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2 ‘ Motivation: multi-scale & multi-physics coupling

There exist established rigorous mathematical theories for
coupling multi-scale and multi-physics components based on
traditional discretization methods (“Full Order Models” or FOMs).
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3 ‘ Motivation: multi-scale & multi-physics coupling

There exist established rigorous mathematical theories for
coupling multi-scale and multi-physics components based on
traditional discretization methods (“Full Order Models” or FOMs).
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* PDEs, ODEs * Mesh-based (FE, FV, FD)  « Monolithic (Lagrange multipliers) * PINNs
* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling * Neural ODEs
* Classical DFT * Implicit, explicit » Iterative (Schwarz, optimization) * Projection-based ROMs, ...
* Atomistic, ... e Eulerian, Lagrangian, ...
Unfortunately, existing algorithmic and software infrastructures are ill-equipped @
to handle plug-and-play integration of non-traditional, data-driven models!



Flexible Heterogeneous Numerical Methods (fHNM) Project

Principal research objective:

91
DORD
LABDRATORY DIRECTED
RESEARCH & DEVELOPMENT

» Discover mathematical principles guiding the assembly of standard and data-driven numerical

models in stable, accurate and physically consistent ways.

Principal research goals:

 “Mix-and-match” standard and data-driven models from three-classes

[ » Class A: projection-based reduced order models (ROMs)

This talk.

> Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
» Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

* Ensure well-posedness & physical consistency of
resulting heterogeneous models.

 Solve such heterogeneous models efficiently.

Three coupling methods:
[- Alternating Schwarz-based coupling | This talk.
« Optimization-based coupling
* Coupling via generalized mortar methods

— — — Schwarz “glue”
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7 I Schwarz Alternating Method for Domain Decomposition ¢
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* Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.
Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843-1921)

Basic Schwarz Algorithm overlapping |
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Initialize:
« Solve PDE by any method on f2; w/ initial guess for transmission BCs on "4

Iterate until convergence:

 Solve PDE by any method on 12, w/ transmission BCs on I'; based on values non-overlapping
just obtained for 2. " >r )
* Solve PDE by any method on {21 w/ transmission BCs on /"y based on values 2
just-obtainedfor{Z7. \‘
oY) i
» Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods |
to solve linear algebraic equations.
Idea behind this work: using the Schwarz alternating method as a discretization

method for solving multi-scale or multi-physics partial differential equations (PDEs).



s | How We Use the Schwarz Alternating Method

AS A PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR THE
COUPLED

FULLY NONLINEAR
PROBLEM




Spatial Coupling via (Multiplicative) Alternating Schwarz

9

Overlapping Domain Decomposition
Model PDE:

( N(ugnﬂ}) = f,in{,
{ul™Y = g, onaQ,\Iy
(D) _ ™ oy  Dirichlet-Dirichlet transmission BCs
) [Schwarz 1870; Lions 1988; Mota et
N(ug™) =1, inq, o h QQ al. 2017; Mota et al. 2022]
3 uénﬂ) =g, on d,\I; \
k £n+1} _ “Enﬂ} on I} le)

Non-overlapping Domain Decomposition

* Relevant for multi-material and
multi-physics coupling

» Alternating Dirichlet-Neumann

Q, >F a, transmission BCs [Zanolli et al. 1987]

* Robin-Robin transmission BCs also lead
- to convergence [Lions 1990]

. « 0 € [0,1]: relaxation parameter (can
Apy1 =095+ (1 —8)Ayon I forn=1 help convergence)




Additional Parallelism via Additive Schwarz

o . o ) Model PDE:
Multiplicative Overlapping Schwarz Additive Overlapping Schwarz { Nw)=f, in 2
( =
FN(ugnH)) —f,inQ, N(u§n+1)) —f,inQ, u=4g, on a1
) u{(lnH) =g, on d,\I} ) uinﬂ) =g, on dQ\I}
| u E"“) — ug”) on I kugnﬂ) =ul”  onn
( 1 ( 1
N (ugﬁ‘ ]) f in QZ N ( gn"' )) f in Qz 0, T, >F1 0,
1 ul™ =g, on dQ,\I, 1ul™ = g, on aQ,\I, \
1 1 1 .
k £n+ ) H§n+ ) on rz \ E?H ) _ (n) on T, 0

* Multiplicative Schwarz: solves subdomain problems sequentially (in serial)
» Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

> Typically requires a few more Schwarz iterations, but does not degrade accuracy
> Parallelism helps balance additional cost due to Schwarz iterations

> Applicable to both overlapping and non-overlapping Schwarz



11 I Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for £2,

Time integrator for (2,

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x,0) = u,, in




2 I Time-Advancement Within the Schwarz Framework

I Ty 'T

Controller time stepper

I Integrate using Aty I

Time integrator for (2,

Q, | | Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (1, solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using
solution in (), interpolated to I'; at times T; + nAt;.

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x, D) = Uy, in




i3 1 Time-Advancement Within the Schwarz Framework

I Ty 'T

Controller time stepper
| |

| Time integrator for (2,

I\ o / | Interpolate

fromQ, to [},

Q, > Time integrator for 2,
' Integrate using At, '

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (; with time-step 4t;, using
solution in Q, interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in Q, interpolated to I, at times T; + n4t,.

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x,0) = u,, in




14+ 1 Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using

solution in Q, interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;,; using time-stepper in (), with time-step 4t,, using

solution in (; interpolated to I, at times T; + nAt,.

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Step 3: Check for convergence at time T}, .
Model PDE:

ut+N@)=f,

u(x,t) = g(t),
u(x,0) = u,,

in
on dfn
in N
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Time-Advancement Within the Schwarz Framework

Q, I Ty ' T
r, I Integrate using At, |
T Interpolate [from
| | AT iflz tol; |
0, I |
I

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step At,, using

solution in , interpolated to I; at times T; + n4t,.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in £, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T}, ;.
» If unconverged, return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) = g(t), on afn
u(x,0) = u,, in N
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Time-Advancement Within the Schwarz Framework

Step O: Initialize i = 0 (controller time index).

Q, Tl
T Integrate using At,
T Interpolate from
Q,t6T, AN |
Q, | I

T,

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Can use different integrators with

different time steps within each domain!

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in (), interpolated to I'; at times T; + n4t,

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (1, interpolated to I, at times T; + n4t,

Step 3: Check for convergence at time T, .

L

» |If unconverged, return to Step 1.
» If converged, set i = i + 1 and return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) =g(t), on an
u(x,0) = u,, in N
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Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Q, Tl
T Integrate using At,
T Interpolate from
Q,t6T, AN |
Q, | I

T,

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Time-stepping procedure is equivalent to doing

Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in (), interpolated to I'; at times T; + n4t,.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (1, interpolated to I, at times T; + n4t,

Step 3: Check for convergence at time T, .

%

» If unconverged, return to Step 1.
» If converged, set i = i + 1 and return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) =g(t), on an
u(x,0) = u,, in N




s | Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics!

Model Solid Mechanics PDEs:

Coupling is concurrent (two-way).

Ease of implementation into existing
massively-parallel HPC codes.

Quasistatic:

Dynamic:

DivP +poB =0 1n
Div P + poB = po

@)
m QxI

Scalable, fast, robust (we target real engineering
problems, e.g., analyses involving failure of bolted
components!).

Coupling does not introduce nonphysical artifacts.

Theoretical convergence properties/guarantees-.

“Plug-and-play” framework:

» Ability to couple regions with different non-conformal meshes, different element types
and different levels of refinement to simplify task of meshing complex geometries.

> Ability to use different solvers/time-integrators in different regions.

' Mota et al. 2017; Mota et al. 2022. 2 https://github.com/sandialabs/LCM.

-


https://github.com/sandialabs/LCM

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics!

nodal eqps
2.226e+00

Time: 0.000000

11132

M'\_Il|||||\|||||||\|||||||\’"H
g
7
8

y-displacement EQPS

Figure above: tension specimen simulation coupling

composite TET10 elements with HEX elements in Sierra/SM.

Figures right: bolted joint simulation coupling composite
TET10 elements with HEX elements in Sierra/SM.

Single 12 7 Schwarz

Single 12

I i Em B

" Mota et al. 2017; Mota et al. 2022.
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Projection-Based Model Order Reduction via the

POD/LSPG () ethQ%odel (Fom):

du

1. Acquisition
Number of

time steps

<+—>
A

Variables

Number of State

v

Solve ODE at different
design points

Save solution data

2. Learning

Proper Orthogonal Decomposition (POD):

X = = U 2 v’

ar fut, p) * Least-Squares Petrov-Galerkin
3. Projection-Based Reduction
Choose ODE i—t::f{u;t, m|
temporal !
discretization () = 0, n=1,.,T
u(t) = u(t) = du(t)
Reduce the |
number of
unknowns
Minimize  minimize|| (PP, 1“} 2
residual ﬂ:l:l]:l |
A 2
Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM

I i Em B



. ‘ Schwarz Extensions to FOM-ROM and ROM-ROM
C hoic(e:’ %}U (B)Irlnggrsdecomposition
* Overlapping vs. non-overlapping domain decomposition?
» Non-overlapping more flexible but typically requires more Schwarz iterations
* FOM vs. ROM subdomain assignment?
» Do not assign ROM to subdomains where they have no hope of approximating solution

Snapshot collection and reduced basis construction
* Are subdomains simulated independently in each subdomains or together?

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
» Strong vs. weak BC enforcement?

» Strong BC enforcement difficult for some models (e.g., cell-centered finite volume, PINNs)
 Optimizing parameters in Schwarz BCs for non-overlapping Schwarz?
Choice of hyper-reduction
* What hyper-reduction method to use?

» Application may require particular method (e.g., ECSW for solid mechanics problems)
 How to sample Schwarz boundaries in applying hyper-reduction?

» Need to have enough sample mesh points at Schwarz boundaries to apply Schwarz
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2D Inviscid Burgers Equation

Popular analog for fluid problems where shocks are possible, and
particularly difficult for conventional projection-based ROMs

t=0.0 t=06.2

u 1 { j
§?+ E( . 5 ) = 0.02exp (p2x) . 190
q9e
al 4 ( (W} a(” })=D
t 2 X V
A A A
u(0,y, i) =
u(x,y,0)=v(x,y0)=1
Problem setup: t=12.5 t =18.8
- 0=(0,100)% te€ [0, 25]

1

M

100

75

« Two parameters jt = (4, fi»). Training: uniform sampling ’
of = [4.25, 5.50]x[0.015, 0.03] by a 3x3 grid. Testing: 50 1
query unsampled point u = |4.75, 0.02] 925 -

FOM discretization:
25 b0 TH 20 50 75

Figure above: solution of u
component at various times

« Spatial discretization given by a Godunov-type scheme with
N = 250 elements in each dimension

» Implicit trapezoidal method with fixed At = 0.05



. | Schwarz Coupling Details
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| FOM-HROM-HROM-HROM Coupling
ul "

S Subdomains MSE
- 5.0 1 M CPU time (s
3 T &
I
=251 0, —~ 0.0 95
2 _ ° ﬂl {1, 120 0.26 26
= 0 20 40 60 80 100 ° 0 60 |0.43 17
z o 0 0, 66 U.34 @
;’” 5 o [y Total 159
= S\ﬂ)(lrmmin 2: PROM R([‘)(h]l;:;flﬁg)(‘ﬁh
= 1SD
I
t_-; U T T T T T T =100
| 0 20 40 60 80 100
7} ZJ' o a 5&3“3‘5?5“13?_}““1‘
« FOMin 0, as this is “hardest” subdomain for ROM
« HROMs in 5, 03, 04 capture 99% snapshot energy
* Method converges in 3 Schwarz iterations per controller time-step 1
» Errors 0(0.1%) with 0 error in Q;
» 2.26x speedup achieved over all-FOM coupling

Further speedups possible via code optimizations,

additive Schwarz and reduction of # sample mesh points.
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28 ‘ 2D Shallow Water Equations (SWE)

Hyperbolic PDEs modeling wave propagation below a pressure

surface in a fluid (e.g., atmosphere, ocean).

PP G BN G B
ﬂt T—]I T—]}I
(hu) Y.
§T+ -é‘; hu* + Egh + —é}—r{huvj =— uv
Ty ” 1
8——+ -&-(huv) + | hv* + =gh* | = uu
Ht FII FI}T 2

Problem setup:

« N=(-55)% te[0,10], Gaussian initial condition

* Coriolis parameterpue {—4,—3,— 2, — 1,0} for
training, and i € {— 3.5, — 2.5, — 1.5, — 0.5} for

FOFF&E@'etization:

» Spatial discretization given by a first-order cell-centered finite volume discretization with N = 300 elements in

each dimension

« Implicit first order temporal discretization: backward Euler with fixed At = 0.01

Figure above: FOM solutions to SWE for y =— 0.5
(left) and u =— 3.5 (right).

I—‘r-u-’ressio

* Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)




,, | Schwarz Coupling Details

Green: different from Burgers’ problem

Choice of domain decomposition
* Non-overlapping DD of 12 into 4 subdomains coupled via additive Schwarz
» OpenMP parallelism with 1 thread/subdomain
* All-ROM or All-HROM coupling via Pressio*
Snapshot collection and reduced basis construction

* Single-domain FOM on 2 used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

 BCs are imposed approximately by fictitious ghost cell states
» Implementing Neumann and Robin BCs is challenging
* Ghost cells introduce some overlap even with non-overlapping DD
» = Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction

* Collocation for hyper-reduction: min residual at small subset DOFs
» Assume fixed budget of sample mesh points at Schwarz boundaries

*https://github.com/Pressio/pressio-demoapps

Figure right: non- ‘
overlapping DD w/ ghost |
cells creating overlap

[Fr’ressio

1

Figure above: sample mesh
(yellow) and stencil (white) cellst


https://github.com/Pressio/pressio-demoapps

0 ‘ Schwarz All-ROM Domain Overlap Study

Study of Schwarz convergence for all-ROM coupling as a function of N, :=
cell width of overlap region (not including ghost cells).

Water Helght
Lo 1L.002 1.00¢ Lo 1008 1010 L0112 1.018 Lous Lm18 1020 1oEz Lnza
Schwarz PROM, N, = 0 Schwarz PROM, N, = 20

4
2
[ ’

-2 a 2 4 -4 -2 ] i 4 -4 -2 [ i 4

Movie above: FOM (left), 4 subdomain ROM coupled via non-overlapping
Schwarz (middle), and 4 subdomain ROM coupled via overlapping Schwarz
(right) for predictive SWE problem with u 0.5. All ROMs have K = 80
POD modes.

* Schwarz iterations decrease (very roughly) with
N 925 (figure, right) whereas evaluating r(q) scales
with Nz
» = there is no reason not to do
non-overlapping coupling for this problem

Relative I error

» Dirichlet-Dirichlet coupling with no-overlap
(N, = 0) performs well with no convergence
issues (movie, left) and errors comparable to
Dirichlet-Dirichlet coupling with overlap
(figure below, left)

‘Water Height

10° —_— K=20,Na=0
— K=20,Ny =10
— K= 20, Ny = 20
- K=60,N;,=0
K =60, Ng =10

10-2 === K=860 N,=20

[
P
un

107t

_._.
L]
o

[

[

v
L

10~

Average Schwarz iterations
w : .
L
[=1

SeeEassoEEESEsSSCEEESSSESSISSS

—__\\________._._

- _3 - —25 -20 -1 -1.0 -0.5 —r ; v T r ™ T — v
4.0 s —30 = -0 R 0.0 -40 -35 -30 -2.5 -20 -15 -10 -05 00
H u

[
(=]
[l

1075

Figures above: relative error and average # Schwarz iterations as a
function of ¥ and V,. Black u: training, red u: testing.




y ‘ Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

Schwarz HPROM, N =5

Schwarz HPROM, N, =10 .
op-defe-oesg
o“. - * *

i —d -2 o 2 a

-
-
oh’

Figure above: example sample

Movie above: FOM (left), all HROM with N, = 5% (middle) and all HROM with N, = 10% mesh with sampling rate N, = 10%

(left). ROMs have K = 100 modes and N; = 0.5%N sample mesh points.

Including too many Schwarz boundary points (N,) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior

« For SWE problem, we can get away with ~10% boundary sampling (movie above, right-most frame)



, | Coupled HROM Performance

Relative 2 error

109 -

[
o
]

H
o
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w

104 E

10-3

Water Height

1.

Solid: N, = 0.5%N
Dashed: N, = 194N

it
et — ki - ——— "

Relative 2 error

=
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|
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Water Height, u = -0.5

——
——
——
——

Mono PROM, various K
Mono HPROM, K = 80
Schwarz PROM, various K
Schwarz HPROM, K = 80

» - *— g
/’
.,--"""-FFF.-//
pe
10-1 100 10! 10

Speedup vs. Monolithic FOM

« For a fixed ROM dimension, Schwarz delivers lower error and comparable cost!

* There are noticeable cost savings relative to monolithic FOM!

» Accuracy similar for predictive i (red) and non-predictive i (black) cases.
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34 ‘ Teaser: 2D Euler Equations Riemann Problem

P pu pv
pu pu® +p puv
Hoov | T4 pur T8 pv?4p

pE/ ° \(E+p)u (E + p)v

p=@- 1}(PE - %P[HE + vz})

=0

Problem setup:
e =(0,1)%t€ [0,0.8], homogeneous Neumann BCs
* Fixp;=15,u;,=v,=0, py =0.029
* Vary p;; IC from compatibility conditions®
> Training: p; € [1.0, 1.25,1.5,1.75,2.0]
» Testing: py € [1.125, 1.375,1.625,1.875]

FOM discretization:

|‘?rJressio

Pressure

[-¥} -] -1 on 1o 12
FOM Manolithic PROM

18 2.0
Schwarz PROM, N, =4

Preliminary results:

Schwarz can stabilize unstable monolithic ROM for
fixed dimension K (above)

Since shock traverses all parts of domain, achieving
speedups with Schwarz is more difficult

» Spatial discretization given by a first-order cell-centered finite volume discretization with N = 300 or

N =N =100 elements in each dimension

» Implicit first order temporal discretization: backward Euler with fixed At = 0.005

* Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

*Schulz-Rinne, 1993.
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3 1| Summary and Future Work

Summary:

* Schwarz has been demonstrated for coupling of FOMs and (H)ROMs

r -
rr’I'E‘SSIO

« Computational gains can be achieved by coupling (H)ROMs and using the additive Schwarz variant

Ongoing & future work:

« Extension to other applications (fasteners, laser welds)

« Rigorous analysis of why Dirichlet-Dirichlet BC “work”
when employing non-overlapping Schwarz with
discretizations that employ ghost cells

« Learning of “optimal” transmission conditions to ensure
structure preservation

« Extension of Schwarz to enabling coupling of non-intrusive
ROMs (e.g., DMD, OpInf, Neural Networks)

* Development of automated criteria to determine
appropriate use of less refined or reduced-order models
without sacrificing accuracy, enabling real-time transitions
between different model fidelities

— — — Schwarz “glue”

FOM FOM FOM

u(x, ty_q) u(x, ) u(x,bey)

* https://pressio.github.io



https://pressio.github.io
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40

All-ROM Coupling

. 95% Singular Value (SV) Energy Retention 99% Singular Value (SV) Energy Retention
=
E 5.0
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4 | Summary

The Schwarz alternating method has been developed for concurrent
multi-scale coupling of conventional and data-driven models.

© Coupling is concurrent (two-way).
© Ease of implementation into existing massively-parallel HPC codes.

© “Plug-and-play” framework: simplifies task of meshing complex geometries!

© Ability to couple regions with different non-conformal meshes, different element types
and different levels of refinement.

© Ability to use different solvers (including ROM/FOM) and time-integrators in different
regions.

© Scalable, fast, robust on real engineering problems

© Coupling does not introduce nonphysical artifacts.

© Theoretical convergence properties/guarantees.



2 ‘ Bonus: PINN-PINN and PINN-FOM coupling Will Snyder

Neural Network Summer Intern
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PDE loss £,.(6) l Minimize |

BC loss £, (6) —‘EL Loss £() —— 0" = argminL(0) |

Data loss £,(8) T

o e e e o e e o o e e e e e e e e e e e e = = =

L(O) = a,L,(0) + apLy(6) + agLy(6)
N Hidden Layers / Focus thus far
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Scenario 1: use Schwarz to train
subdomain PINNs (offline)

Goal: investigate the use of the Schwarz alternating method as a

means to couple Physics-Informed Neural Networks (PINNs) —| Scenario 2: use Schwarz to
couple pre-trained subdomain

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022. PINNs/NNs (online)




s | Bonus: PINN-PINN coupling

1D steady advection-diffusion equation on Q = [0,1]:

0 Va2 ¥1 1
Uy —VUyy =1, u(0)=u(1)=0 : : : :
\ J
PINNs are notoriously difficult to train o]
for higher Peclet numbers! Overlapping DD: Q = 1, U Q, with boundary dQ = {0,1}

|—> Can Schwarz help?
L, ,(8) = MSE (— VV2NN g (x, 8) + VNN g (x, 6) — 1)

Schwarz PINN training algorithm: Ly, (6) = MSE(NNE.(HH- 6)) + MSE(NNo (v, 6) = NNo,(v,,6) )

Loop over subdomains ; until convergence of Schwarz method
Train PINN in Q; with loss £;(0) = aL,.;(6) + L}, ;(0) + yL,;:(0)
Communicate Dirichlet data between neighboring subdomains
Update boundary data on y; from neighboring subdomains
If strong enforcement of Dirichlet BC (SDBC), set i (x,6) = NNgq,(x, 6)
If weak enforcement of Dirichlet BC (WDBC), set # = 0 and ilq,(x, 8) = v(x)NNgq,(x,6) + w(x)ﬂﬂj(yj, 9)
where v(x) is chosen s.t. v(0) = v(y;) = v(1) = 0 and Y (x) is chosen s.t. v(y;) =1

I i Em B



44 ‘ Bonus: PINN-PINN coupling

Schwarz iteration 1; Pe = 250

1'[] N d"'"
..-*"'.F’ 1
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..--""-'# !
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-?_IS- ..-"'## :
S 0.4 _-- :
,.-"""## 1
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Schwarz iteration 1; Pe = 10
0.6 =TT
‘ SDBC on y; Pt \
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Schwarz iteration 1; Pe = 250

1.0 A =
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- 1

081  SDBC on dQ) JPttas \
s -

061 Jtaas |
> .'._'...-"' :
S 0.4- _7 !
####f 1

D 2 . .'.--"“.F :
DD_' ___,_...-'""
0.0 0.2 0.4 0.6 0.8 1.0

* How Dirichlet boundary conditions are handled
has a large impact on PINN convergence

» Convergence not improved in general with
increasing overlap

* Increasing # subdomains in general will increase
CPU time



45 ‘ Bonus: PINN-PINN coupling

=
=
=

10"

Average L2 error over all Domains

Pe =100

< 4

O
A
L8
v A A <)
10°
CPU time (s)

T OA P40 AP>40

ApJO AN

2 (1, no snapshots, WDBC (unconverged)
2 (1, no snapshots, SDBC

2 (1, snapshots, WDBC (unconverged)

2 (1, snapshots, SDBC

3 1, no snapshots, WDBC (unconverged)
3 121, no snapshots, SDBC

3 11, snapshots, WDBC

3 (1, snapshots SDBC (unconverged)

4 1, no snapshots, WDBC (unconverged)
4 1, no snapshots, SDBC (unconverged)
4 1, snapshots, WDBC

4 (1, snapshots SDBC

5 €1, no snapshots, WDBC (unconverged)
5 1, no snapshots, SDBC (unconverged)
5 (1, snapshots, WDBC

5 (1, snapshots, SDBC

Using SDBCs and data loss helps with
PINN/NN convergence and accuracy



s | Bonus: PINN-FOM coupling

Schwarz iteration 1; Pe = 1000000

1 0 . / .~

0.8 -7
06 PINN subdomain ,’___.- |
> - ) |
— _- FOM subdomain |
- 0.4 4 -

0.2 A

0.0 A

0.0 0.2 0.4 0.6 0.8 1.0
X

« PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet humbers
* PINN-FOM couplings works with both WDBC and SDBC configurations



Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

S.L. Sobolev (1936): posed Schwarz method for linear elasticity in
variational form and proved method’s convergence by proposing a
convergent sequence of energy functionals.

S.G. Mikhlin (1951): proved convergence of Schwarz method for general
linear elliptic PDEs.

P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone

* Lo . " . S.G. Mikhlin
elliptic problems using max principle. (1908 - 1890)
A. Mota, |. Tezaur, C. Alleman (2017): proved convergence of the
alternating Schwarz method for finite deformation quasi-static nonlinear
PDEs (with energy functional @[¢]) with a geometric convergence rate. P- L. Lions (1956-)

?[p)] = f A(F,Z)dV—f B-@dv
B B
V-P+B=0

A. Mota, I. Tezaur, C. Alleman




4 ‘ Convergence Proof*

4 Nemerical Examples
3

whaa [ = LA
o amtiad e 1] 1

Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above. Consider the Schwarz alternating
method of Section 2 defined by (9)—(13) and its equivalent form (39). Then

(@) [@pD] = o[V = ... > O[] = G[pM] > ... > D[], where @ is the minimizer of P[] over S.

(b) The sequence {q'i(") } defined in (39) converges to the minimizer @ of @[] in S.

(c) The Schwarz minimum values [@""] converge monotonically to the minimum value ®[p) in S starting from any
initial guess @7

Iytic Ssbution for Linear-Elasise Smgular Bar
b we pavide the sk ion of e snglir bor of Socticn 4% s Liness shuticay. The

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.



Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

49

* Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain
problem is well-posed and overlap region is non-empty, under some conditions on At.

* Well-posedness for the dynamic problem requires that action functional S[¢] =

I, J, L (@, @)dVdt be strictly convex or strictly concave, where L(¢, @) =T (@) + V(@) is the
Lagrangian.
> This is studied by looking at its second variation §2S[¢},]

* We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

52S[¢y) = x7 M — I{]x

.};2
[(ﬁﬂf}z
> §2S[¢gy,] can always be made positive by choosing a sufficiently small At

» Numerical experiments reveal that At requirements for stability/accuracy typically lead to
automatic satisfaction of this bound.



50 ‘ Energy-Conserving Sampling and Weighting (ECSW)

* Project-then-approximate paradigm (as opposed to approximate-then-project)

re(qr,t) = WTr(i, t)
_ WTLTr, (L,+1, t)

ees

« L, €{0,1}%*N where d, is the number of degrees of freedom associated with each mesh element (this is
in the context of meshes used in first-order hyperbolic problems where there are N, mesh elements)

« L.+ € {0,1}%*N selects degrees of freedom necessary for flux reconstruction

« Equality can be relaxed

Augmented reduced mesh: © represents a
selected node attached to a selected
element; and & represents an added node to
enable the full representation of the
computational stencil at the selected
node/element
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ECSW: Generating the Reduced Mesh and Weights

Using a subset of the same snhapshots u;,i € 1, ..., n;, used to generate the state basis I/, we can train the
reduced mesh

Snapshots are first projected onto their associated basis and then reconstructed
Cse = WTLETE (Le+ (uref +V VT(HS - uref)) ) t) e R"
d, =n(i,t) € R", s=1,..,ny

We can then form the system
611 pew ClNe dl

Cnp1 = Cpn, dnh
Where €& = d, & € RNe, & = 1 must be the solution
Further relax the equality to yield non-negative least-squares problem:
§ = arg minyecgn||Cx — d||, subjecttox = 0

Solve the above optimization problem using a non-negative least squares solver with an early
termination condition to promote sparsity of the vector ¢



