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Abstract—Co-design is a prominent topic presently in com-
puting, speaking to the mutual benefit of coordinating design
choices of several layers in the technology stack. For example,
this may be designing algorithms that can most efficiently take
advantage of the acceleration properties of a given architecture
while simultaneously designing the hardware to support the
structural needs of a class of computation. The implications
of these design decisions are influential enough to be deemed a
lottery, enabling an idea to win out over others irrespective of
the individual merits.

In this paper, we examine such research interactions through
the lens of game theory. Our hope is that game theoretic analysis
can provide greater insight into the decisions of neuromorphic
co-design researchers and provide a formal argument that
collaboration can be worth the cost. In particular, we consider
the interplay between algorithm and architecture advances. The
Colonel Blotto game is used to model and analyze different
computing architectures, and the Stag Hunt model is used to
analyze developments of spiking neural network algorithms and
neuromorphic hardware as a co-design game. Our analysis
illustrates challenges for either spiking algorithms or spiking
architectures to advance the field independently. Instead, we find
that cooperation can provide a much needed strategic advantage.

Index Terms—Neuromorphic computing, game theory, co-
design, strategic analysis, Blotto game, Stag Hunt

I. INTRODUCTION

The field of computing has seen great advances from
algorithms and architectures down to materials and devices
over decades of innovation and optimization [1, 2]. With an
eye towards even more sophisticated performance, co-design is
readily being considered across the technology stack. The
sentiment being that further advances can be achieved by
considering multiple, interrelated design facets simultaneously.
In this manner, by designing features and functionality jointly,
the combined outcome will be greater than pursuing individual
optimizations. For example, this may be algorithms which can
most efficiently take advantage of the acceleration properties
of a given architecture or vise versa tailoring architectural
optimizations to more efficiently execute facets of classes of
algorithms of interest.

Even in the absence of explicit co-design, historical advance-
ments have not been in isolation but intrinsically have been
iterative design progressions. For example, the identification of
important instructions to enable (whether in explicit hardware
support, instruction representation, or other means) is defined

by the algorithms the instructions represent. Analogously,
letters of the alphabet have unique usage distributions in
relationship to vocabulary. The field of information theory
quantifies and exploits this principle for efficient encoding, but
requires a language model to indicate how letters are frequently
composed as words (the distributions) to then create an efficient
encoding. Likewise, the operations which compose algorithms
of interest can guide the optimization of computational designs
both in terms of the definition of the instruction set as well
as in designing hardware to efficiently execute important
computations.

The entanglement of computational design choices spans the
history of computing and in fact, as identified by the ‘Hardware
Lottery’ impacts the perceived superiority of ideas over
alternatives [3]. Namely, the Hardware Lottery study showcases
how one algorithm may be deemed superior to another due to
enabling hardware rather than the superiority of the algorithm
itself (with a software lottery also impacting idea comparisons).
And notably, an illustrative exemplar in Hooker’s historical
narrative is how neural networks rose to prominence with the
enablement of Graphic Processing Unit (GPU) acceleration
even though algorithmic underpinnings like backpropagation
were around earlier. We consider computational co-design to be
more than a lottery—a game. The field of game theory is the
mathematical analysis of strategy. Accordingly, it offers many
formulations for analyzing player interactions where decisions
are interdependent. In an optimization problem, the goal is to
determine the parameter values which maximize or minimize
an objective. In game theory this optimization is dependent
upon the decisions of more than one player as depicted by
Figure 1. Accordingly, we see it as well suited for considering
the joint decision making of the co-design of computational
algorithms and architectures.

In particular, we consider the field of neuromorphic comput-
ing. Novel algorithm formulations are actively being pursued
across a range of applications seeking to find more efficient
ways to perform computations using neurons as the core com-
putational element [4, 5, 6]. And likewise, novel computational
architectures are considering how to best structure processing
elements, communication, and memory while looking to
biological brains for inspiration [7, 8, 9, 10]. We note other
facets of the technology stack are also readily exploring
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Fig. 1. Conceptual portrayal of a joint decision scenario where two decision makers combine forces to take upon an opponent. In a) the outcome depends
upon the force allocations of two military leaders at the battle sites in the middle. A coordinated effort entails the decision makers work together to maximize
their effort. Analogously, b) extends this scenario to consider the strategic co-design in computing. In this manner rather than military leaders allocating forces,
how algorithms and architectures are designed influence their performance on computational workloads.

neuromorphic computing advances such as how to utilize
novel materials to develop efficient devices for composing
neuromorphic architectures. For our work here, we are focusing
upon the neuromorphic co-design of algorithms and architec-
tures. In doing so, we strive to understand implications for the
neuromorphic field. Since GPUs have shown immense promise
for neural networks, should neuromorphic computing follow
that approach? Do we need known spiking neural algorithms
whose theoretical promise can justify architectural instantiation?
Or can novel architectures precede algorithmic theory and spur
innovation? Can the latter be pursued without skewing the
path forwards given the known Hardware Lottery effect? As
follows, we seek to explore the implications of neuromorphic
co-design through a game theoretic modeling and analysis.
First we provide a brief background of how the field of game
theory represents some related scenarios, next we consider
computing architecture strategies broadly as a Blotto game,
then we present neuromorphic co-design via the lens of the
Stag Hunt game and analyze scenarios to offer insight into the
implications for the neuromorphic field.

II. BACKGROUND

The mathematics of game theory are applicable for examin-
ing a wide range of strategic interactions [11]. This includes
competitive as well as cooperative interactions, and can range
from individual to population level models. Additionally, there
are multiple solution concepts which equate to providing a
strategy, identifying the best actions to take for the problem
[12, 13, 14, 15].

Accordingly, there are many ways in which game theory can
offer insight to an interaction depending upon the problem for-
mulation. For example, with respect to technology development,
in a competitive scenario there are Research and Development
(R&D) models in which one corporation may want to beat
out a competitor and secure the market share [14]. In this
manner the problem formulation has a temporal component
of making a research investment in the aspiration to secure

a profit in the future and justifying the research cost. An
example application might be a pharmaceutical investment
where winning a patent gives the prevailing corporation an
advantage and their advantage comes at the expense of the
opposing corporations.

Population level and evolutionary game models can examine
strategic interactions in a broader context. This level analysis
can bring insight into how individual decisions can impact the
whole. For example, Braees’s paradox illustrates that how
infrastructure improvements can lead to decreased system
functionality [13]. In this sense, the impact of technology
development may require a broader view to comprehend the
true impact. And evolutionary game theory explores concepts
such as whether a new strategy can be introduced into an
existing population or will be pushed out. Perspectives such as
this may readily offer insight into what conditions are necessary
for new technology success.

Cooperative games model interactions where instead of
players succeeding at the expense of the opponent, outcomes
are the consequence of coordinated actions. As touched upon
there are several manners in which game theoretic analysis can
offer insight into facets of the development of neuromorphic
computing. For the purpose of examining co-design, we will
consider a cooperative game theory model here as described
next.

III. MODELING AND ANALYSIS

A. Neuromorphic Architecture Resource Allocation Analysis

In 1921 Borel introduced Colonel Blotto, a zero-sum resource
allocation game first introduced [16, 17]. In simplest form, two
players allocate resources to a finite set of battlefields, and
whichever player assigns more units to the location wins the
battle. A majority of battles won determines the overarching
winner. Figure 1a) depicts this nominal setup. While the concept
is simple, the framework is applicable to a variety of application
domains such as how a corporation invests research dollars, how



politicians focus their campaign outreach, sports and military
strategies, and more. Furthermore, the game complexity may be
increased along many dimensions. This includes the number of
battlefields, asymmetries in player resources and information
players have about opponents, as well as repeated play or
multi-player variants.

Here, we utilize the Blotto framework to compare different
computing architectures. In this conceptualization, consider
battlefields as computations or workloads and the players are
different computational architectures. The resource allocation
corresponds to how much an architecture emphasizes or tailors
the execution of that workload. This high level of abstraction
allows us to consider how different architectural approaches
compare. Figure 2 illustrates a formulation comparing CPUs
and GPUs. At large, CPUs are general purpose processors and
effectively employ the strategy of evenly allocating resources
to all workloads (denoted by an even number of processors at
each workload location in the figure). Alternatively, GPUs offer
specialized performance for particular workloads (denoted by
a heavy allocation of processors to limited workload locations).
In the context of unweighted battlefields where all workloads
are equal, as shown in a), the CPU’s breadth slightly beats
the GPU’s specialization, three wins to two. However, when
certain computational workloads are favored for reasons such
as relevance in desirable applications, or economic impact, the
outcome can shift. Figure 2 b) illustrates an exemplar weighted
battlefield scenario in which the weight of the battle is denoted
within the computer monitors. Although the outcomes of the
individual battles remain the same, the alignment of the GPU
specialization with higher value workloads shifts the weighted
total in the GPU’s favor.

Next we extend this formulation to consider neuromorphic
processors (denoted NPU). While neuromorphic architectures
are an active research investigation, here we consider the
implications of NPU being similar to a GPU, tailored to some
computations more than others, rather than the general approach
of a CPU. In this manner, compared with a CPU the NPU can
show the same strategic outcome as a GPU in the weighted
workload context as shown in Figure 3 a).

However, in competing with a GPU the NPU can be
shown to under perform as captured by Figure 3 b). These
are only notional architectural abstractions for the sake of
argument, but importantly identify implications for strategic
architecture design considerations. In this manner, the Blotto
Game illustrates the challenge underdogs face in pursuing a
similar strategy to a strong opponent. As noted earlier, the
Hardware Lottery concept brings awareness to the notion that
some algorithms are better suited for certain architectures than
others. So rather than pursuing that same algorithms which
may have emerged due to the advantages another architecture
offers, it is important to consider the right algorithm for the
right architectures. For example, prevalent deep neural network
algorithms which GPUs execute well likely are not the best
strategic pursuit for NPUs. Rather, the Colonel Blotto game
encourages neuromorphic computing to identify algorithms it
is strategically suited for.

Fig. 2. Colonel Blotto scenario comparing CPU and GPU architectures for
executing computational workloads. The number of processors present at
a workload (gap between monitors) corresponds to the strategic resource
allocation. For this exemplar a majority wins the battle. a) depicts unweighted
(or uniformly weighted) battlefields. b) weights some workloads over others
shifting the outcome to favor GPU due to advantageous specialization of
higher value computations

B. Neuromorphic Co-Design Analysis

Here we consider equilibrium analysis to offer insight
into the implications for neuromorphic computing co-design.
Equilibrium analysis indicates what strategies players cannot
improve upon without changes to the game structure or an
opponent’s strategy.

For our modeling and analysis we examine neuromorphic
computing co-design as a Stag Hunt game. The dynamics
captured by a Stag Hunt game represent the scenario where
two hunters can team up to bring in the higher-value stag,



Fig. 3. Extending the Blotto Computing Game to consider a NPU versus
a CPU as well as GPU. Employing a different computational specialization,
analogous pairwise outcomes may be demonstrated. Although the NPU can
exploit the higher value workloads when paired with the CPU, just as the
GPU does, it likewise loses to the GPU by employing a weaker version of
the GPUs strategic allocation.

or independently can secure a less rewarding hare [14, 18].
Attaining the higher reward is dependent upon the coordination
of the two hunters/players. The general representation of a
Stag Hunt game is captured by the payoff matrix shown in
Table I. In this context, two players X and Y are represented
by the rows and columns respectively. Each sub row or column
corresponds to the actions the respective player takes. And
the intersection of actions within the table provides the utility
value each player receives as a result of that joint outcome. In
this case, the players select their actions simultaneously, and a
strategy is a policy which dictates the selection of an action

to take (for example a distribution over the actions).
The core structure of the payoff values in a Stag Hunt

game is such that a > b ≥ d > c. Subtle scenarios within
this general structure exist such as whether the reward for
pursuing a Hare is shared when both players select that action
as compared with receiving the full reward under the miss-
aligned action selection scenarios. Preserving the nominal
relationship between these reward values impacts the dynamics
of the interaction and differentiates this from other games [19].
And in fact, other game structures may also model facets
of co-design. However, here we focus upon the insights the
Stag Hunt game provides for the co-design challenge facing
neuromorphic computing as the field seeks to advance spiking
neural algorithms and neuromorphic hardware. To this effect,
Table II illustrates exemplar utility values for considering
Neuromorphic Co-Design as a Stag Hunt game which we
will examine shortly. Notably, the Stag reward (SNN-SNN
action pair) has the highest payoff for both players but depends
upon the action selected by the other player. Alternatively, Hare
(ANN) has a lower payoff but can be attained independently.
This problem representation is not stating that ANN efforts
are not high value, but is intentionally modeling the potential
transformative reward that advancing neuromorphic computing
can have. These game dynamics create payoff dominant and
risk dominant pure strategy Nash equilibria for each respective
action pairing. Additionally, the Stag Hunt game also has a
mixed strategy equilibria, where rather than playing either
action exclusively, the players play each part of the time. The
mixed strategy equilibria solution depends upon the payoff
utility ratios and will be the focus of our ensuing analysis
momentarily.

The Stag Hunt game itself has been well studied and our
analysis is not novel with respect to the game dynamics.
However, here, we use the insights regarding these solutions to
inform the implications of neuromorphic computing co-design
decisions. In this context, rather than pursuing a Stag or a Hare,
the action choices become whether hardware and software
designers pursue spiking neural network (SNN) architectures
and algorithms respectively. For this problem formulation,
we contrast the pursuit of SNNs with conventional Artificial
Neural Networks (ANNs). In this manner, ANNs are intended
to broadly represent the general taxonomy of deep learning
inspired neural networks with less biological fidelity such as
convolutional neural networks (CNNs), deep neural networks
(DNNs), etc. Our intention here is not to prescribe how
much neural-inspired functionality is needed either in terms
of algorithms or architectures but to examine the implications
as that design consideration underlies the development of
novel algorithms and architectures. In this problem formulation,
a player is paired with the complementary player type to
model co-design decision making - depicted by Table II. Note,
additional model complexity can allow for the payoff values
between the player types to be asymmetric. Alternative game
formulations may represent like player types such as two
spiking algorithm players whose strategic interaction outcome
models some facet of their efficiency in computation. Rather



TABLE I
STAG HUNT PAYOFF MATRIX STRUCTURE

Player Y
Stag Hare

Player X Stag (a, a) (c, b)

Hare (b, c) (d, d)

TABLE II
NEUROMORPHIC CO-DESIGN GAME

Algorithm Player (P2)
SNN ANN

Architecture Player (P1) SNN (5, 5) (1, 3)

ANN (3, 1) (2, 2)

than representing neuromorphic co-design, that sort of game
formulation might be applied to explore the selection of a
solution for a particular target architecture.

Next we explore a few implications from a co-design
perspective for neuromorphic computing. The exact values
themselves are not intended to capture nuances such as R&D
costs or market value. But rather, by considering their relative
relationships we can analyze the implications for the influence
architectural advances have on algorithm development and vice
versa.

1) Co-Design Mixed Strategy Dilemma: Beginning with the
utilities represented in Table II, this captures the context where
architecture and algorithm players can both prosper if they each
pursue SNN advances together. Conversely, they can also do
reasonably well under the ANN-ANN action pair. This is not to
say the joint pursuit of ANN technologies is not advantageous
as many exciting research advances have illustrated that very
scenario. But rather, we are considering the implications of
novel alternative SNN research and innovation. In this regard,
the ANN action scenario represents if either player is to pursue
the more known outcome of ANN pursuits. For example if the
algorithm player were to pursue a breakthrough in DNNs or
conversely if the architecture player were to design hardware
to more efficiently execute DNNs. Under this co-design game
scenario, however, that outcome has a lower utility value as it
deviates from the pursuit of innovative SNN research (and to
conform to the structure of the Stag Hunt game).

In addition to the pure strategy solutions where each
player is fully committed to their research pursuit (SNNs
or ANNs), a mixed-strategy equilibria solution also exists.
Various analytic techniques can provide the solutions to
games, and their in-depth description are beyond the scope
of this paper. For the Stag Hunt game, a simple equation
identifying the mixed equilibrium distribution is as follows.
If Player2 plays SNN with probability x and ANN with
probability 1− x, then Player1’s best strategy is when they
are indifferent to changing their action distribution. This
occurs under the following equation (and for symmetric utility
values is equivalent for Player2):

SNN(x) = ANN(x)

ax+ (1− x)c = bx+ (1− x)d

ax+ c− cx = bx+ d− dx

ax− bx− cx+ dx = d− c

x(a− b− c+ d) = d− c

x =
d− c

a− b− c+ d

For the base scenario (Table II), this equates to a mixed
strategy equilibria where both player’s action distributions are
0.333 SNN and 0.667 ANN . While the promise of SNN may
be large, this illustrates the perhaps unexpected scenario that the
majority action is to pursue the more well known and less risky
ANN action. Given the technical maturity of SNN and ANN
technologies one could argue that their respective modeling as
Stags or Hares should be switched, in which case this analysis
would correspondingly imply the alternative solution and SNNs
would be the majority research pursuit. However, for the co-
design scenario here, this modeling and analysis formulation is
exploring the implications for co-design dynamics to advance
SNNs. And importantly, this illustrates why even if the reward
is promising that independent endeavours may not be enough
to advance neuromorphic computing.

2) Increasing SNN Value: Here we analyze the scenario
where the reward payoff for SNN increases in order to
consider the implication if either the development of an
efficient (low power, large scale, fast) neuromorphic architecture
emerges and/or the development of an algorithmic breakthrough
to produce spiking algorithms in the manner backpropagation
has done for ANNs. Can the promise of either breakthrough
instigate research in the other domain? In this regard, we
imagine the a utility value increasing substantially.

Counterintuitively, rather than driving the players to pursue
the large reward of the SNN action, this actually reduces the
mixed strategy distribution so that SNN is rarely played. For
example, as shown in Figure 4, if a 10x increase in reward
were considered and all other utilities remain the same (i.e.
a = 50), the resulting action distribution becomes 0.0208
SNN and 0.979 ANN . Likewise, for a 100x increase in
reward and all other utilities remain the same (a = 500),
the resulting action distribution becomes 0.002 SNN and
0.998 ANN . Effectively, rather than driving innovation in
SNN research the game dynamics converge toward entirely
pursuing ANN . And so simply producing a breakthrough
neuromorphic architecture is not enough to usher forwards the
pursuit of spiking algorithms or for an algorithm innovation to
drive novel neuromorphic architectures. This counterintuitive
outcome is a challenge of collaboration. Even though the
SNN−SNN outcome is substantially larger it introduces risk
as the outcome depends upon the joint action of the opposing
player. Whereas instead the ANN pursuit can be achieved
individually, independent of the other player. In the context here,
the cooperative challenge becomes innovative SNN algorithms
needing a neuromorphic architecture to execute their advantage
or reciprocally a neuromorphic architecture needing a SNN
algorithm to make sure of the innovative hardware.



Fig. 4. Mixed strategy solution trends for SNN action selection for the
‘Increasing SNN Value’ scenario

3) Compromise between SNN & ANN : To model a
compromise where the ANN value approaches that of SNN ,
we explore increasing the b utility towards a. In this regard,
rather than seeking to advance SNN research the compromise
is to support the known ANNs while still wanting to pursue
SNNs. For example, an architecture may factor design choices
such as matrix multiplication to align with supporting ANN
calculations as well as appeal towards SNN principles like
sparsity or event driven operation. To examine these dynamics,
we first raise the a utility value so that b has room to increase
while maintaining the Stag Hunt structure defined earlier.
Consider the following set of utilities: a = 10, c = 1,
d = 2, and b = 3 : 9. As b increases, so does the mixed
strategy selection of action SNN . In this exemplar range, as
shown by Figure 5, the respective SNN strategies are: 0.125,
0.143, 0.167, 0.200, 0.250, 0.333, and 0.500. Note the above
outcomes also represent increasing d, and c in alignment with b.
Intuitively, for our scenario this makes sense as d corresponds
to both players pursuing ANN advances and b is one player
doing so unilaterally.

Due to the structure of the game (the relationship of the
utility rewards and their relative values), when additionally a
risk dominance ratio is met, it prevents the SNN strategy from
exceeding 0.5 [20] effectively capping a drive to pursue SNN
over the allure of the known ANN outcome. Intuitively we
can see this as SNNs and ANNs converging in performance.
Formally. a risk dominant ratio is the product of the deviation
losses and calculates the impact of miss-aligned actions for a
given strategy. In other words, how much risk of lost reward is
there if the opposing player does not play the expected action.
Effectively, this dynamic of the game structure bounds how
much risk the player’s strategy employs.

IV. CONCLUSIONS

A common computer science analysis technique is to map
one problem to another for which properties such as complexity
are known. By doing so, the computational difficult of the
algorithm being evaluated can be established. Likewise, in

Fig. 5. Mixed strategy solution trends for SNN action selection for the
‘Compromise SNN & ANN’ scenario

game theory there is value in formulating a problem as
it relates to a known game structure. The value is not in
discovering unknown solutions, but rather this offers insights
based upon the analysis of the dynamics of well known
games for the problem under consideration. We have done
so here, considering the insights the Stag Hunt game offers for
considering the challenges of cooperation in the co-design of
neuromorphic computing. This first step in bringing awareness
to the concept of neuromorphic computing development as
a co-design game offers insight into why some of the best
intentioned individual technical advances may not have the
impact they desire. This perspective also offers understanding
into why some of the results we can reflect back upon may
have occurred. For example, analysis has shown that simply
mapping ANNs/DNNs to spiking neuromorphic architectures
may not be the most advantageous algorithm to architecture
mapping [21, 22], however there is certainly an allure to do
so (as our co-design analysis shows). Of course, that is not to
say neural networks should not be pursued for neuromorphic
hardware. However, the ANN algorithms which have emerged
due to other hardware like GPUs, do not exploit the advantages
of neuromoprhic hardware. Considering computer architecture
design from a Colonel Blotto game perspective also illustrates
this shortcoming. And rather, some benchmarking efforts are
showing greater promise with novel SNN algorithms that
align with the emerging neuromorphic architectures. This
includes factors like exploiting preserved state, recurrence,
and sparsity in activation as well as connectivity, but requires
novel algorithm developments.

While here we have considered neuromorphic computing,
similar sentiments may be applied to the broader co-design of
algorithm and architecture pairing. The counterintutive notion
that great potential alone is not sufficient to stabilize co-design
collaboration emphasizes the need for intentional joint action.
Otherwise the less strategic approach of unilateral effort is
more of a lottery where independent advances may be possible
and impactful, but are subject to chance. Take for example,
the recent efforts to develop architectures specialized for DNN



execution. A common approach is also a common pitfall;
hardware developers identify key operations of current DNN
algorithms. Doing so not only offers a concrete set of operations
to design to, but also speaks to an example algorithm workload
of interest. However, with ensuing algorithmic developments,
which the architecture may not support, this independent and
incongruent development is analogous to going for the Hare
in the Stag Hunt game. The known algorithm the architecture
pursued is compelling, but given the time required to develop
an architecture a more appealing algorithm may emerge. For
example, the transformer neural network algorithm underlying
modern Large Language Models (LLMs) as well as Vision
Transformer (ViT) models tax architectures in ways differently
than CNNs. Effectively, the best architectures for accelerating
CNNs may be the pursuit of a Hare compared to the Stag like
reward of being able to efficiently execute transformers and
the next neural network breakthrough.

By examining the co-design of neuromorphic computing
from a game theoretic perspective, we encourage a strategic
approach where algorithms and architectures are advanced
in support of one another in order to provide better odds
of winning the computing lottery and advancing the field of
neuromorphic computing.
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