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| ROMP, FROMP. and PhotoROMP

ROMP: Ring Opening Metathesis Polymerization

@3 ROMP "

dicyclopentadiene (DCPD) pDCPD
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PhotoROMP
. . . . . R.A. Weitek , H.A. Atwater, R.H. Grubbs J. Am. Chem. Soc. 2013, 135,
ROMP: Ring Opening Metathesis Polymerization ae teairacany e rubns & Am. hem. 20¢
E— O. Eivgi, R.S. Phatake, N.B. Nechmad, N.G. Lemcoff, ACS Catal. 2020, 10,
. 2033-2038
(1) ==
dicyclopentadiene (DCPD) pDCPD

PhotoROMP: Photolatent polymerization utilizing ROMP
Printing with photoROMP

Leguizamon, S. C.; Cook, A. W.; Appelhans, L. N.* Chemistry
6/24/2024 of Materials 2021, 33 (24), 9677-9689.
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PhotoROMP

. D: . . . . R.A. Weitekamp, H.A. Atwater, R.H. Grubbs J. Am. Chem. Soc. 2013, 135,
ROMP: Ring Opening Metathesis Polymerization 45, 16817-16820

O. Eivgi, R.S. Phatake, N.B. Nechmad, N.G. Lemcoff, ACS Catal. 2020, 10,
2033-2038

ROMP Frontal ROMP
Mariani, A., Fiori, S., Chekanov, Y. & Pojman, J. A. Macromolecules 2001, 34,
6539-6541

dicyclopentadiene (DCPD) Robertson, I. D. et al. Nature 2018 557, 223
yclop ( pDCPD &
PhotoROMP: Photolatent polymerization utilizing ROMP FROMP: Frontal ring-opening metathesis polymerization
Printing with photoROMP FROMP of DCPD
-200
-150
-100

Temp (°C)

Leguizamon, S. C.; Cook, A. W.; Appelhans, L. N.* Chemistry
6/24/2024 of Materials 2021, 33 (24), 9677-9689.

videos courtesy Nancy Sottos
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m ROMP "

DCPD pDCPD

Frontal polymerization: A reaction-thermal

transport system

Important properties and
variables:

H.— heat of reaction

p — density

K — thermal conductivity
C, — specific heat

Transport Reaction E, — activation energy

( o — degree of cure
p KV?
51‘ T, — Max temp

V;— front velocity
(a')

Monomer E—) Polymer +

monomer
consumption

S

—=Aex
ot P RT

b

Frontal ROMP
Mariani, A., Fiori, S., Chekanoy, Y. & Pojman, J. A. Macromolecules
2001, 34, 6539-6541

Robertson, I. D. et al. Nature 2018 557, 223
FROMP of DCPD

< Ml
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videos courtesy Nancy Sottos
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Printing with FROMP

Printing with FROMP

-
E

2

]

—
2
T

Modulus (Pa)

[--c

G“
o Mw
o M,

400

100

10°
0

1 2 3

Incubation time (h)

600

500

300
200

Aw, J. E. et al. Advanced Materials Technologies, 2022, 202200230
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0 I Approaches to in situ Control

Closed Loop Process Control

Developing engineering approaches to facilitate
printing with FROMP

' DIW 3D Printing J

Printing Parameters
-~ Printing Speed (V)

— Height (H)

q - Extrusion Rate (A)
— Tip Diameter (D)

New optimized

Eﬂvninﬂ parameters Computer Vision

(cv)

Real-time Line
Measurement

EEE

Inverse Neural Network
(INN) Optimization

6/24/2024

Photocontrol of FROMP

Can we use photochemistry for in situ control of
front velocity and polymer composition?
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. I In situ Closed Loop Feedback Control £

Devin Roach, Edgar Mejia, Luke McDougall, Adam Cook

5x speed

[ DIW 3D Printing

Printing Parameters
— Printing Speed (V)

~ Height (H)
q — Extrusion Rate (A)
— Tip Diameter (D)
New optimized

E',.i\?inﬂ Parameters Computer Vision

(cv)

Real-time Line

Measurement

Inverse Neural Network
(INN) Optimization

Hiskie= Lapery _—

s ——
h v | Monitori
Xz 0 n
X m

<

“Invertible Neural Networks for Real-Time Control of Extrusion Additive Manufacturing” D.J. Roach*, A.
Rohskopf, W.D. Reinholtz, L.N. Appelhans, AW. Cook* 2023, Additive Manufacturing

6/24/2024
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Real-time front rate measurement and in-situ print
parameter optimization

Acquire Image Threshold Canny Edge Detection

—

* Begin printing

* Measure tip-to-front distance
* Wait for front to “catch up”

t=5s t=30s

DCPD:ENB [95:5] (10,000 Eq = 100ppm) — GC2
(1 Eq) — TBP (1 Eq) — Dye (0.5wt%)

Continue
printing of
object:

6/24/2024
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Real-time front rate measurement and in-situ print
parameter optimization

Acquire Image Threshold Canny Edge Detection

— -

* Begin printing

* Measure tip-to-front distance
* Wait for front to “catch up”

t=5s t = 30s d

Continue

printing of
object:
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14| Integrating Degradable Comonomers

Jeremiah Johnson, Yasmeen Alfaraj, Yuyan Wang (MIT), Jeffrey Moore (UIUC)

Cleavable co-monomer
% FROMP —
n
U [Ru], P( OBu)
« J Deconstruction

r \ ‘77.,/\OH . . .
X - Triggered deconstruction (either
”%1/\0’ 07N TBAF P fluoride or acid), leaving
HO™ handles for upcycling

Lloyd, E., et al. ACS Appl. Eng. Mater., 1, 1, 477-485, 2022

6/24/2024
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I In Situ Monitoring with Degradable and Regenerated A
Resins 1+ Generation

15

Average front speeds for three
generations of resins with 20 wt%
reclaimed oligomers.
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Closed Loop Process Control

Developing engineering approaches to facilitate
printing with FROMP

[ DIW 3D Printing J

Printing Parameters
— Printing Speed (V)

— Height (H)

q — Extrusion Rate (A)
— Tip Diameter (D)
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Photocontrol of FROMP

Can we use photochemistry for in situ control of
front velocity and polymer composition?

a) | Inhibit

|
Sease
NO, 0 _N{

NPPOC-TMG
A =365 nm

Accelerate

} N

o 7 [j .
oL~

(o] o

Camphorquinone EDAB

A=475nm _'




17| Approaches to FROMP Photocontrol

Catalyst-Based Photocontrol

Use photomasked additives that accelerate or decelerate FROMP through interaction with the catalysts

Photobase generator (PBG)

SIMes m oo N
SiMes I Cl | N ; oo |
R | 4 1 s \ HN .\
RI(ICWI 7 o H Rl= S i \]!T ﬁb i ~
- * 1 N
CI/ | Ph Cl , ‘o, [T . P
PCys hv | S . cO,

Amine binding %) Metallacyclobutane g
to Ru catalyst | = proton abstraction | —

Inactive catalyst Inactive catalyst %

B.J. Ireland, B.T. Dobigny, D.E Fogg ACS Catal. 2015, 5, 8, 4690-4698

J.A.M. Lummiss, B.J. Ireland, J.M. Sommers, D.E. Fogg ChemCatChem 2014,
6, 459 — 463
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A2=365nm A =475nm
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—\ —/\ I d catalyst
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or L‘ ca l EDAB S
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& <
O\H/NYN\ — \NJ\N/ —— Decomposed catalyst 0.0
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PN
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Leguizamon, S. C.*; Monk, N.T; Hochrein, M.T.; Zapien, E.M.; Yoon, A.; Foster, J.C.; Appelhans, L.N.*
Macromolecules, 2022, 55, 18, 8273
DOI: 10.1021/acs.macromol.2c01244

Foster, J.C.*; Cook, AW.; Monk, N.T.; Jones, B.H.; Appelhans, L.N.; Redline, E.M.; Leguizamon, S.C.*, Advanced
Science, 2022, 9, 2200770
DOI: 10.1002/advs.202200770
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Dan Darby, Sam Leguizamon (SNL), Andrew
Greenlee, Jeffrey Moore (UIUC)

Orthogonal Catalyst-Based Photocontrol

Inh|b|t
I

ﬁ/\

NPPOC-TMG
A =365 nm

Accelerate

aﬁzm

\amphorqulnone EDAB
A =470 nm

d10.43|220Yy

DCPD:ENB (95:5 wt), 150 ppm GC2/TBP
8 eq NPPOC-TMG, 0.5 wt% CQ 1 wt% EDAB
0.5 wt% thermochromic dye
365 nm, ~200 mW/cm?, 470 nm, ~250 mW/cm?

6/24/2024
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Photobase with in situ irradiation

DCPD:ENB (95:5 wt)

10 equiv NPPOC-TMG:GC2
180 mW/cm?, 365 nm

in situ irradiation

0.1 wt% thermochromic dye

31(05|;1e;d 0 1 0 20 30 40 50
t(s)

6/24/2024



I Catalyst-based Photocontrol

a)s504 -
Photobase with pre-irradiation
40- o
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E
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180s pre-irradiation o 0eq o 0120 s|,
0 i 1l © 6 eq o i 1|2 180s : i
0.1 wt% thermochromic dye 40 o 8 eq 0 40 0 240s
= 10eq| o° —
£ 30| ° o - £30- ¢
g 012 eqono E, n} !
x 207 OeReB/B ., | <207 % & 24
104 & . - 10 - $ .
3x speed 0 +E " 240's preirradiation].
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6/24/2024 t (S ) €q PBG
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Photosensitizer with in situ irradiation

DCPD:ENB (95:5 wt)

8 equiv NPPOC-TMG:GC2

¥ 0.5 wt% CQ 1 wt% EDAB 20C
mW/cm?2, 470 nm

in situ irradiation

0.1 wt% thermochromic dye

3x speed
10 mm

6/24/2024



23 I Catalyst-based Photocontrol

Patterning Embedded Objects
3x speed - 3x speed

DCPD (10,000 eq.) / GC2 (1 eq.) / TBP (1 eq.) / NPPOC-TMG (8 eq.) w/ 3 min
pre-irradiation at 30 mW cm™

DCPD (10,000 eq.) / GC2 (1 eq.) /
TBP (1 eq.) / NPPOC-TMG (8 eq.)
w/3 min pre-irradiation at 30 mW cm-?

6/24/.
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DCPD (10,000 eq.)

GC2 (1 eq.)/TBP (1 eq.)
NPPOC-TMG (8 eq.)

3 min pre-irradiation at 30
mW cm~

3x speed

6/24/2024
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Dan Darby, Sam Leguizamon (SNL), Andrew
Greenlee, Jeffrey Moore (UIUC)

Orthogonal Catalyst-Based Photocontrol

Inh|b|t
I

ﬁ/\

NPPOC-TMG
A =365 nm

Accelerate

aﬁzm

\amphorqulnone EDAB
A =470 nm

d10.43|220Yy

DCPD:ENB (95:5 wt), 150 ppm GC2/TBP
8 eq NPPOC-TMG, 0.5 wt% CQ 1 wt% EDAB
0.5 wt% thermochromic dye
365 nm, ~200 mW/cm?, 470 nm, ~250 mW/cm?

6/24/2024
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ROMP-active
|
energy

release ,?” s

CrL e

Integrated Photocontrol + Process Control 7 N\
. i
Add automated photocontrol Monomer Based Photocontrol I

e Add start/stop control
e Automate FROMP restart collaboration with Kasper Moth-Poulsen
« Improve “depth perception” Polytechnic University of Catalunya



8| Solid-state PhotoROMP

MSRF LDRD #23-0034: Sam Leguizamon and Matthew Hausladen

DCPD is not only a solid at RT, but a plastic crystal, allowing for
photopolymerization in the solid-state
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F o
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gl Summary

Catalyst Based Photocontrol of FROMP

Inhibitor

vt

NPPOC-TMG
A =365nm

Photosensitizer
/ and co-Initiator \

'\gamphnrquinona EDAB J
A =470 nm

Solid State Printing with PhotoROMP

Ordered Crystal ?‘?“?4? ---@@g ~ Plastic Crystal

Rotational order Q QQQ @'@@@ Rotational freedom
and F ’r and
Translational order QQQQ --k@@ﬂh Translational order

Closed Loop Autonomous Process Control
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|
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no, O N~ Co, No, N<

NPPOC-TMG

Z—

2

365 nm light liberates TMG
from NPPOC-TMG

dlI] ~ 2.303ep[1]I,2
dt  Nyyhc

[I] = concentration of PBG
t =time

I, = light intensity

A = wavelength of light

e¢p = photolytic efficiency

Zhang, X.; Xi, W.; Gao, G.; Wang, X.; Stansbury, J. W.;
Bowman, C. N. ACS Macro Lett 2018, 7 (7), 852-857

~N

Pre1dilctedl NPPOC-TMG release

—30 mW/cm?
0.3 —60 mW/cm? ||
Q —120 mW/cm?
— 180 mW/cm
™ 0.4 - —240 mW/cm?|}
&
— 0.2 :

0
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Catalyst-based Photocontrol

365 nm, 30 mW/cm?, c) 1.3 mm thick
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