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Molecular gas dynamics: from free-molecular flow to 
turbulence in 50 years
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Direct simulation Monte Carlo (DSMC)
DSMC is the dominant method for MGD [1]

No PDEs solved - tracks very large numbers (~1012) of particles, 
each representing many actual molecules

§ Move ballistically, collide & reflect stochastically

§ Flow quantities from averages over molecules in each cell

Inherently includes physics usually not in traditional CFD

§ Thermal and chemical nonequilibrium

§ Pressure and heat-flux tensor anisotropy

§ Thermal fluctuations

Simulates gas flows very accurately

§ Solutions converge to solutions of the Boltzmann Equation [2]

§ Reproduces Chapman-Enskog distribution [3]

Computational and algorithmic advances have brought turbulent 
flows within reach of DSMC!

move collide
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[1] Bird, Clarendon Press (1994)
[2] Wagner, J. Stat. Phys. (1992)
[3] Gallis et al., Phys. Rev. E (2004)

What can we learn from molecular-level simulations of turbulence?



SPARTA: An exascale DSMC code4

SPARTA: Stochastic PArallel Rarefied-gas Time-accurate Analyzer

Implementation is similar to Molecular Dynamics

§ Single-processor to massively-parallel platforms

§ Load balancing, in-situ visualization, on-the-fly FFTs, adaptive grid

Developed with next-generation architectures in mind

§ Write application kernels only once 

§ Efficient on many platforms: GPU, manycore, heterogeneous, …

Complex geometries are easily treated

§ Domain can be 2D, axisymmetric, 3D

§ Gas molecules use hierarchical Cartesian grid

§ Body surfaces represented by triangular elements which cut gas grid cells

Open-source code available: http://sparta.sandia.gov

§ 10,000+ downloads, 100+ verified users worldwide

§ Collaborators: ORNL, LANL, ANL, LBNL, NASA, ESA, Purdue, UIUC

Ideal Weak Scaling

More about SPARTA in Stan Moore’s talk (session 17, 08:30)

Preliminary 
results. More 
profiling/tuning 
will be done in 
the future.

http://sparta.sandia.gov


Flow over thermal-protection-system materials

Thermal-protection-system (TPS) materials on reentry vehicles may be:

§ Rough

§ Permeable

→ Affects loading and may compromise vehicle performance

Simulating flow over these materials is challenging for traditional 
computational fluid dynamics (CFD)

§ Substrate geometry is difficult to mesh, even with immersed boundary methods

§ Noncontinuum effects may be significant within the substrate (e.g., Klinkenberg effect)

DSMC is well-suited for simulating flow over TPS materials!
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Goal: Simulate compressible turbulent flow over 
TPS-like rough and permeable walls with DSMC

3D scan of FiberForm™
(provided by NASA Ames)



First: Compare DSMC and CFD for rough-wall turbulence

Rough-wall turbulent Couette flow:

§ Cuboidal roughness elements

§ Small domain size

§ Modest Reynolds number

§ “Transitionally rough” regime

§ Moderately compressible (no shocks)

§ Near-continuum 

DSMC and CFD should agree well for 
these conditions!
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CFD simulations using SPARC

Direct numerical simulations (DNS) of the compressible Navier-Stokes equations

SPARC (Sandia Parallel Aerodynamics & Reentry Code)
§ Compressible finite volume code

Blended flux scheme for high accuracy and stability
§ 4th-order low-dissipation Subbareddy-Candler scheme in smooth regions

§ 2nd-order dissipative modified Steger-Warming scheme near shocks

§ Switch between schemes based on gradients in Mach number

4th-order Runge-Kutta time advancement
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DSMC
§ Length scale: h = 500 μm
§ Cell size: 1.3 μm
§ Total cells: 2.6×109

§ Total particles: 73×109

§ Particles per cell: 28
§ Time step: 9.1 ps
§ Monatomic gas: γ = 5/3
§ Molecular mass: 66.3×10–27 kg
§ VSS collisions
§ Near-neighbor algorithm
§ BCs: 

o Walls: diffuse, α = 1, Tw = 273.15 K
o Periodic in x and z directions

8 Simulation parameters for rough-wall turbulent 
Couette flow

CFD
§ Length scale: h = 1 m
§ Cell sizes:

o Δx+ = Δz+ = 2
o Δy+ = 0.4-4

§ Time step: global CFL 0.25-0.5
§ Ideal gas: γ = 5/3
§ Power-law viscosity: μ/μw = (T/Tw)0.5

o μw set to value from DSMC calibration
§ BCs:

o Walls: no-slip, Tw = 273.15 K
o Periodic in x and z directions



Flow structures: mid-cube9
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Flow structures: cube top10
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Flow structures: channel center11
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Skin friction12

Time-averaged skin friction (tUw/h ≥ 100)

Surface DSMC DNS
Smooth 10.1 10.1
Rough 10.5 10.1



§ Length scale: h = 500 μm
§ Cell size: 1.7 μm
§ Total cells: 1.2×109

§ Total particles: 34×109

§ Particles per cell: 29
§ Time step: 9.1 ps
§ Monatomic gas: γ = 5/3
§ Molecular mass: 66.3×10–27 kg
§ VSS collisions 
§ Near-neighbor algorithm
§ BCs: 

o Walls: diffuse, α = 1, Tw = 273.15 K
o Periodic in x and z directions

13 DSMC turbulent Couette flow over TPS material
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Flow structures: surface top14
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Flow structures: mid-surface15
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Flow structures: spanwise-wall-normal plane16
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Summary

Preliminary comparison between DSMC and CFD 
for rough-wall turbulent Couette flow

§ Qualitatively similar flow structures

§ Good quantitative agreement for skin friction

§ Future work: quantitative comparison of turbulence 
statistics

Preliminary DSMC investigation of turbulent flow 
over a 3D scan of real TPS material

DSMC is a valuable tool for simulating 
turbulent flows over surfaces and in conditions 
that are challenging for standard CFD!
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CFD DSMC



Flow structures: streamwise-wall-normal plane18
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Rough-wall time-averaged velocity profiles


