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| Overview

* GaN Schottky diodes have potential use in high-power and
fast-switching applications.

- Decrease perimeter leakage and hysteretic charging

effects with passivation processes.

*  10um MOCVD n-GaN (~1E16cm-3) on 110pm n+-GaN

substrate ~(1E18cm3)

* Anode diameters 250am, 500pm, 750pum to study

perimeter vs bulk leakage

* Repeat treatments of 5 min UV/O3 at 200C and 5 min in

49% HF around anode.

Table 1: Passivation treatments for wafers in this study. Average leakage current

density for 250pm devices and hysteresis voltage, V., for 750pm devices.

Passivation Treatment | ., at-100V (pnA/cm?) Vh s(V)

20min 50C downstream
plasma ash in O, atm

A-2 1x (UV/O3 +HF) + UV/03
B 3x (UV/03 +HF) + UV/03
C-1 3x (UV/03 +HF) + UV/03

C-2 5x (UV/O3 +HF) + UV/03
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Fig. 1: Process flow and cross-sectional view for Pd-GaN Schottky diode.



Results: Leakage Current
Reduction




I
. | Wafer A-1 & Wafer A-2 Post-Treatment Results m

Wafer A-1 Wafer A-2
1x (UV/O3 +HF) + UV/03

- Wafers A-1 and A-2 quarters from
same wafer

- Wafer A-2 shows improvement of
both FB and RB.

Table 2: Comparison of average values for all device sizes.
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Fig. 2: FB (top) and RB (bottom) |-V curves for wafer A-1 (left) & A-2 (right) (750um devices). I



| Wafer A-1 & A-2: Current Density at -100V vs Anode Size

Wafer A-1 Wafer A-2
50C Plasma Ash 1x (UV/03 +HF) + UV/03 - Wafer A-2 1 shows improvement by a
750um 750um factor of about 2 for 750um and 500um
: | 1 ' ' devices.
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Fig. 3: Box chart and histogram for J,.., at -100V for different anode sizes.
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|
Current Density for multiple UV/O3+HF treatments @q

Multiple repeats of UV/O3+HF reduces leakage further

Another 10x reduction in leakage in 250um devices with 3x repeats

Bimodal statistics observed in Wafer B 750um devices

More than 3x repeats does not improve performance further

Table 4: Locations of largest histogram peak for each device size.

_ Wafer | A1 | A2 | B ___c2 l
|

Passivation Plasma Ash 1x (UV/O3 +HF) 3x (UV/O3 +HF) 3x (UV/O3 +HF) 5x (UV/O3 +HF)
Treatment + UV/03 + UV/03 + UV/03 + UV/03
750um peak 126 56.2 178 3.16
(WA/Cm?)
500um peak 252 100 5.62 0.562 1
(LA/Ccm?)
250um peak 316 0.316 0.148 0.032 0.032

(WA/Cm?)



Results: Reduction of Charging
Effects




¢ 1| Hysteretic Charging Effect in Pd/GaN diode
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« FB & RB current increases after
certain RB voltage, V..

* Appears as parallel conduction
path

* |ncrease in current recovers
after hours

* If held at V,, early breakdown
occurs at device perimeter.

* Vjys is sensitive to surface
treatments.
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Fig. 4: (left) FB IV and (right) RB IV before and after hysteresis is triggered.

Fig. 5: Early breakdown when device is held at V..




s | Effect on Charge Trappings

Hysteresis Voltage by Wafer
600

* UV/O3+HF treatments increase V. L gy
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« (UV/03 + HF)+UV/O3 treatment has been shown to reduce RB leakage current density by
a factor of 1E4.

« Best results: 3x repeats of 5 min UV/03 at 200C and 5 min 49% HF follow by an
additional 5 min UV/03 at 200C.

« Eliminates perimeter leakage for some devices.

* Mitigates surface defect that causes current hysteresis and early breakdown -V,
increased from 130V to 519V.

« Possible Mechanisms:
= Passivating surface states through dense GaO growth
= Removal of surface contaminants

*  Future work:
= |dentify cause of large improvement in smaller devices
=  Modify UV/O3+HF treatment to further reduce reverse bias leakage

I
0 I Conclusions m
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Questions and Comments




