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Why non-conventional computational methods?
Current modeling and simulation workflows for coupled multiphysics problems are designed for traditional numerics
1) X l
a..
L ) DMD=N; R—

Complex System Model

* PDEs, ODEs
* Nonlocal, integral,...

Interest in non-conventional data-driven models is increasing due to their valuable advantages:

* Improved computational efficiency via incorporation of cheap reduced order models (ROM)
* Reduced end-to-end simulation times by learning models directly from data
* Improved physical fidelity & predictiveness via data-driven discovery of hidden physics

* In this talk we extend our Explicit Synchronous Partitioned Scheme (ESPS) for multi-material interface problems to the
coupling of Reduced Order Models (ROM) with other ROMs and/or FEMs. (_/

Traditional Methods

mesh-based (FE, FV, FD),
meshless (SPH, MLS),...

Coupled Numerical Model

Coupling based on rigorous
mathematical theories

Land Ice

However, plug-and-play integration of such models lacks the necessary theoretical and practical foundations ALY
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The Explicit Synchronous Partitioned Scheme (ESPS)

Model multi-material interface (transmission) problem

, =1,2 :
w; =¢; in T;x[0,T] =S Subdoma|n
equations
Fi(pi) = €6V — uyp;
w1(x,t) — pa(x,t) =0 _
1 2 on ~ x[0,7]. Coupl.mg
ey 8) - iy = (5 8) -0, conditions
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Material 1

0, |

Step 1: Define a monolithic, semi-discrete in time formulation using Lagrange multipliers

(Qbfll),(/}il)o,gl + (Ah71/)?)0’,y = <f177v/)?)0,§21 T (Fl(gp?>7vw?)0’gl V¢{L = S{L,F
(¢§7¢3)07Q2 - ()‘hvwg)oﬁ = <f27¢9>0792 - (F2(90]21)7V¢3)0792 Wﬂg S SS,F
(S —ghi),. = 0 Yt € G,
v
. T 7 .
My®y + G A= flﬂ)l) y1 = fit,y, 1) y - differential variable

My®y — GITX = 15(®,) » v, = f5(t,y,A) 2-algebraic variable

G, — Gy®y =0 0=g(t,y) g - algebraic constraint

Leads to a Hessenberg index-2 DAE

Difficult to solve due to “hidden constraints i

Incompatible with explicit time integration: it
“deletes” the constraint

Resulting partitioned methods not truly explicit
and resemble projection methods
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The Explicit Synchronous Partitioned Scheme (ESPS)

Step 2: Reduce the DAE index Hessenberg index-2 Hessenberg index-1
Mi®; + GTA =11(®1) M @1+ GIA = (1) n=hHEy4) 1 =hHEy4)
My®; — G5 = F5(®2) P Ma®s — G = £2(Dy) y2 = f2(t,y,4) P »=fEy4)

G181 — oy =0, 6(@)- Gy~ . 0=g(t,y) 0 = g(t,y(2)) |

Step 3: Eliminate the algebraic variable
[Ml 0 ] [@1] B [fl(@l) = Gf)\(CIn,(I)g)] PR « Assume the Jacobian ;g is non-singular. Then,
0 M| [®5] |f2(D2) + GIA(Dy, ®s) 0 = g(t,y,A) defines an implicit function A(t, y).

Step 4: Apply explicit time integration

* Subdomain equations can be solved independently!

ﬂ +1_ n e s . . .
=f (f v, }L[:: ¥y )) > * Explicit time integration effectively decouples the system i
* Remains equivalent to the parent monolithic problem |
y5T I f (E v, j“:;”’ }r”)) * No splitting error! Similar ideas used in HATI schemes: ‘
K. Peterson, P. Bochev, and P. Kuberry. Explicit synchronous partitioned A. Gravouil and A. Combescure. Multi-time-step explicit=implicit
algorithms for interface problems based on Lagrange multipliers. method for non-linear structural dynamics. International Journal for

Computers & Mathematics with Applications, 78(2):459 — 482, 2019 Numerical Methods in Engineering, 50(1):199-225, 2001.
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s I ESPS analysis
Lemma: Assume that the Lagrange multiplier space G%such that there is an operator Q : G’; — Sf}r X SSI
h laY
5" 0 < C1 (8", (Qs")1 = (Qs")2),, Vs" € G, and [[Q(M)]]| < CahSllslloy. @ =0
Then b(:,") satisfies the inf-sup condition, G* = (G ,G2) has full column rank, and the Schur
complement S = G M; 'GT + GoM; *GT isSPD.
A sufficient condition for the existence of the operator Q is the following Trace Compatibility Condition:
Every Lagrange multiplier is a trace of a finite element function from one of the
two sides of the interface. h h
non "o
9 *r———9
Lemma. Assumethat h; < hy andlet p = hyo/hy > 1.
¢ g finer '
1. If the Lagrange multiplier space Gf}’; = G" then k(S) < Cpt?
oLl r———
< 2. If the Lagrange multiplier space Gf}’; = G then k(S) < Cp®
o LK, ¥ | - —

coarser
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How can non-conventional methods improve ESPS?

Production implementation of ESPS solves a coupled structure-structure interaction problem
with two different materials modeled by Sierra SM and Alegra, resp.

Axial pulse bar test

u; — V-0 (uz> = fz in Q; x [07 T] . 1.9 velocity_Z
1 = y . ) 0.000=+00
oi{ug) = A(V - wi M+ 2pe(u;)
on v x [0,7].

Material 1 - Sierra
Material 2 - Alegra

VELOCITY_Z

Material 2 requires a much finer mesh than
Material 1. Replacing the FE code for Material 2
(and/or Material 1) by computationally efficient
ROM can speed up the simulation.
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Model Order Reduction (MOR) for Parametric PDEs (uPDEs)

» Agood approximation for u(u) can be computed from snapshots u(u;) sampling the parameter space

Basic idea: the solution u(u) of the uPDE: t + L(u,u ) = f; u € RP is often a “nice” function of u. I
i
A proper orthogonal decomposition (POD) Galerkin projection approach I

Step 1: compute a reduced basis (RB)

» Collect n snapshots u; (coefficients of u(g;)) and compute the SVD: 5= [u 1t un] =yzv’
d
?—10-12' ~ | ¥ T
« Giventolerance § > 0 choose d such that 2 10 S=1[U | Utrun] 0 S§7T ] [V ]
Z‘j:l O-j trun trun
« Define the RB as the d left singular vectors, i.e., the matrix U S~&§=0UFVT  Low-rank approximation of §

Step 2: Galerkin projection onto the reduced basis

a(u,v) = f(v) forall v eV » Ku=f » u=7Ua » UTKUa=UTf d<m

Full Order Model (FOM): mXm Reduced Order Model (ROM): d Xd

I i Em B
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s I ESPS extension to ROM+ROM and ROM+FEM couplings

Full subdomain RB are commonly used in Domain Decomposition for ROM. Can they work for us?

A full subdomain RB formulation. Inhomogeneous Dirichlet conditions S(x, t)

b= HHm Sp= = UL, VI = §, = <—— RB=columns of U,

IE 0 000

Full subdomain: RB
includes both interior
and interface DoFs

A
S
4

® - Interior nodes

@ - Interface nodes

ROM-FEM coupled problem. (ROM-ROM very similar) O - Dirichlet nodes

RB projection: -~ = 7Te (77
Mipr+GiA=Ul £1(Uppr + B)

&, =U,pr+ B » M@y — Go X = £5(P»)
Gipr — Ga®y = 0,

Ml = ﬁngﬁo
GT = (70TG}”.
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Full subdomain RB formulation: issues.

Key issue: the Schur complement is not provably non-singular!

To understand the problem, consider the lumped mass matrix case and the ROM-ROM coupling

My, 0 G {0 0
0 My, —-G3 i 0 0
G1  —Go 0 @ 0 0

+«——— |nterface blocks

are separated from the

0 0 0 0’ Myo | interior blocks

~k
Any two columns of the RB are u;
orthonormal by construction: U 1
itk
i ~k o~k L0
However, their parts U, and U;,,
corresponding to interface DoFs are not!

They can be almost linearly dependent.

The projected mass matrix ﬁm, is

The ROM-ROM Schur complement uses only

SAND2023-06581C

the interface mass matrices

E
!
|

= G M 1G] + G,M; .G}

A

A
Mi,}*’ = Ui,]rM i,}fUi,y

=

I

|||||

. u
not guaranteed to be non-singular! . LY
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Solution: a Composite Reduced Basis Approach

Compute separate SVDs for the interior and the interface DoFs

'
Uu,o

v

— T Pt c
- Uﬂ,ﬂzﬂ,ﬂvﬂ,ﬂ ~ Sﬂ,ﬂ

P, = m Sp= o ’ _ Uy 2o, Viy
% i = UoyZoyVoy = SOJ’ T ;

B 0 i
Uoy

Interior RB i
i

Interface RB

v

A
A /

ROM-FEM coupled problem defined by using separate projections for interior and interface DoFs

¢
T Projected mass matrix Schur complement
m « @, =Upo@ro+ B - ~ ~ f x e _
; T
’fw% < @1y = UoyPry orthonormal » Provably non-singular
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11 I Analysis

One can show that a version of the Trace Compatibility Condition (TCC) is sufficient for the existence of a nonsingular
Schur complement for the coupled ROM+ROM and ROM+FOM formulations. I
i

* ROM+ROM: Every RB Lagrange multiplier is a trace of a RB function from one of the two sides of the interface.

e ROM+FOM: Every Lagrange multiplier is either

* atrace of a RB function from the ROM side of the interface, or
* Atrace of a FEM function from the FEM side of the interface

Test example: solid body rotation

Initial conditions att=0 1 Mesh
* Advection:u=(0.5-y, x-0.5)
* Time scheme: RK4 14 0.8}
0.8
. . . . 06 4 06+ i !
Simulation settings: e g o © ROM or
. . i i 2 ROM
* & = &,: Single physics(DD) 024 ,}5:,;.: Wi 0.4 FOM -
* & # &: Multi-physics i
1 02|
Snapshots: 05 0 -

0O 02 04 06 08 1
X

* monolithic FEM on Q for Tfjng = 2



Condition number of the Schur complement as function of reduced basis size

12 I Numerical examples: violation of the Trace Compatibility Condition E

—-RR coupling, fLM]|[«— ROM+ROM (RR): full subdomain basis violates TCC
~**RR coupling, rL.M |¥7——————— ROMH+ROM (RR): composite RB satisfies TCC

FR coupling, fLM \
=#-FR coupling, rLM '\ FOM+ROM (FR): interface FEM from the FEM side satisfies TCC

FOM+ROM (FR): interface RB from the ROM side satisfies TCC

10%°

=+=RR coupling, fLM
10 L | | =#-RR coupling, rLM| |

10 FR coupling, fLM

=#-FR coupling, rLM |

cond(S)

10" 102 10° 10"
Composite reduced basis size, d; ¢

Single physics o0 : ,_._.......L.._........,..

10’ 10° 10°
A. DeCastro, P. Bochev, P. Kuberry, and I. Tezaur. Explicit synchronous partitioned scheme for Composite reduced basis size, d; »
coupled reduced order models based on composite reduced bases. CMAME, 2023. . .
Multi-physics




13 ‘ Numerical examples: violation of the Trace Compatibility Condition

Full subdomain RB ROM-ROM

1.2

d =50 modes in each subdomain

FOM: 4225 DOFs,
Subdomains: 2145 DOFs

Composite RB ROM-ROM

_)/';éx (el ‘
j'o‘}ﬁ\t!a\
OO
70N
57 AN

.
\

d; ,= 40 interior modes

I,

d, ,= 10 interface modes

In each subdomain

* Composite RB guarantees a non-singular Schur complement

* Allows accurate results with smaller total number of modes

SAND2023-06581C
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14 I Numerical examples: violation of the Trace Compatibility Condition

Full subdomain RB ROM-ROM Composite RB ROM-ROM FOM-FOM

o 1.2
0.8
0.6 -|
0.4

0.2 4

W I’
1, .}ﬁ\'\\‘

i,
AL




15 I Conclusions

We presented extension of the ESPS scheme to ROM-FEM and ROM-ROM coupling:
* Use of ROM on one or both subdomains reduces simulation time by over an order of magnitude
« Accuracy retained with a relatively small number of modes in the RB

Choice of RB basis is essential for a provably well-posed ROM-FEM and ROM-ROM couplings:

* Full subdomain RB:
« Standard in many ROM+DD schemes but does not guarantee non-singular Schur complement

« Size of the interface problem dependent on the size of the RB — governed by accuracy
considerations including all DoFs

« Split subdomain RB:
* Provably non-singular Schur complement
* Requires two, but smaller size SVDs: cost comparable to the full subdomain case
« Allows more flexibility by choosing RB for the interior and the interface independently

Ongoing work:
* Couplings involving equation-free, e.g., DMD sub-models
* Multi-rate & heterogeneous time integration schemes



