysis showed a peak at 174 ppm confirming carbonyl ester peak.
« The LCMS analysis confirm the repeating units of polyester with the mass of 114 m/z.
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Cu(ll) and stronger Lewis acidity. 25%Cu/CeO, 39.7  60.3 26.2 73.8 245 456 1450 154
Pure CuO has a highly defective surface 16%cu/ceo, 243 757 359 641 148 51.8 13.50 19.9
with both CuO and Cu(l)/Cu®. 10%Cu/CeO, 240 760  47.8 522 180 577 1590 8.4
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needed for polyester formation.
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Role of water

Small levels of water present in the reactant mixture are key to polyester formation.
No reaction was observed in the presence of a dehydrating agent.

formation of the polyester synthesis.

H,180 labeling experiments showed oxygen from water was present in the polyester.
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Atomic concentration

The initial water level was between 1400-2500 ppm, and increased water levels inhibited the
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Possible reaction mechanism

« Cul*’Ztin proximity to defect sites mediate the conversion of HDO to 6- hydroxyhexanal.
« HDO dissociatively adsorbs on to Lewis Ce* and Cu acid sites, Cu metal near oxygen

vacancies activates water dissociation and inserfion of the OH group into the locally
adsorbed 6- hydroxyhexanal species to form 6-hydroxyhexanoic acid.>

« HDO heterolytically dissociated on Lewis acid (Cu'*/2* or Ce#) fransesterfies with 6-

Catalyst Deactivation 115 — 25w
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 The deposition of the polymer on the catalyst surface may

« TGA analysis showed significant carbon deposition on the 05|

hydroxyhexanoic acid produces the polyester.
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also block the active site on the catalyst.
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CuCeO, is an efficient catalyst for direct diol conversion to polyester, and the interplay
between oxygen vacancies, Cu metal, and Lewis acid sites enables the reaction.

H,O labelling experiment showed that oxygen of the carbonyl group is derived from water.
The reaction likely proceeds through an aldehyde and carboxylic acid intermediate.

The agglomeration and the polymer deposition are likely the main pathways for catalyst
deactivation.
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