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STRATOSPHERIC AEROSOL INJECTION (SAI) WILL HAVE WIDESPREAD IMPACTS

« Scenarios for SAl are typically
simulated in ESM (Earth System
Models) and assessed for impacts on
the climate system

« Impacts vary due to injection location
(altitude and latitude), injection
magnitude, injection timing, and the
baseline emissions scenario

«  Decision makers or regulators will
need scenario-specific information
on impacts

«  This will require many more
simulations (and assessments) of
different SAl scenarios

« Surrogate models may be a potential

tool for rapid assessment ¢y et al. (2023)
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Figure 1. Particle lifetime distribution as a function of initial injection longitudes and latitudes.




WHY DO WE NEED SURROGATE MODELS?

Seeking to apply Performance Analysis (PA) to SAI:
* Provides quantifiable measures of long term effects

* Risk-risk model

Need for Advanced Earth System Models (ESMs):
* Critical to understand and predict global climate change impacts.

* Traditional ESM simulations are time-intensive, taking weeks to run on large clusters.
* PA requires thousands (or more) runs for proper uncertainty estimation

Development of Rapid Prediction Simulations:
* Focus on surrogate modeling to vet scenarios before extensive ESM simulation.

« Aim to acquire climate impacts of SAl scenarios rapidly for preliminary analysis.

Utilizing Graph Convolutional Neural Networks (GCNNs):
* GCNN surrogate model predicting monthly temperature changes and other climate variables.

* Enables multiple simulation runs to estimate uncertainties and possible impacts of SAI.

+ Performance and Efficiency of the Surrogate Model:
« Capable of simulating 141 months in under 2 minutes using a single V100 GPU.
* Simulate approximately 1000 months (90 years) in under an hour.

GCNNs allow thousands of simulations on a single GPU in the timeframe of a single traditional ESM run
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» Accuracy and Testing of the Model: \
- Tested using a holdout set from 4 separate GLENS control simulations of 141 months.

- Mean Absolute Error (MAE) for temperature predictions below 0.5 degrees Kelvin
 Maximum absolute error below 2 degrees Kelvin

* Precipitation has challenges from the extreme range (6 orders of magnitude)

* Prediction distributions matches simulation outputs very well

TSA - ML prediction vs simulation Precipitation TSA - ML prediction vs simulation (land only)
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Graph CNNs can do very well with proper tuning




GLENS AND PREPROCESSING

- Used data from Geoengineering Large Ensemble Project (GLENS)
- Extracted variables of interest to CSVs

- Deal with missing data (e.g. TSA has no values over ocean)
- Add a time in months

« Changed PRECT to average per month

« Added past month's outputs (allow autoregressive prediction)

* Graph specific
- Convert from lat/lonto x, y, z
- Downsample to reduce oversampling at poles

- Add 4 edges between nearest neighbors

* Normalization done inline by model

‘ [1] https://www.cesm.ucar.edu/community-projects/glens :




FULLY CONNECTED NEURAL NETWORK (FCNN) MODEL

Input: year, month, latitude, longitude, aerosol

Output: Difference in TSA between control and feedback run
Training set: ~20-60 million points from GLENS simulations
Test set: Data from held out GLENS simulation

Predicted TSA diff Predicted TSA diff GLENS TSA
1 ensemble member training data 3 ensemble members training data (Control run - feedback run)
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A fully connected neural network (NN) learned to predict the difference in surface temperature (TSA) over time between GLENS control runs and feedback runs with aerosol injection intervention. The plots above show a snapshot
in time (January 2080) from the models. (Left) NN prediction given only one GLENS run as training data. (Center) NN prediction given 3 GLENS runs as training data. (Right) GLENS simulation output for the same month.




FCNN NETWORK ARCHITECTURE
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WHY USE GRAPH CNNS?
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3-D graph representation of surface temperature error
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0 50 100 150 200 250 300 350

(left) Scatterplot of the original data. Map projection causes an over-emphasis on the polar regions.
(right) No over sampling at polar regions and edges are connected in the now spherical geometry.
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FCNN VS GCNN
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Model ALTMAX |ICEFRAC PRECT SNOWHLND TREFHT TSA

FCN 0.4611 0.1504 0.0012 0.1238 5.7008 21.7042

MAE GCNN 0.0341 0.0019 0.0010 0.0038 0.0707 0.0837
FCN/GCNN 13.5266 381.1539 1.2776 32.5978 30.6600 259.2910

FCN 0.0163 131.2807 0.6694 107.9613 0.0409 0.1306

MARE GCNN 0.0010 0.9655 0.4658 2.7821 0.0005 0.0005
FCN/GCNN 15.7740 135.9746 1.4370 38.8063 31.6119 2389.3921

FCN 15.3309 1.3128 0.0736 0.8411 29.4854 34.0491

MaxAE GCNN 0.6211 0.1658 0.0697 0.1883 1.7796 1.9909
FCN/GCNN 24.6842 79177 1.0545 4.4657 16.5684 42.2173

FCN 0.8522 485.1506 3.3429 427.6383 0.2321 0.6003

MaxARE GCNN 0.0347 86.1159 3.2700 126.1915 0.0171 0.0126
FCN/GCNN 24.5861 5.6337 1.0223 3.3888 13.5839 47.4587




INPUT VARIABLE IMPORTANCE

Ran through with each input variable
held out

t was unsurprisingly the most
influential (no other variable has a
relation to CO2 level for this test)

- Altitude was next most influential

« Month was a surprise though since
month is recoverable from

* AOD was not important for this test
(expected since this is just against the
control dataset)
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GCNN LAYER EVALUATION

There are dozens of graph convolutional
layers available in PytorchGeometric

Tested the 20 that were easily applied
Trained for 100 epochs
Results for the best 9

Metrics:
« Mean Absolute Error (MAE)

« Max Absolute Error (Max AE)

 Measured relative to minimum error (of
the layers tested)

Convolutional Layers
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
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LAYER TESTS - RELATIVE MEAN ABSOLUTE ERROR

MAE (Relative to min)
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LAYER TESTS - RELATIVE MAX ABSOLUTE ERROR

Max AE (Relative to min)
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RESULTS

TSA - ML prediction vs simulation ALTMAX - ML prediction vs simulation
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PREDICTION VS SIMULATION - DISTRIBUTION

TSA - ML prediction vs simulation (land only) \
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NOT EVERYTHING IS ROSES

ML Prediction

Precipitation
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FUTURE

Incorporate feedback runs (increased AOD P
from SAl) LG

- Reduce memorization required of model by
adding additional variables (e.g. CO2)

- Test autoregressive runs for proper output
distribution

- Resolve precipitation prediction (think it is
the scale - 5 orders of magnitude!)

Hmukticn
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QUESTIONS?

Kevin Pottetrkmpotte@sandia.go¢ML)
Lauren Wheeledwheele@sandia.go{Climate Intervention)
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DROPOUT-BASED FCNN ENABLES UNCERTAINTY QUANTIFICATION

Added dropout layers to the neural network (NN)

« Normal use - reduces overfitting

» Introduces stochasticity, forming an ensemble of predictions

ML prediction
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(Left) NN prediction for the difference in TSA between a control and feedback run for one month (January 2080). (Center) Uncalibrated
uncertainty estimates for NN prediction. (Right) NN error with respect to GLENS simulation data. The uncertainty qualitatively appears to

align with high error areas.
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Technical details:

Dropout layers deactivate subsets of NN nodes at
random (with probability 0.3 in our implementation).

During training, this is a typical regularization
technigue.

Keeping dropout layers active during inference
approximates a Gaussian process [1].

We make 48 predictions for each input datapoint,
generating an ensemble of predictions.

The standard deviation over the predictions serves
an estimate of uncertainty.

[11 Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning (pp. 1050-1059). PMLR.




