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Why LDE QDs? it

Big picture: realizing efficient emitters of non-classical states of light

'\

Key ingredient for photonic quantum applications

Quantum Dot

Rendition of an SPE

Solid-state SPEs — combine optical properties of atoms with scalability

Conduction
Band

Semiconductor QDs have exhibited the best photon metrics
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Gap’

Valence
Bend

Energy levels: bulk vs QD
APS physics (2020); Medium (2019)



Why LDE QDs?

NOT a strain-driven mechanism — unlike state-of-the-art SK QDs

LDE
Opens up material combinations = emission A

Variation of droplet epitaxy

Improved quality

Energy Gap (eV)

Demonstrated excellent optical properties

Low FSS

Lattice Constant (A)

Short lifetimes

Lattice constant vs bandgap

Indistinguishability



Growth process /| mechanism

Al, Ga, In droplet
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Nanovoid formation

Migration-enhanced GaAs

QD growth

LDE growth mechanism 6



Structural characterization

Structure

AFM profile of nanovoid

140 nm membrane
(QDs at the center — 70nm)

300 nm buffer
+

substrate

AFM profile of filled void (QD)
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Optical characterization

PL imaging - 15 dots in ~ 20 x 20 um
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Optical characterization

Typical peak assignments
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Integration of LDE QDs

pump = 86 W/cm?’
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Metasurface illustration & PL spectra (& imaging) Autocorrelation function

GaAs/AlGaAs LDE QDs embedded in a Huygens’ metasurface

1 order of magnitude increase in the collection efficiency and emission lifetime control

Anti-bunching dip observed at t=0

Iyer, ..., Addamane et al., Nano Lett. (2024) 10



Challenges

[
H

fay
N

=t
o

(2]

S
v
E
<
B
=
=
©
]
o
c
S
]
=

()]

@
Q
=
5
Z
o
o

Metasurface Transmission

Il Total
Metasurface
Slab

700 720 740 760 780 800 4”
Wavelength (nm)

Metasurface illustration & PL spectra (& imaging) Wafer Map

Distribution in emission A and linewidth

Mean Peak Center (eV)

Varying QD size, shape density




Other oddities - “bright” QDs

PL, Ex: 0.2 mA
VB1590wafer focused 515nm
VB1590QD41 30sec

— — 1mA, 600 g/mm
——0.2mA, 600 g/mm
——0.2mA. 1200 g/mm
—— 1200 g/mm (2)

PL image
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PL spectrum & map

Certain growth conditions yield bright QDs that are enclosed in “rings”
Spectrum measurement shows 10x brighter emission compared to other QDs

Bright QDs have a carrier-funneling structure around caused by the rings.
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“Bright” QDs

 GaAs
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Metallic grid to locate QDs Layer structure
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X-sectional TEM
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AFM profile 13



Conclusions
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Questions? i

Ga-As component image
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