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• Monolithic (Lagrange multipliers)
• Partitioned (loose) coupling
• Iterative (Schwarz, optimization)
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2 Motivation: multi-scale & multi-physics coupling

• PDEs, ODEs
• Nonlocal integral 
• Classical DFT 
• Atomistic, …

There exist established rigorous mathematical theories for 
coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).

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Traditional + Data-Driven Methods

• PINNs
• Neural ODEs
• Projection-based ROMs, …

There exist established rigorous mathematical theories for 
coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).


Unfortunately, existing algorithmic and software infrastructures are ill-equipped 
to handle plug-and-play integration of non-traditional, data-driven models!



• Alternating Schwarz-based coupling
• Optimization-based coupling
• Coupling via generalized mortar methods

4

Principal research objective: 
• Discover mathematical principles guiding the assembly of standard and data-driven numerical 

models in stable, accurate and physically consistent ways.

Principal research goals:
• “Mix-and-match” standard and data-driven models from three-classes

ØClass A: projection-based reduced order models (ROMs)
ØClass B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
ØClass C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

• Ensure well-posedness & physical consistency of  
resulting heterogeneous models.

• Solve such heterogeneous models efficiently.

Three coupling methods:

Flexible Heterogeneous Numerical Methods (fHNM) Project

This talk.

This talk.



5 Outline

• The Schwarz Alternating Method for Domain 
Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

Ø 2D Burgers Equation

Ø 2D Shallow Water Equations

Ø Teaser: 2D Euler Equations Riemann Problem

• Summary & Future Work

*Full-Order Model.  #Reduced Order Model.
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7 Schwarz Alternating Method for Domain Decomposition
• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Initialize:
• Solve PDE by any method on  w/ initial guess for transmission BCs on 

.
Iterate until convergence:
• Solve PDE by any method on  w/ transmission BCs on  based on values

just obtained for .
• Solve PDE by any method on  w/ transmission BCs on  based on values

just obtained for .

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

• Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods 
to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization 
method for solving multi-scale or multi-physics partial differential equations (PDEs).
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AS A PRECONDITIONER 
FOR THE LINEARIZED 
SYSTEM

AS A SOLVER FOR THE 
COUPLED
FULLY NONLINEAR 
PROBLEM

How We Use the Schwarz Alternating Method8
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Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

• Relevant for multi-material and
multi-physics coupling 

• Alternating Dirichlet-Neumann
transmission BCs [Zanolli et al. 1987]

• Robin-Robin transmission BCs also lead
to convergence [Lions 1990] 

• relaxation parameter (can
help convergence)

• Dirichlet-Dirichlet transmission BCs 
[Schwarz 1870; Lions 1988; Mota et 
al. 2017; Mota et al. 2022]

Model PDE:

Spatial Coupling via (Multiplicative) Alternating Schwarz



Multiplicative Overlapping Schwarz Additive Overlapping Schwarz

10 Additional Parallelism via Additive Schwarz

• Multiplicative Schwarz: solves subdomain problems sequentially (in serial)

• Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

Ø Typically requires a few more Schwarz iterations, but does not degrade accuracy
Ø Parallelism helps balance additional cost due to Schwarz iterations

Ø Applicable to both overlapping and non-overlapping Schwarz

Model PDE:



11 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:
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Can use different integrators with 
different time steps within each domain!
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17 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:

Time-stepping procedure is equivalent to doing 
Schwarz on space-time domain [Mota et al. 2022].



• “Plug-and-play” framework:

Ø Ability to couple regions with different non-conformal meshes, different element types 
and different levels of refinement to simplify task of meshing complex geometries.

Ø Ability to use different solvers/time-integrators in different regions.

• Coupling is concurrent (two-way).

• Ease of implementation into existing
massively-parallel HPC codes.

• Scalable, fast, robust (we target real engineering
problems, e.g., analyses involving failure of bolted
components!).

• Coupling does not introduce nonphysical artifacts.

• Theoretical convergence properties/guarantees .

18

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

1 Mota et al. 2017; Mota et al. 2022.  2 https://github.com/sandialabs/LCM. 

2

https://github.com/sandialabs/LCM


1 Mota et al. 2017; Mota et al. 2022.

Figure above: tension specimen simulation coupling 
composite TET10 elements with HEX elements in Sierra/SM.  

Figures right: bolted joint simulation coupling composite 
TET10 elements with HEX elements in Sierra/SM.

Single Schwarz

SchwarzSingle 

y-displacement EQPS



20 Outline

• The Schwarz Alternating Method for Domain 
Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

Ø 2D Burgers Equation

Ø 2D Shallow Water Equations

Ø Teaser: 2D Euler Equations Riemann Problem

• Summary & Future Work

*Full-Order Model.  #Reduced Order Model.



21 Projection-Based Model Order Reduction via the 
POD/LSPG* Method

21

Proper Orthogonal Decomposition (POD):

Solve ODE at different 
design points

1. Acquisition

2. Learning

3. Projection-Based ReductionNumber of 
time steps
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Save solution data

ROM = projection-based Reduced Order Model                                HROM = Hyper-reduced ROM    

Choose ODE 
temporal 

discretization

Reduce the 
number of 
unknowns

Minimize 
residual

Hyper-reduction/sample mesh

* Least-Squares Petrov-Galerkin



22
Schwarz Extensions to FOM-ROM and ROM-ROM 
Couplings

22

Choice of domain decomposition
• Overlapping vs. non-overlapping domain decomposition?

Ø Non-overlapping more flexible but typically requires more Schwarz iterations
• FOM vs. ROM subdomain assignment?

Ø Do not assign ROM to subdomains where they have no hope of approximating solution
Snapshot collection and reduced basis construction
• Are subdomains simulated independently in each subdomains or together?

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
• Strong vs. weak BC enforcement?

Ø Strong BC enforcement difficult for some models (e.g., cell-centered finite volume, PINNs)
• Optimizing parameters in Schwarz BCs for non-overlapping Schwarz?
Choice of hyper-reduction
• What hyper-reduction method to use?

Ø Application may require particular method (e.g., ECSW for solid mechanics problems)
• How to sample Schwarz boundaries in applying hyper-reduction?

Ø Need to have enough sample mesh points at Schwarz boundaries to apply Schwarz
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Figure above: solution of 
component at various times

FOM discretization: 
• Spatial discretization given by a Godunov-type scheme with 

elements in each dimension 
• Implicit trapezoidal method with fixed  

0 100

10
0

0

2D Inviscid Burgers Equation

Problem setup: 
•  
• Two parameters .  Training: uniform sampling

of  by a grid.  Testing:
query unsampled point 

Popular analog for fluid problems where shocks are possible, and 
particularly difficult for conventional projection-based ROMs



25
Schwarz Coupling Details
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0 100
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• FOM in  as this is “hardest” subdomain for ROM
• HROMs in , ,  capture 99% snapshot energy
• Method converges in 3 Schwarz iterations per controller time-step
• Errors O(0.1%) with 0 error in 
• 2.26  speedup achieved over all-FOM coupling

1 SD

FOM-HROM-HROM-HROM Coupling
Subdomains

99% SV Energy

MSE 
(%) CPU time (s)

0.0 95

120 0.26 26

60 0.43 17

66 0.34 21

Total 159

Further speedups possible via code optimizations, 
additive Schwarz and reduction of # sample mesh points.
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FOM discretization: 
• Spatial discretization given by a first-order cell-centered finite volume discretization with elements in

each dimension 
• Implicit first order temporal discretization: backward Euler with fixed 
• Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

2D Shallow Water Equations (SWE)

Problem setup: 
•  , Gaussian initial condition
• Coriolis parameter  for

training, and for
testing

Hyperbolic PDEs modeling wave propagation below a pressure 
surface in a fluid (e.g., atmosphere, ocean).

Figure above: FOM solutions to SWE for 
(left) and  (right).
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Schwarz Coupling Details 
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Choice of domain decomposition

• Non-overlapping DD of into 4 subdomains coupled via additive Schwarz
Ø OpenMP parallelism with 1 thread/subdomain

• All-ROM or All-HROM coupling via Pressio*

Snapshot collection and reduced basis construction

• Single-domain FOM on  used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

• BCs are imposed approximately by fictitious ghost cell states
Ø Implementing Neumann and Robin BCs is challenging 

• Ghost cells introduce some overlap even with non-overlapping DD  
Ø  Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction

• Collocation for hyper-reduction: min residual at small subset DOFs 
• Assume fixed budget of sample mesh points at Schwarz boundaries

Ghost 
cells

Figure right: non-
overlapping DD w/ ghost 

cells creating overlap

Figure above: sample mesh 
(yellow) and stencil (white) cells

Green: different from Burgers’ problem

*https://github.com/Pressio/pressio-demoapps

https://github.com/Pressio/pressio-demoapps
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Schwarz All-ROM Domain Overlap Study

30

Study of Schwarz convergence for all-ROM coupling as a function of  :=
cell width of overlap region (not including ghost cells).

• Dirichlet-Dirichlet coupling with no-overlap 
 performs well with no convergence

issues (movie, left) and errors comparable to
Dirichlet-Dirichlet coupling with overlap
(figure below, left)

Movie above: FOM (left), 4 subdomain ROM coupled via non-overlapping
Schwarz (middle), and 4 subdomain ROM coupled via overlapping Schwarz
(right) for predictive SWE problem with .  All ROMs have 

POD modes.

• Schwarz iterations decrease (very roughly) with 
 (figure, right) whereas evaluating  scales

with 
Ø  there is no reason not to do 

non-overlapping coupling for this problem
Figures above: relative error and average # Schwarz iterations as a

function of  and  Black : training, red : testing.
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Schwarz Boundary Sampling for All-HROM Coupling

31

• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Key question: how many Schwarz boundary points need to be 
included in sample mesh when performing HROM coupling?



32
Coupled HROM Performance

32

• For a fixed ROM dimension, Schwarz delivers lower error and comparable cost!

• There are noticeable cost savings relative to monolithic FOM!

• Accuracy similar for predictive  (red) and non-predictive  (black) cases.

Solid: 
Dashed:  
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FOM discretization: 
• Spatial discretization given by a first-order cell-centered finite volume discretization with or 

elements in each dimension 
• Implicit first order temporal discretization: backward Euler with fixed 
• Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

Teaser: 2D Euler Equations Riemann Problem

Problem setup: 
•  , homogeneous Neumann BCs
• Fix , , 
• Vary ; IC from compatibility conditions*

Ø Training: 
Ø Testing: 

+ 

*Schulz-Rinne, 1993.

Preliminary results:
• Schwarz can stabilize unstable monolithic ROM for

fixed dimension  (above)
• Since shock traverses all parts of domain, achieving

speedups with Schwarz is more difficult
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36 Summary and Future Work36

Summary:
• Schwarz has been demonstrated for coupling of FOMs and (H)ROMs
• Computational gains can be achieved by coupling (H)ROMs and using the additive Schwarz variant

Ongoing & future work: 

• Extension to other applications (fasteners, laser welds)
• Rigorous analysis of why Dirichlet-Dirichlet BC “work” 

when employing non-overlapping Schwarz with 
discretizations that employ ghost cells

* https://pressio.github.io

• Learning of “optimal” transmission conditions to ensure 
structure preservation

• Extension of Schwarz to enabling coupling of non-intrusive 
ROMs (e.g., DMD, OpInf, Neural Networks)

• Development of automated criteria to determine 
appropriate use of less refined or reduced-order models 
without sacrificing accuracy, enabling real-time transitions 
between different model fidelities

https://pressio.github.io
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All-ROM Coupling40
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99% Singular Value (SV) Energy Retention95% Singular Value (SV) Energy Retention

1 SD

Subdomains
95% SV Energy 99% SV Energy

MSE 
(%) CPU time (s) MSE (%) CPU time (s)

57 1.1 85 146 0.18 295

44 1.2 56 120 0.18 216

24 1.4 43 60 0.16 89

32 1.9 61 66 0.25 100

Total 245 700

• Method converges in only 3
Schwarz iterations per
controller time-step

• Errors O(1%) or less
• 1.47  speedup over all-FOM

coupling for 95% SV energy
retention case



Summary
The Schwarz alternating method has been developed for concurrent 

multi-scale coupling of conventional and data-driven models.

o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

Ø Ability to couple regions with different non-conformal meshes, different element types 
and different levels of refinement.

Ø Ability to use different solvers (including ROM/FOM) and time-integrators in different 
regions.               

o Scalable, fast, robust on real engineering problems

o Coupling does not introduce nonphysical artifacts.

o Theoretical convergence properties/guarantees.
















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42 Bonus: PINN-PINN and PINN-FOM coupling42

Input

Hidden Layers

Output

Loss

Minimize

Neural Network

Goal: investigate the use of the Schwarz alternating method as a 
means to couple Physics-Informed Neural Networks (PINNs)

Scenario 1: use Schwarz to train 
subdomain PINNs (offline)

Scenario 2: use Schwarz to 
couple pre-trained subdomain 
PINNs/NNs (online)

Will Snyder
Summer Intern
Virginia Tech

Focus thus far

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022.



43 Bonus: PINN-PINN coupling43

PINNs are notoriously difficult to train 
for higher Peclet numbers!

Can Schwarz help?



44 Bonus: PINN-PINN coupling

• How Dirichlet boundary conditions are handled 
has a large impact on PINN convergence

• Convergence not improved in general with 
increasing overlap

• Increasing # subdomains in general will increase 
CPU time

WDBC



45 Bonus: PINN-PINN coupling

• Using SDBCs and data loss helps with 
PINN/NN convergence and accuracy



46 Bonus: PINN-FOM coupling

• PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet numbers

• PINN-FOM couplings works with both WDBC and SDBC configurations

PINN subdomain

FOM subdomain



S.G. Mikhlin 
(1908 – 1990)

S.L. Sobolev (1908 – 1989)

A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation

P.- L. Lions (1956-)
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Convergence Proof*

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics", IJNME, 2022.
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Energy-Conserving Sampling and Weighting (ECSW)50



ECSW: Generating the Reduced Mesh and Weights51


