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Sun et al. (2023) 

• Scenarios for SAI are typically 
simulated in ESM (Earth System 
Models) and assessed for impacts on 
the climate system

• Impacts vary due to injection location 
(altitude and latitude), injection 
magnitude, injection timing, and the 
baseline emissions scenario

• Decision makers or regulators will 
need scenario-specific information 
on impacts

• This will require many more 
simulations (and assessments) of 
different SAI scenarios

• Surrogate models may be a potential 
tool for rapid assessment

Kravitz and MacMartin (2020) 

STRATOSPHERIC AEROSOL INJECTION (SAI) WILL HAVE WIDESPREAD IMPACTS



WHY DO WE NEED SURROGATE MODELS?

• Seeking to apply Performance Analysis (PA) to SAI:
• Provides quantifiable measures of long term effects
• Risk-risk model

• Need for Advanced Earth System Models (ESMs):
• Critical to understand and predict global climate change impacts.
• Traditional ESM simulations are time-intensive, taking weeks to run on large clusters.
• PA requires thousands (or more) runs for proper uncertainty estimation

• Development of Rapid Prediction Simulations:
• Focus on surrogate modeling to vet scenarios before extensive ESM simulation.
• Aim to acquire climate impacts of SAI scenarios rapidly for preliminary analysis.

• Utilizing Graph Convolutional Neural Networks (GCNNs):
• GCNN surrogate model predicting monthly temperature changes and other climate variables.
• Enables multiple simulation runs to estimate uncertainties and possible impacts of SAI.
• Performance and Efficiency of the Surrogate Model:
• Capable of simulating 141 months in under 2 minutes using a single V100 GPU.
• Simulate approximately 1000 months (90 years) in under an hour.
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GCNNs allow thousands of simulations on a single GPU in the timeframe of a single traditional ESM run



TL;DR

•  Accuracy and Testing of the Model:
• Tested using a holdout set from 4 separate GLENS control simulations of 141 months.
• Mean Absolute Error (MAE) for temperature predictions below 0.5 degrees Kelvin
• Maximum absolute error below 2 degrees Kelvin
• Precipitation has challenges from the extreme range (6 orders of magnitude)
• Prediction distributions matches simulation outputs very well
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Precipitation

Temperature

Graph CNNs can do very well with proper tuning



GLENS AND PREPROCESSING

• Used data from Geoengineering Large Ensemble Project (GLENS) [1]
• Extracted variables of interest to CSVs
• Deal with missing data (e.g. TSA has no values over ocean)
• Add a time in months
• Changed PRECT to average per month
• Added past month’s outputs (allow autoregressive prediction)

• Graph specific
• Convert from lat/lon to x, y, z
• Downsample to reduce oversampling at poles
• Add 4 edges between nearest neighbors

• Normalization done inline by model
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[1] https://www.cesm.ucar.edu/community-projects/glens



FULLY CONNECTED NEURAL NETWORK (FCNN) MODEL
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GLENS TSA 
(Control run – feedback run)

Predicted TSA diff 
1 ensemble member training data

Predicted TSA diff 
3 ensemble members training data

Input: year, month, latitude, longitude, aerosol
Output: Difference in TSA between control and feedback run
Training set:  ~20-60 million points from GLENS simulations
Test set: Data from held out GLENS simulation

A fully connected neural network (NN)  learned to predict the difference in surface temperature (TSA) over time between GLENS control runs and feedback runs with aerosol injection intervention. The plots above show a snapshot 
in time (January 2080) from the models. (Left) NN prediction given only one GLENS run as training data. (Center) NN prediction given 3 GLENS runs as training data. (Right) GLENS simulation output for the same month.



FCNN NETWORK ARCHITECTURE
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WHY USE GRAPH CNNS?
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https://commons.wikimedia.org/w/index.php?curid=17700069

3-D graph representation of surface temperature error 
downsampled (TSA).

(left) Scatterplot of the original data.  Map projection causes an over-emphasis on the polar regions.  
(right) No over sampling at polar regions and edges are connected in the now spherical geometry. 



FCNN VS GCNN

Model ALTMAX ICEFRAC PRECT SNOWHLND TREFHT TSA

MAE

FCN 0.4611 0.1504 0.0012 0.1238 5.7008 21.7042

GCNN 0.0341 0.0019 0.0010 0.0038 0.0707 0.0837

FCN/GCNN 13.5266 81.1539 1.2776 32.5978 80.6600 259.2910

MARE

FCN 0.0163 131.2807 0.6694 107.9613 0.0409 0.1306

GCNN 0.0010 0.9655 0.4658 2.7821 0.0005 0.0005

FCN/GCNN 15.7740 135.9746 1.4370 38.8063 81.6119 289.3921

MaxAE

FCN 15.3309 1.3128 0.0736 0.8411 29.4854 84.0491

GCNN 0.6211 0.1658 0.0697 0.1883 1.7796 1.9909

FCN/GCNN 24.6842 7.9177 1.0545 4.4657 16.5684 42.2173

MaxARE

FCN 0.8522 485.1506 3.3429 427.6383 0.2321 0.6003

GCNN 0.0347 86.1159 3.2700 126.1915 0.0171 0.0126

FCN/GCNN 24.5861 5.6337 1.0223 3.3888 13.5839 47.4587
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INPUT VARIABLE IMPORTANCE
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Ran through with each input variable 
held out
• t was unsurprisingly the most 

influential (no other variable has a 
relation to CO2 level for this test)

• Altitude was next most influential
• Month was a surprise though since 

month is recoverable from t
• AOD was not important for this test 

(expected since this is just against the 
control dataset)



GCNN LAYER EVALUATION

There are dozens of graph convolutional 
layers available in PytorchGeometric
• Tested the 20 that were easily applied
• Trained for 100 epochs
• Results for the best 9
• Metrics:

• Mean Absolute Error (MAE)
• Max Absolute Error (Max AE)
• Measured relative to minimum error (of 

the layers tested)
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers



LAYER TESTS – RELATIVE MEAN ABSOLUTE ERROR
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LAYER TESTS – RELATIVE MAX ABSOLUTE ERROR
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RESULTS
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PREDICTION VS SIMULATION - DISTRIBUTION
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NOT EVERYTHING IS ROSES
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Precipitation



FUTURE

• Incorporate feedback runs (increased AOD 
from SAI)

• Reduce memorization required of model by 
adding additional variables (e.g. CO2)

• Test autoregressive runs for proper output 
distribution

• Resolve precipitation prediction (think it is 
the scale – 5 orders of magnitude!)
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QUESTIONS?

Kevin Potter kmpotte@sandia.gov (ML)
Lauren Wheeler lwheele@sandia.gov (Climate Intervention)
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DROPOUT-BASED FCNN ENABLES UNCERTAINTY QUANTIFICATION
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Added dropout layers to the neural network (NN)

• Normal use - reduces overfitting

• Introduces stochasticity, forming an ensemble of predictions

Technical details:

• Dropout layers deactivate subsets of NN nodes at 
random (with probability 0.3 in our implementation).

• During training, this is a typical regularization 
technique.

• Keeping dropout layers active during inference 
approximates a Gaussian process [1].

• We make 48 predictions for each input datapoint, 
generating an ensemble of predictions.

• The standard deviation over the predictions serves 
an estimate of uncertainty.

[1] Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: 
Representing model uncertainty in deep learning. In international conference on 
machine learning (pp. 1050-1059). PMLR.

(Left) NN prediction for the difference in TSA between a control and feedback run for one month (January 2080). (Center) Uncalibrated 
uncertainty estimates for NN prediction. (Right) NN error with respect to GLENS simulation data.  The uncertainty qualitatively appears to 
align with high error areas.


