SAND2024-07296C

@ Sandia /

National
Laboratories

Exceptional service in the national interest

Automatic Performance Tuning for
Albany Land-Ice

Max Carlson', Jerry Watkins', Irina Tezaur?

1 Sandia National Laboratories, Livermore, CA, USA.

ESCO 2024, Pilsen, Czechia.
June 11, 2024

SAN D2024-072960 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-NA0003525. £

The Albany Code Base

Albany: open-source'! parallel C++ unstructured-grid multi-physics finite element
code built for rapid application development from Trilinos2 Agile Components

Ice Sheets

Computational Mechanics

« Albany-Land Ice is a model that evolved from

x m m /‘n;;phlyn-rrms
7,
7 Albany &)
! prototype to full-fledged production

Testing »| Implementation] SOftwa re

Distinguishing features of Albany:

« Desighed to facilitate prototyping of
scientific models and analysis tools

Analysis and
Quick Design

* Close collaboration with Trilinos developers
facilitates efforts to maintain Albany’s
scalability and portability

ESiINUY S

1 https://github.com/sandialabs/Albany
2 https://github.com/trilinos/Trilinos

https://github.com/sandialabs/Albany
https://github.com/trilinos/Trilinos

Motivation - Automated Performance Tuning

Problem Description

* Find a robust set of parameters for optimal performance and accuracy
« Often many runtime parameters to choose from (e.g. discretization, solver)

« Optimal parameters are not necessarily unique across architectures or problem inputs

* Optimal parameters can also shift in time due to code changes, algorithmic optimization, and
deployment on new compilers or architectures

Putting Automated Performance Tuning to Work
* We consider the production-level land-ice Msebreic
simulation software Albany Land-Ice (ALI) MG
« Effort is ongoing towards improving the Aebrac
o o tructure
performance portability of ALI for use on current MG
and next-gen computing platforms . . U d
. nstructure 1
* Current targets for performance improvements 0) AMG . .
include multigrid preconditioner with many run- A KR STRN T ®
: M U R N S
time parameters FRRIK GRS

MPAS-Albany Land lce (MALI)

What is MALI?

« U.S. DOE SciDAC-funded project land-ice
modeling project, FAnSSIE (Framework for
Antarctic System Science in E3SM, FY23-
FY27)

« Albany Land Ice is the velocity solver of MALI
(MPAS-Albany Land Ice), the land-ice
component of the U.S. DOE’s Energy
Exascale Earth System Model (E3SM)

« Portable performance is critical to target -
new and upcoming computing platforms such 7 RAPIDS / ttoss aithu.com/MALL Dew/ B35
as NERSC’s Perlmutter supercomputer

M. Hoffman, M. Perego, S. Price, W. Lipscomb, T. Zhang, D. Jacobsen, I. Tezaur, A. Salinger, R. Tuminaro, L. Bertagna, "MPAS-Albany Land Ice (MALI): A variable
resolution ice sheet model for Earth system modeling using Voronoi grid”, Geosci. Model Develop 11 3747-3780, 2018.

https://github.com/MALI-Dev/E3SM

ALI’s Multigrid Preconditioner

Problem: Ice sheet meshes are thin with high
aspect ratios

Solution: Matrix dependent semi-coarsening

algebraic multigrid (MDSC-AMG)’

» First, apply algebraic structured multigrid to
coarsen vertically

* Second, apply SA-AMG on single layer

Performance of multigrid preconditioners
depend on many run-time parameters

Run-time parameters:
* Number of levels in the multigrid hierarchy
» Types of smoothing algorithms at fine/coarse levels:
* Multi-threaded Gauss-Seidel
» Two-stage Gauss-Seidel
* Chebyshev
« Damped Block-Jacobi
* Smoother-specific parameters such as:
* Multi-threaded/Two-stage Gauss-Seidel:
* Number of sweeps
« Damping factor
 Damped Block-Jacobi:
* Number of sweeps
« Damping factor
* Chebyshev:
« FEigenvalue ratio

* Chebyshev expansion degree
* Maximum number of iterations

» Aggregation parameters
e ..and more!

Approach to Performance Tuning

Goal: We want to find the optimal parameters to minimize solve time of ALl

« Gradient is not available for this optimization problem, treated as blackbox optimization

* Naive methods for blackbox optimization: exhaustive/grid search and random search

« Bayesian search works by fitting a Gaussian model to performance data to allow for a
more directed approach to exploring parameter space

Grid Search Random Search

Offline vs Online Performance Tuning

Online tuning evaluates candidate parameters
on-the-fly during practical execution

Offline tuning evaluates candidate parameters
via trial execution and then optimal
parameters are used for practical execution

Approach to Performance Tuning (GPTune)

GPTune is an autotuning software library with a Python interface that relies on multitask
and transfer learning using Bayesian optimization methodologies for blackbox optimization.
Provides a reverse communication interface for Bayesian optimization

« Noninvasive, no instrumentation of Albany required
Supports transfer learning for leveraging available performance data to potentially lower
cost of future/larger tuning tasks

Sampling Phase Modeling and Search Phase

> me—l—lJ [fc+1} i Lka [fk}

3

https://github.com/gptune/GPTune

https://github.com/gptune/GPTune

Workflow Management: Automated Tuning

Tasks are assigned to running jobs on a computing cluster,
minimizing time jobs have to wait in queue

Problem:

* Asingle evaluation of the objective With a single Python script, we can ensure parallel efficiency
function requires solving a problem at for a variety of automated performance tuning tasks
scale with Albany Land-Ice

° Samples Of the performance model can ‘l # 1) get number of ffnction evaluat%ons

. 2 requested_num_evals = get_num_function_evals(...)
be evaluated n parallel Z: num_func_evals = requested_num_evals.result ()

* Need to take advantage of as much g e G GRS > O

=1

2) create function evaluation configuration files

computing power as is available

8 requested_eval_configs = get_function_eval_configs(...)
9
. . 10 # 3) do function evaluations
SOlUtlon. 11 function_evaluated = []
. 12 for k in range(num_func_evals):
* Using the Python workflow management 13 function evaluated.append (evaluate function(...))
: 11
tool Parsl, the tuning workflow can be . o
) 15 # 4) get function evaluations
automated with parallel efficiency in ol OTECiemmmtn S [
. 17 for k in range(num_func_evals):
m]nd 18 evaluation_results.append(get_evaluation_result(...))
19
20 # 5) write function evaluations to database
21 database_updated = update_database(...)
[22
" 23 # 6) get remaining number of function evaluations
| ar-s 24 requested_num_evals = get_num_function_evals(...)
25 num_func_evals = requested_num_evals.result ()

https://github.com/Parsl/parsl

https://github.com/Parsl/parsl

GPTune Pre-tuning Analysis

Total function evaluation budget refers to Extreme outliers can be found
the number of times ALl is allowed to run rarely with speedups up to 1.5x

during the tuning process
Total Function Evaluation Budget: 30

1.20 —— 1 T —
% —_ T B = 1.20
R = = T
1.101 ¢
" 1.181
S 2
3 1.051 =
] 3 T
1.001 g
% Q 1.16 1
@ 0.95 kS
0.90 . J 1.14 1 —
0.85 -
1.121 1
10 20 30 40 50 100 200 GPTune Random (LHS) Random (MCS)

Total Function Evaluation Budget

GPTune more reliably produces optimal

Good parameters can be found in
parameters over random search

relatively few runs of Albany

M. Carlson, J. Watkins, I. Tezaur. “Automatic performance tuning for MPAS-Albany Land Ice.” JCAM, 2023.

Tuning Case Overview

Cases:

 Tuned on a variety of typical land ice meshes:
* Antarctic Ice Sheet (AlS)
« Greenland Ice Sheet (GIS)
« Variety of mesh resolutions
« AIS: 2-10km resolution
* AIS: 4-20km resolution
* GIS: 1-10km resolution
* For 4-20km Antarctica mesh, tuned on a single node

and on 8 GPU nodes to see impacts of strong scaling

10

Chebyshev Smoother Tuning

Followup tuning after tuning on smoother choice
Tuning resulted in good speedup on top of the
speedup from smoother selection tuning

Optimal parameters resulted in best runtime AND
convergence

Optimal parameters for Antarctica meshes/setups

are largely the same

Linear Solve (seconds)

green-1-10km

4x 10

3x 10

2x 10!

T T T T T T T
3x10! 4x10! 6 x 101 102

Average Linear Iterations per Nonlinear Iteration

Case Name Preconditioner | Linear Solve | Total Solve Tuning
Construction Speedup

green-1-10km 15.76s 12.37s
ant-4-20km-1node 7.39s 5.71s
ant-4-20km-8node 4.19s 3.99s
ant-2-10km-2node 15.6s 17.69s

38.24s
18.13s
9.05s
43.9s

~23% speedup
~25% speedup
~36% speedup
~29% speedup

800

600

400

200

11

Lessons learned:

Chebyshev Smoother Tuning

Low polynomial degree should be used for
fine smoother and high polynomial degree
for coarsest smoother

Optimal parameters for polynomial degree
landed at the extremes of the search space
Number of levels in multigrid hierarchy has

huge impact on solve time and

convergence

Coefficient importance and variability

msl degree
msl_maxiters A
msl_eigratio
ms4_degree
ms4_maxiters
ms4_eigratio -
msE_degree
ms6&_maxiters
ms6_eigratio
repartition_start_level

repartition_mrpp T

repartition_trpp -

Coefficient importance

Hi

HIH

HIH

il

HIH

HH

oHH
HIH
HIH
HIH
HH

H

12

Block Jacobi Smoother Tuning

[mySmootherjacobiBlockTriDi] number of sweeps

Tuning offered very little speedup for this case

[mySmoother4] degree -

Linear solve times and convergence are better

[mySmoother4] eigenvalue ratio 1

[mySmoother6] degree

but preconditioner construction is bottleneck

[mySmootheré] eigenvalue ratio

Tuning data given to solver developers and

[repartition] min rows per proc

solution has been identified

[mySmootherjacobiBlockTriDi] damping factor

[mySmoother4] maximum iterations -

[mySmoother6] maximum iterations

[repartition] start level

[repartition] target rows per proc 1

Coefficient importance and variability

oo

_I

2 n
—ilH-

o

T
-1.0

T
-0.5

0.0

T
0.5

T T
1.0 1.5

Coefficient importance

Case Name Preconditioner | Linear Solve | Total Solve Tuning
Construction Speedup

green-1-10km
ant-4-20km-1node
ant-4-20km-8node
ant-2-10km-4node

32.2s 8.2s 50.35s ~1% speedup
13.72s 4.47s 23.16s ~1% speedup
5.53s 3.37s 9.99s ~1% speedup
18.47s 9.61s 33.59s ~2% speedup

large improvement over the all-Chebyshev case

Preconditioner construction time dominates total solve time but linear solve is a

13

Lessons Learned: ”

- Total solve time has a major bottleneck in =
preconditioner construction that tuning g 200
can’t solve :

* Solve time depends primarily on block- ”é 7
Jacobi fine smoother, less so on Chebyshev 1o-
coarse smoothers

« Tuning data is helpful to pass on to solver

Block Jacobi - Damping Factor

50 +

developers

70

green-1-10km

green-1-10km

65 1

s)
=]
o

e (second

v
o

=
o
]
©
k]
e

0.4

* e .o.‘...o.:o...o o % ;..: .u{ ;‘:.;..'

T
0.4

T T T T T
0.5 0.6 0.7 0.8 0.9
[mySmoother]acobiBlockTriDi] damping factor

T T T T
0.5 0.6 0.7 0.8

[mySmootherjacobiBlockTriDi] damping factor

Optimal damping factor is around 0.63

0.9

14

Looking ahead

Takeaways:

Future work:

Automated performance tuning is capable of producing
good multigrid parameters for a given problem in

relatively few runs of Albany Land-Ice 21
Bayesian optimization consistently produces better 2.05
parameters than random search but could be improved 5

1.95

1.9

Integrate with kokkos-tools to enable online tuning of
MALI due to ice sheet instabilities over time

Connect automated tuning framework with nightly
performance testing to run tuning tasks when

1.85

Wall-clock Time (s)

performance changepoints are detected 178

Oct 2021

Use transfer learning to leverage tuning results for
small problems (such as Greenland ice sheet) to reduce
cost of tuning large problems (such as Antarctica ice
sheet)

[l Date: 2021-11-06T00:00:00
Bl Albany commit: e14f44a
¥ X Trilinos commit: e15cf42
B Mean (99% Cl): 2.04 (2.02, 2.05)
il Ratio (99% CI): 1.15 (1.14, 1.16)

Dec 2021

Simulation Date

time
mean

-- upper
-- lower

15

