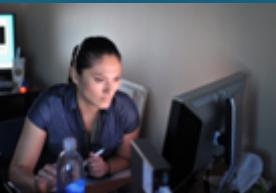
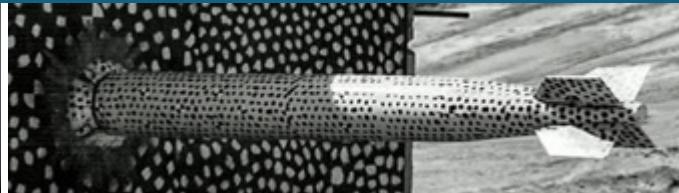


Explicit synchronous partitioned scheme for coupled reduced order models based on composite reduced bases



WCCM 2024 / PANACM 2024

Vancouver, British Columbia, July 21-26, 2024

Mini-symposium in memory of Prof. J. Tinsley Oden

PRESENTED BY

Pavel Bochev

Amy De Castro, Paul Kuberry, Irina Tezaur

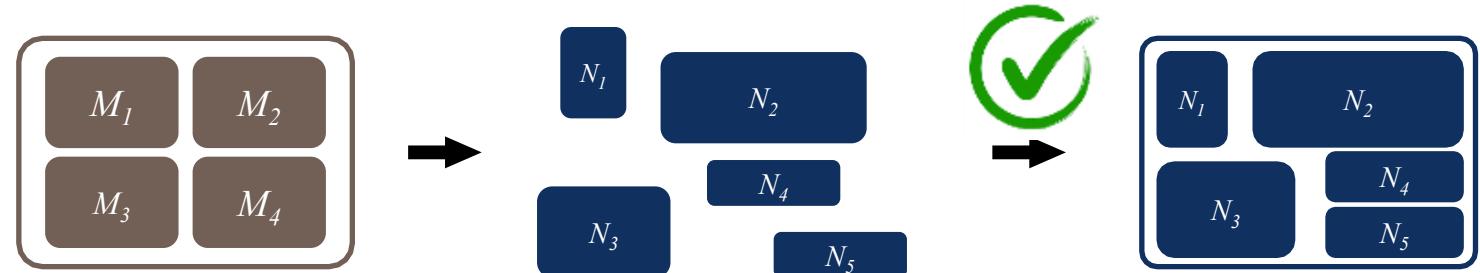
U.S. DEPARTMENT OF
ENERGY | Office of
Science

ASCR

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 Why non-conventional computational methods?

Current modeling and simulation workflows for coupled multiphysics problems are designed for traditional numerics



Complex System Model

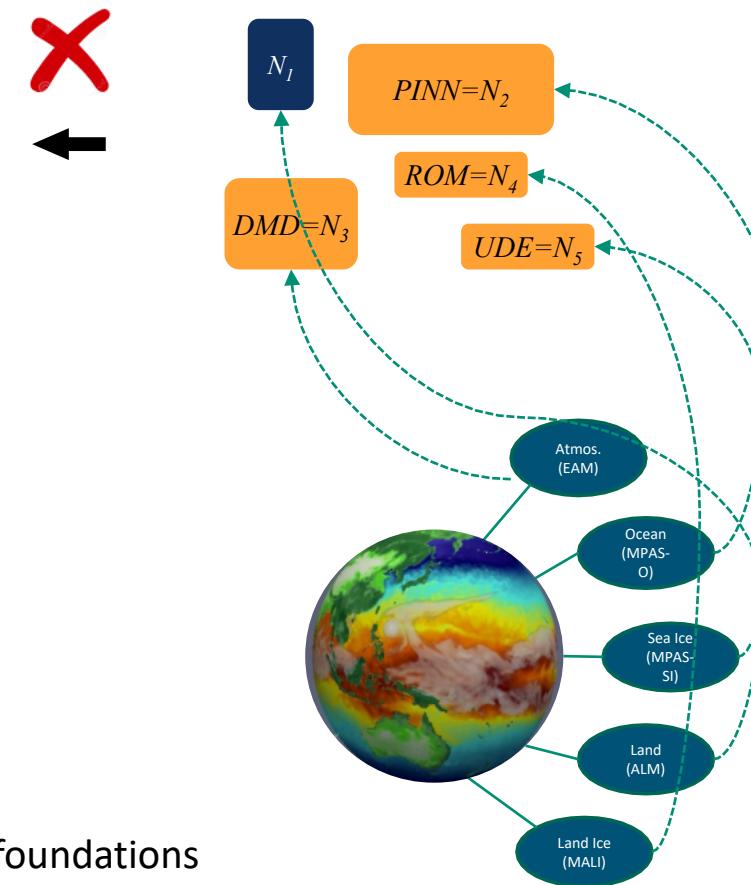
- PDEs, ODEs
- Nonlocal, integral,...

Traditional Methods

- mesh-based (FE, FV, FD),
- meshless (SPH, MLS),...

Coupled Numerical Model

- Coupling based on rigorous mathematical theories



Interest in non-conventional data-driven models is increasing due to their valuable advantages:

- **Improved computational efficiency** via incorporation of cheap reduced order models (ROM)
- **Reduced end-to-end simulation times** by learning models directly from data
- **Improved physical fidelity & predictiveness** via data-driven discovery of hidden physics

However, **plug-and-play integration** of such models lacks the necessary theoretical and practical foundations

- In this talk we extend our Explicit Synchronous Partitioned Scheme (ESPS) for multi-material interface problems to the **coupling of Reduced Order Models (ROM) with other ROMs and/or FEMs.**

3 The Explicit Synchronous Partitioned Scheme (ESPS)

Model multi-material interface (transmission) problem

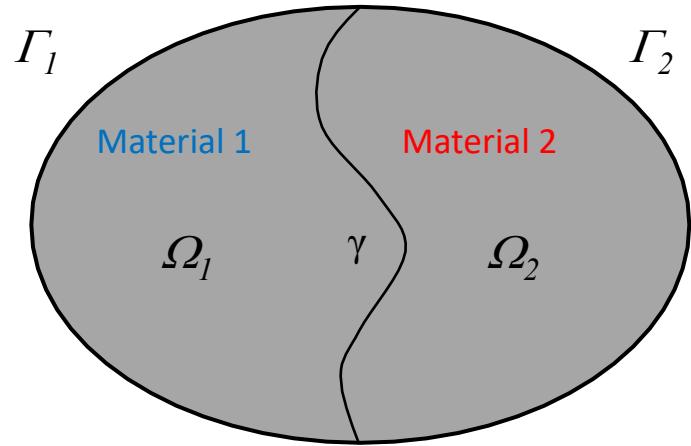
$$\begin{aligned}\dot{\varphi}_i - \nabla \cdot F_i(\varphi_i) &= f_i \quad \text{in } \Omega_i \times [0, T] \\ \varphi_i &= g_i \quad \text{in } \Gamma_i \times [0, T] \quad i = 1, 2\end{aligned}$$

$$F_i(\varphi_i) = \epsilon_i \nabla \varphi_i - \mathbf{u} \varphi_i$$

$$\begin{aligned}\varphi_1(\mathbf{x}, t) - \varphi_2(\mathbf{x}, t) &= 0 \\ F_1(\mathbf{x}, t) \cdot \mathbf{n}_\gamma &= F_2(\mathbf{x}, t) \cdot \mathbf{n}_\gamma \quad \text{on } \gamma \times [0, T].\end{aligned}$$

Subdomain equations

Coupling conditions



Step 1: Define a monolithic, semi-discrete in time formulation using Lagrange multipliers

$$\begin{aligned}(\dot{\varphi}_1^h, \psi_1^h)_{0, \Omega_1} + (\lambda^h, \psi_1^h)_{0, \gamma} &= (f_1, \psi_1^h)_{0, \Omega_1} - (F_1(\varphi_1^h), \nabla \psi_1^h)_{0, \Omega_1} \quad \forall \psi_1^h \in S_{1, \Gamma}^h \\ (\dot{\varphi}_2^h, \psi_2^h)_{0, \Omega_2} - (\lambda^h, \psi_2^h)_{0, \gamma} &= (f_2, \psi_2^h)_{0, \Omega_2} - (F_2(\varphi_2^h), \nabla \psi_2^h)_{0, \Omega_2} \quad \forall \psi_2^h \in S_{2, \Gamma}^h \\ (\varphi_1^h - \varphi_2^h, \mu^h)_{0, \gamma} &= 0 \quad \forall \mu^h \in G_\gamma^h.\end{aligned}$$

$$\begin{aligned}M_1 \dot{\Phi}_1 + G_1^T \lambda &= \bar{\mathbf{f}}_1(\Phi_1) \\ M_2 \dot{\Phi}_2 - G_2^T \lambda &= \bar{\mathbf{f}}_2(\Phi_2) \\ G_1 \Phi_1 - G_2 \Phi_2 &= \mathbf{0},\end{aligned}$$

$$\begin{aligned}\dot{\mathbf{y}}_1 &= \mathbf{f}_1(t, \mathbf{y}, \lambda) \\ \dot{\mathbf{y}}_2 &= \mathbf{f}_2(t, \mathbf{y}, \lambda) \\ \mathbf{0} &= \mathbf{g}(t, \mathbf{y})\end{aligned}$$

\mathbf{y} - differential variable
 λ - algebraic variable
 \mathbf{g} - algebraic constraint

Leads to a Hessenberg index-2 DAE

- Difficult to solve due to “hidden constraints”
- Incompatible with explicit time integration: it “deletes” the constraint
- Resulting partitioned methods not truly explicit and resemble projection methods

The Explicit Synchronous Partitioned Scheme (ESPS)

Step 2: Reduce the DAE index

$$\begin{aligned} M_1 \dot{\Phi}_1 + G_1^T \lambda &= \bar{f}_1(\Phi_1) \\ M_2 \dot{\Phi}_2 - G_2^T \lambda &= \bar{f}_2(\Phi_2) \\ G_1 \Phi_1 - G_2 \Phi_2 &= 0, \end{aligned}$$

$$\begin{aligned} M_1 \dot{\Phi}_1 + G_1^T \lambda &= \bar{f}_1(\Phi_1) \\ M_2 \dot{\Phi}_2 - G_2^T \lambda &= \bar{f}_2(\Phi_2) \\ G_1 \dot{\Phi}_1 - G_2 \dot{\Phi}_2 &= 0. \end{aligned}$$

Hessenberg index-2

$$\begin{aligned} \dot{y}_1 &= f_1(t, y, \lambda) \\ \dot{y}_2 &= f_2(t, y, \lambda) \\ 0 &= g(t, y) \end{aligned}$$

Hessenberg index-1

$$\begin{aligned} \dot{y}_1 &= f_1(t, y, \lambda) \\ \dot{y}_2 &= f_2(t, y, \lambda) \\ 0 &= g(t, y, \lambda) \end{aligned}$$

Step 3: Eliminate the algebraic variable

$$\begin{bmatrix} M_1 & 0 \\ 0 & M_2 \end{bmatrix} \begin{bmatrix} \dot{\Phi}_1 \\ \dot{\Phi}_2 \end{bmatrix} = \begin{bmatrix} \bar{f}_1(\Phi_1) - G_1^T \lambda(\Phi_1, \Phi_2) \\ \bar{f}_2(\Phi_2) + G_2^T \lambda(\Phi_1, \Phi_2) \end{bmatrix}$$

- Assume the Jacobian $\partial_\lambda g$ is **non-singular**. Then, $0 = g(t, y, \lambda)$ defines an **implicit** function $\lambda(t, y)$.

Step 4: Apply explicit time integration

$$y_1^{n+1} = f_1(t, y^n, \lambda(t^n, y^n))$$

$$y_2^{n+1} = f_2(t, y^n, \lambda(t^n, y^n))$$

- Subdomain equations can be solved **independently**!
- Explicit **time integration** effectively **decouples** the system
- Remains **equivalent** to the parent **monolithic problem**
- No splitting error!** Similar ideas used in HATI schemes:

5 ESPS analysis

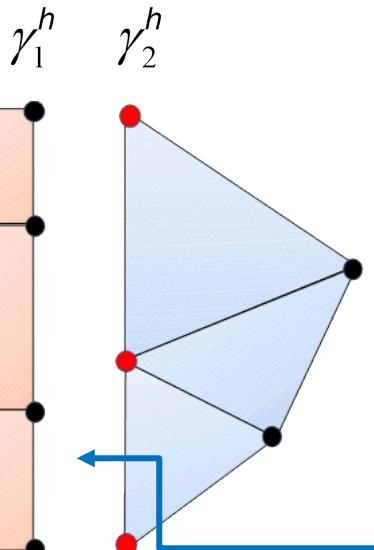
Lemma: Assume that the Lagrange multiplier space G_γ^h such that there is an operator $Q : G_\gamma^h \mapsto S_{1,\Gamma}^h \times S_{2,\Gamma}^h$

$$\|\mathbf{s}^h\|_{0,\gamma} \leq C_1 \left(\mathbf{s}^h, (Q\mathbf{s}^h)_1 - (Q\mathbf{s}^h)_2 \right)_{0,\gamma} \quad \forall \mathbf{s}^h \in G_\gamma^h, \text{ and } \|Q(\mathbf{s}^h)\| \leq C_2 h_\gamma^\alpha \|\mathbf{s}^h\|_{0,\gamma}, \quad \alpha \geq 0$$

Then $b(\cdot, \cdot)$ satisfies the **inf-sup condition**, $G^T = (G_1^T, G_2^T)$ has **full column rank**, and the Schur complement $S = G_1 M_1^{-1} G_1^T + G_2 M_2^{-1} G_2^T$ is **SPD**.

A **sufficient condition** for the existence of the operator Q is the following **Trace Compatibility Condition**:

Every Lagrange multiplier is a trace of a finite element function from one of the two sides of the interface.



Lemma. Assume that $h_1 \leq h_2$ and let $\rho = h_2/h_1 > 1$.

1. If the Lagrange multiplier space $G_\gamma^h = G_1^h$ then
2. If the Lagrange multiplier space $G_\gamma^h = G_2^h$ then

coarser

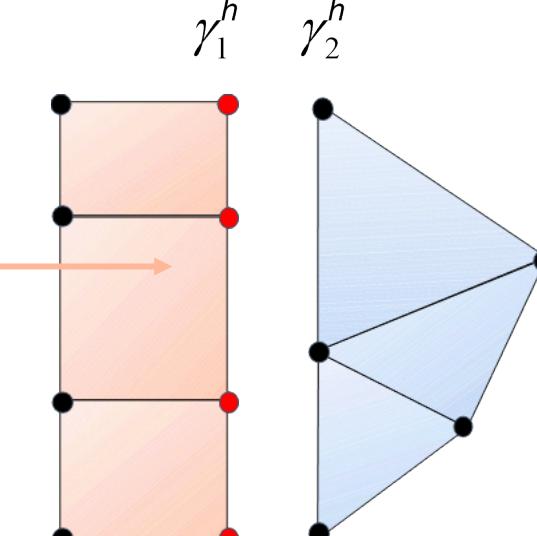
$$G_\gamma^h = G_1^h$$

$$\kappa(S) \leq C\rho^{d-1}$$

$$G_\gamma^h = G_2^h$$

$$\kappa(S) \leq C\rho^d$$

finer



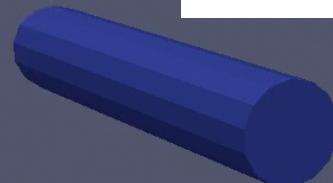
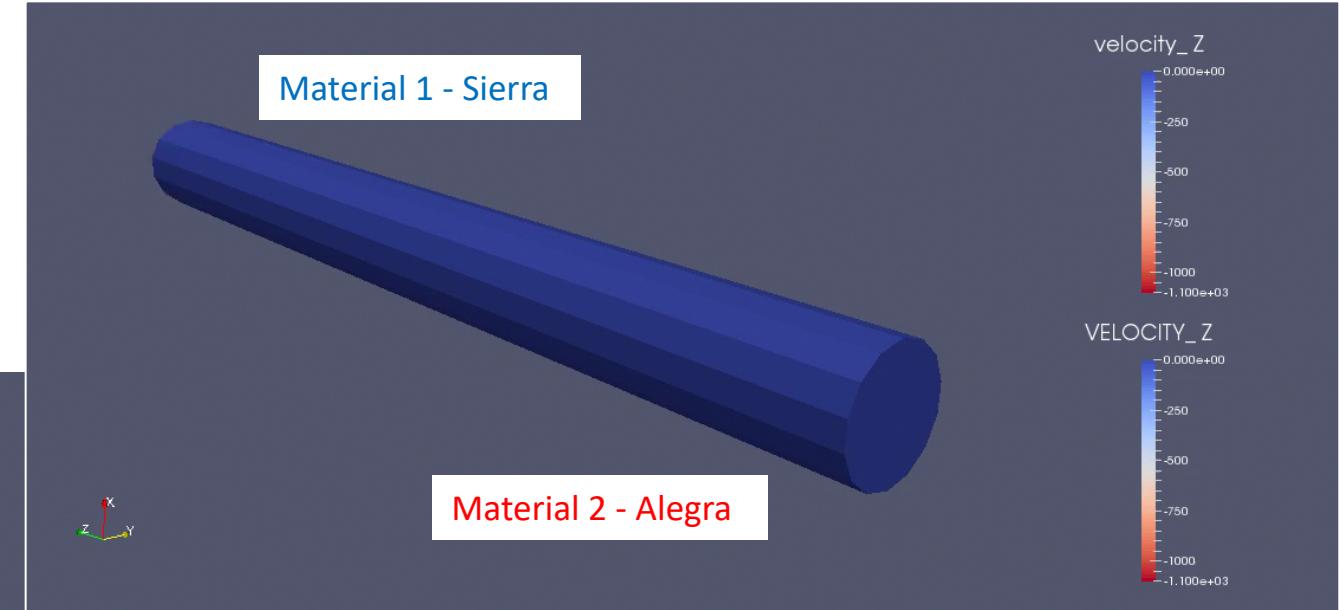
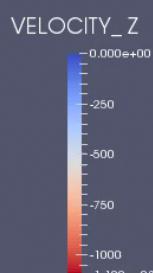
6 How can non-conventional methods improve ESPS?

Production implementation of ESPS solves a coupled structure-structure interaction problem with two different materials modeled by Sierra SM and Alegra, resp.

$$\begin{aligned}\ddot{\mathbf{u}}_i - \nabla \cdot \sigma_i(\mathbf{u}_i) &= \mathbf{f}_i \quad \text{in } \Omega_i \times [0, T] \\ \mathbf{u}_i &= \mathbf{g}_i \quad \text{on } \Gamma_i \times [0, T], \quad i = 1, 2 \\ \sigma_i(\mathbf{u}_i) &= \lambda_i(\nabla \cdot \mathbf{u}_i)I + 2\mu_i\varepsilon(\mathbf{u}_i)\end{aligned}$$

$$\begin{aligned}\mathbf{u}_1(\mathbf{x}, t) &= \mathbf{u}_2(\mathbf{x}, t) \\ \sigma_1(\mathbf{x}, t) \cdot \mathbf{n}_\gamma &= \sigma_2(\mathbf{x}, t) \cdot \mathbf{n}_\gamma \quad \text{on } \gamma \times [0, T].\end{aligned}$$

Material 1 - Sierra



Material 2 requires a much finer mesh than Material 1. Replacing the FE code for Material 2 (and/or Material 1) by computationally efficient ROM can speed up the simulation.

Model Order Reduction (MOR) for Parametric PDEs (μ PDEs)

Basic idea: the solution $u(\mu)$ of the μ PDE: $\dot{u} + L(u, \mu) = f; \mu \in \mathbb{R}^p$ is often a “nice” function of μ .

- A good approximation for $u(\mu)$ can be computed from snapshots $u(\mu_i)$ sampling the parameter space

A proper orthogonal decomposition (POD) Galerkin projection approach

Step 1: compute a reduced basis (RB)

- Collect n snapshots \mathbf{u}_i (coefficients of $u(\mu_i)$) and compute the SVD:

$$S = [\mathbf{u}_1, \dots, \mathbf{u}_n] = U \Sigma V^T$$

- Given tolerance $\delta > 0$ choose d such that

$$\frac{\sum_{j=1}^d \sigma_j^2}{\sum_{j=1}^n \sigma_j^2} \geq 1 - \delta$$

$$S = [\tilde{U} \xrightarrow{d} \tilde{U}_{\text{trun}}] \begin{bmatrix} \tilde{\Sigma}^T & 0 \\ 0 & \tilde{\Sigma}_{\text{trun}}^T \end{bmatrix} [\tilde{V}^T]$$

- Define the RB as the d left singular vectors, i.e., the matrix \tilde{U}

$$S \approx \tilde{S} = \tilde{U} \tilde{\Sigma} \tilde{V}^T \quad \text{Low-rank approximation of } S$$

Step 2: Galerkin projection onto the reduced basis

$$a(u, v) = f(v) \text{ for all } v \in V$$

$$K\mathbf{u} = \mathbf{f}$$

$$\mathbf{u} = \tilde{U}\mathbf{a}$$

$$\tilde{U}^T K \tilde{U} \mathbf{a} = \tilde{U}^T \mathbf{f}$$

$$d \ll m$$

Full Order Model (FOM): $m \times m$

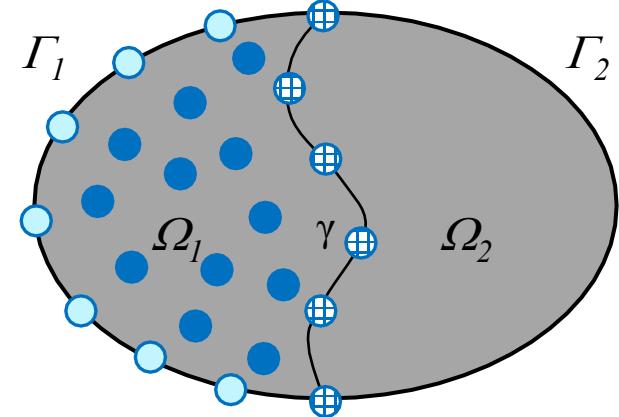
Reduced Order Model (ROM): $d \times d$

8 ESPS extension to ROM+ROM and ROM+FEM couplings

Full subdomain RB are commonly used in Domain Decomposition for ROM. Can they work for us?

A full subdomain RB formulation. Inhomogeneous Dirichlet conditions $\beta(x, t)$

$$\Phi_1 = \begin{array}{c} \text{blue block} \\ \text{red block } m \\ \text{light blue block } \beta \\ \text{red block } m \\ \text{blue block} \end{array} \quad S_0 = \begin{array}{c} \text{blue block} \\ \text{light blue block } 0 \\ \text{red block } n \end{array} = U_0 \Sigma_0 V_0^T \approx \tilde{S}_0 = \begin{array}{c} \text{blue block } \tilde{U}_0 \\ \text{light blue block } 0 \\ \text{red block } d \end{array} \quad \begin{array}{l} \text{RB = columns of } \tilde{U}_0 \\ \text{Full subdomain: RB} \\ \text{includes both interior} \\ \text{and interface DoFs} \end{array}$$



ROM-FEM coupled problem. (ROM-ROM very similar)

RB projection:

$$\Phi_1 = \tilde{U}_0 \varphi_R + \beta \quad \rightarrow$$

$$\begin{aligned} \tilde{M}_1 \dot{\varphi}_R + \tilde{G}_1^T \lambda &= \tilde{U}_0^T \bar{\mathbf{f}}_1 (\tilde{U}_0 \varphi_R + \beta) \\ M_2 \dot{\Phi}_2 - G_2^T \lambda &= \bar{\mathbf{f}}_2 (\Phi_2) \\ \tilde{G}_1 \dot{\varphi}_R - G_2 \dot{\Phi}_2 &= 0, \end{aligned}$$

$$\begin{aligned} \tilde{M}_1 &:= \tilde{U}_0^T M_1 \tilde{U}_0 \\ \tilde{G}_1^T &:= \tilde{U}_0^T G_1^T. \end{aligned}$$

9 Full subdomain RB formulation: issues.

Key issue: the Schur complement is not provably non-singular!

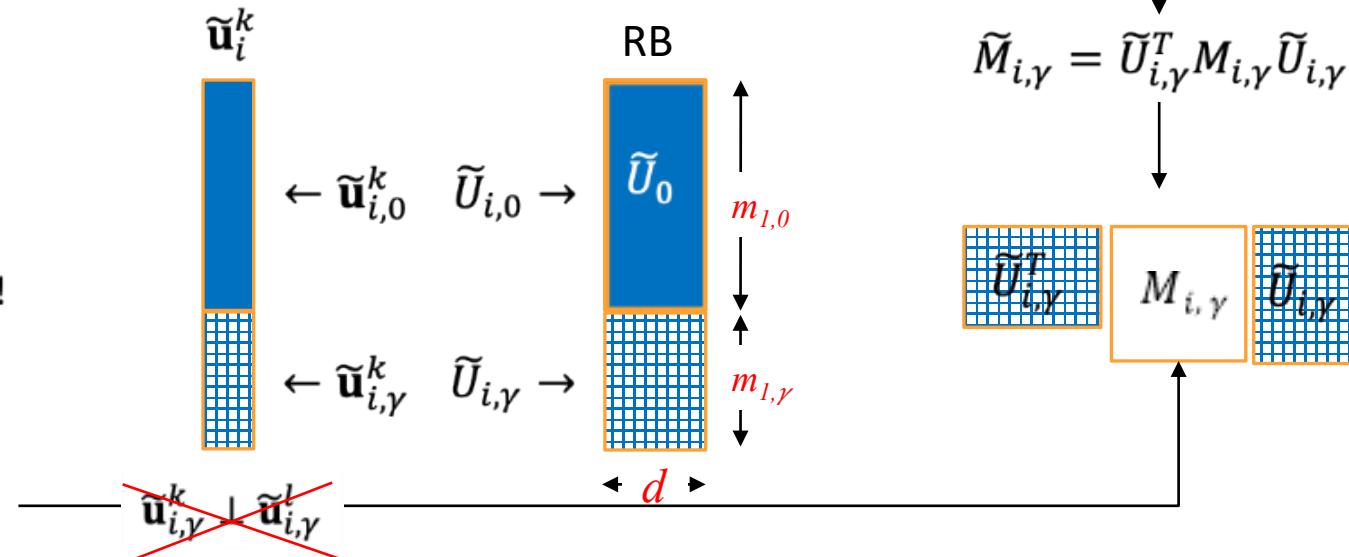
- To understand the problem, consider the lumped mass matrix case and the ROM-ROM coupling

$$\left[\begin{array}{ccc|cc} M_{1,\gamma} & 0 & G_1^T & 0 & 0 \\ 0 & M_{2,\gamma} & -G_2^T & 0 & 0 \\ G_1 & -G_2 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & M_{1,0} & 0 \\ 0 & 0 & 0 & 0 & M_{2,0} \end{array} \right] \begin{array}{l} \text{Interface blocks} \\ \text{are separated from the} \\ \text{interior blocks} \end{array}$$

The ROM-ROM Schur complement uses **only** the **interface** mass matrices

$$\tilde{S} = \tilde{G}_1 \tilde{M}_{1,\gamma}^{-1} \tilde{G}_1^T + \tilde{G}_2 \tilde{M}_{2,\gamma}^{-1} \tilde{G}_2^T$$

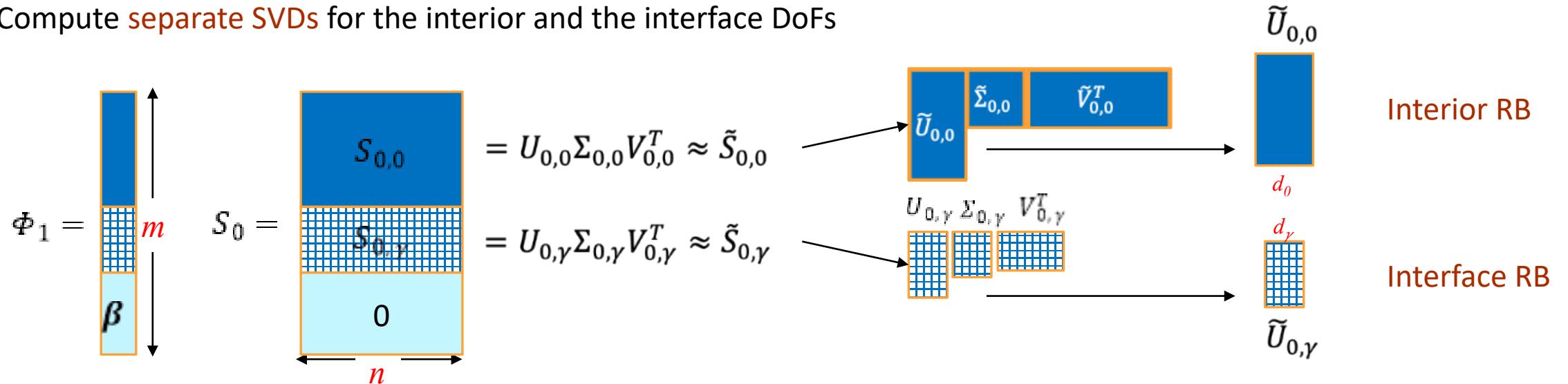
- Any two columns of the RB are orthonormal by construction: $\tilde{\mathbf{u}}_i^k \perp \tilde{\mathbf{u}}_i^l$
- However, their parts $\tilde{\mathbf{u}}_{i,\gamma}^k$ and $\tilde{\mathbf{u}}_{i,\gamma}^l$ corresponding to interface DoFs are not! They can be almost linearly dependent.



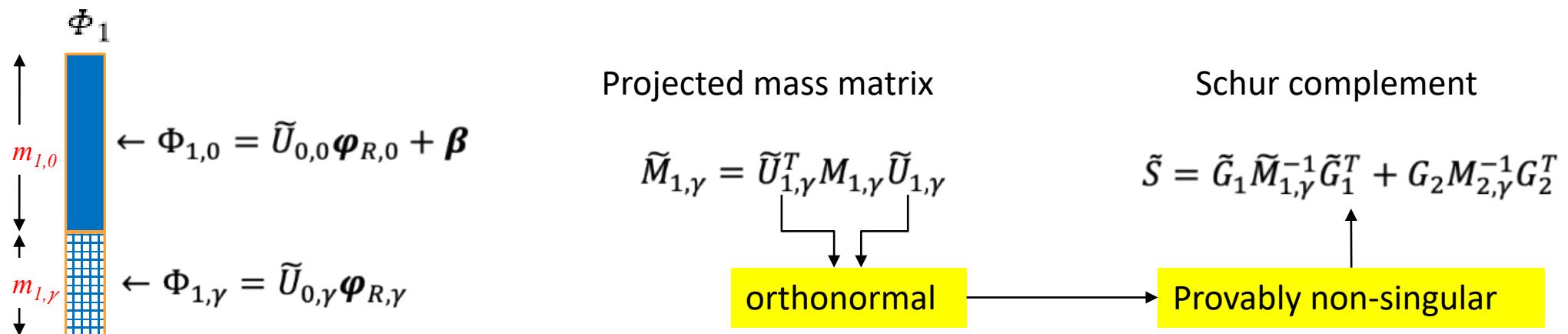
The projected mass matrix $\tilde{M}_{i,\gamma}$ is not guaranteed to be non-singular!

Solution: a Composite Reduced Basis Approach

Compute **separate SVDs** for the interior and the interface DoFs



ROM-FEM coupled problem defined by using **separate projections** for interior and interface DoFs



Analysis

One can show that a version of the **Trace Compatibility Condition (TCC)** is sufficient for the existence of a **nonsingular Schur complement** for the coupled ROM+ROM and ROM+FOM formulations.

- **ROM+ROM:** Every RB Lagrange multiplier is a trace of a RB function from one of the two sides of the interface.
- **ROM+FOM:** Every Lagrange multiplier is either
 - a trace of a RB function from the ROM side of the interface, or
 - A trace of a FEM function from the FEM side of the interface

Test example: solid body rotation

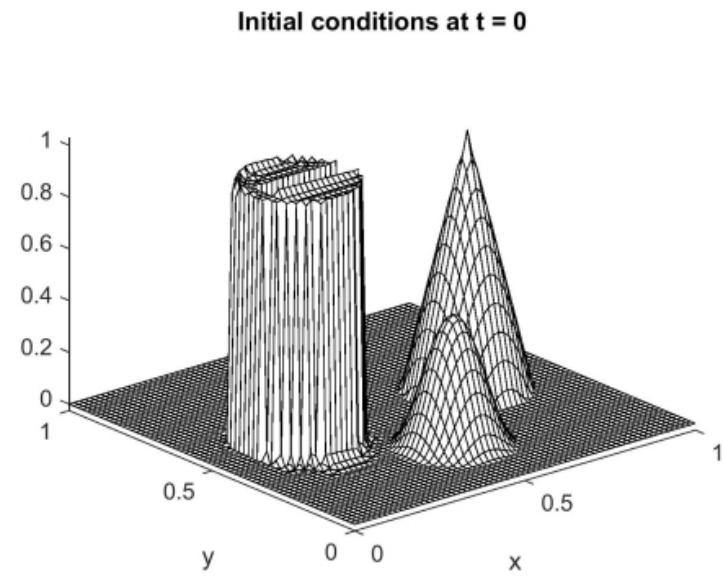
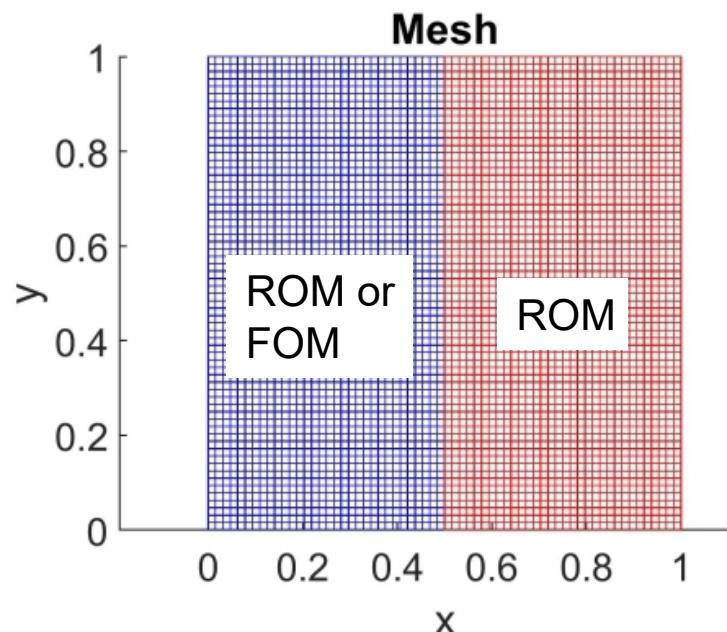
- **Advection:** $\mathbf{u} = (0.5 - y, x - 0.5)$
- **Time scheme:** RK4

Simulation settings:

- $\varepsilon_1 = \varepsilon_2$: Single physics(DD)
- $\varepsilon_1 \neq \varepsilon_2$: Multi-physics

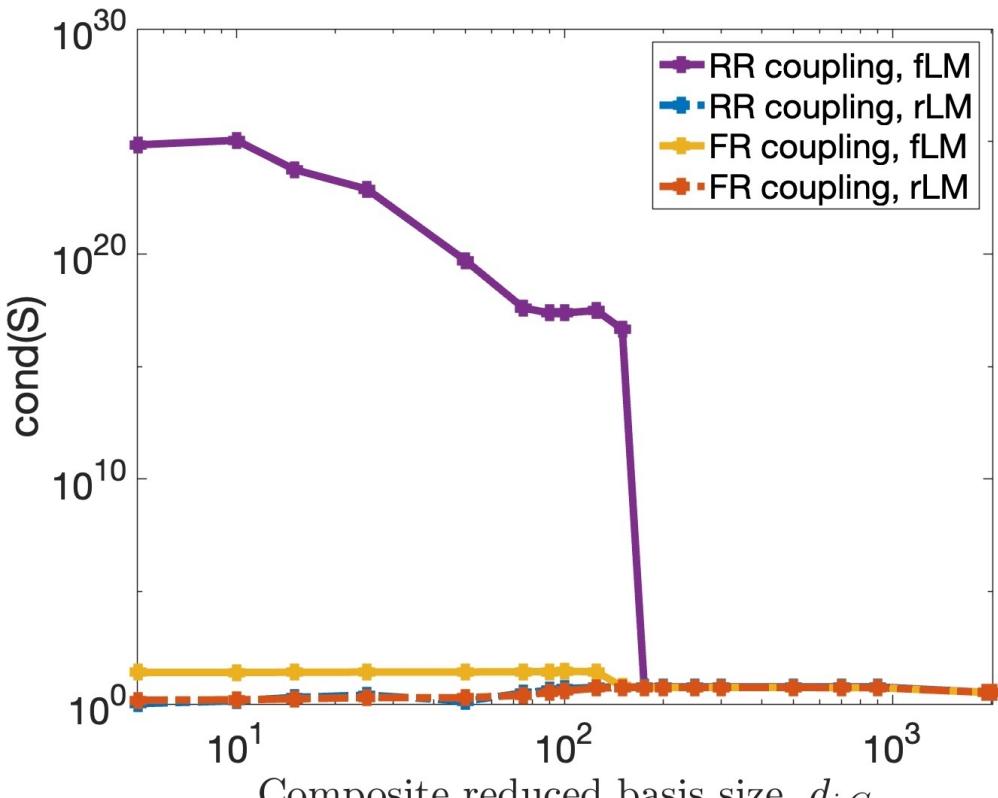
Snapshots:

- monolithic FEM on Ω for $T_{final} = 2\pi$



Numerical examples: violation of the Trace Compatibility Condition

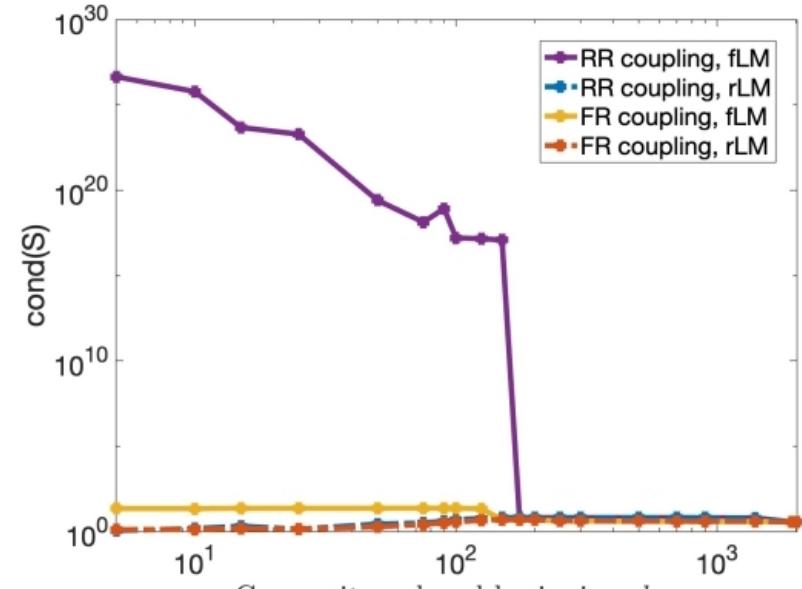
Condition number of the Schur complement as function of reduced basis size



Single physics

A. DeCastro, P. Bochev, P. Kuberry, and I. Tezaur. Explicit synchronous partitioned scheme for coupled reduced order models based on composite reduced bases. CMAME, 2023.

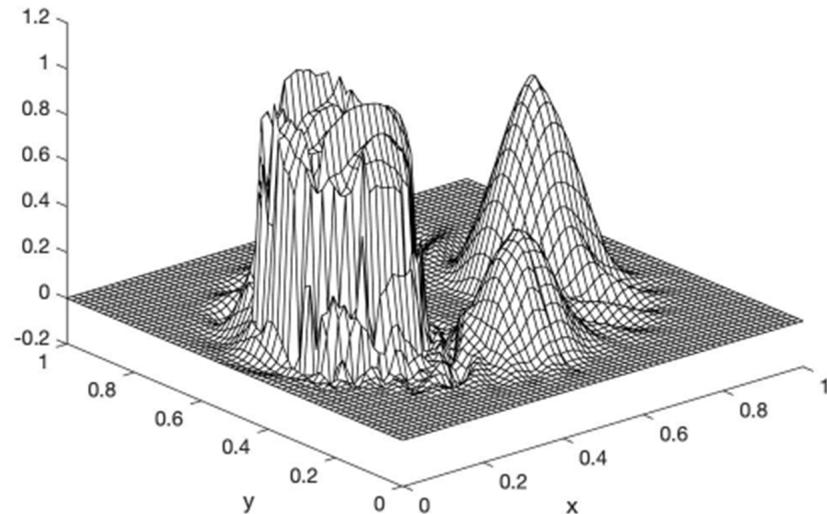
ROM+ROM (RR): full subdomain basis **violates** TCC
 ROM+ROM (RR): composite RB **satisfies** TCC
 FOM+ROM (FR): interface FEM from the FEM side **satisfies** TCC
 FOM+ROM (FR): interface RB from the ROM side **satisfies** TCC



Multi-physics

Numerical examples: violation of the Trace Compatibility Condition

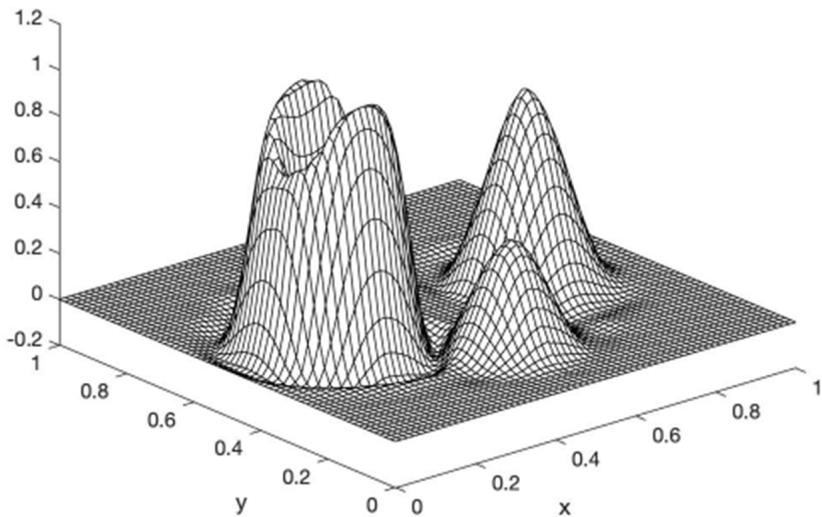
Full subdomain RB ROM-ROM



$d = 50$ modes in each subdomain

FOM: 4225 DOFs,
Subdomains: 2145 DOFs

Composite RB ROM-ROM



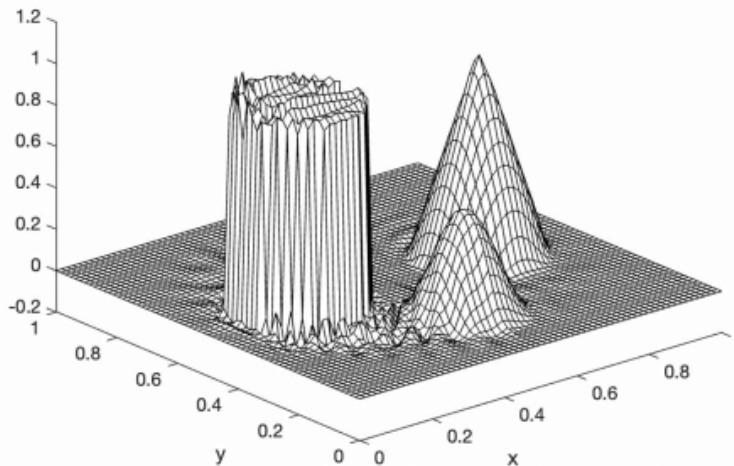
$d_{i,0} = 40$ interior modes
 $d_{i,\gamma} = 10$ interface modes

In each subdomain

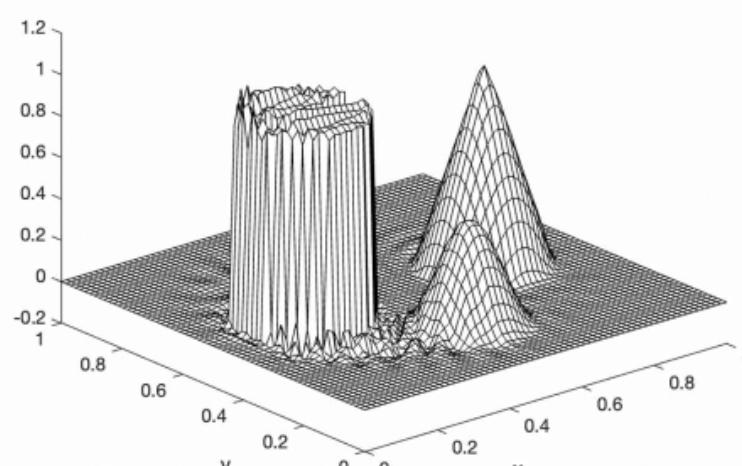
- Composite RB guarantees a non-singular Schur complement
- Allows accurate results with smaller total number of modes

Numerical examples: violation of the Trace Compatibility Condition

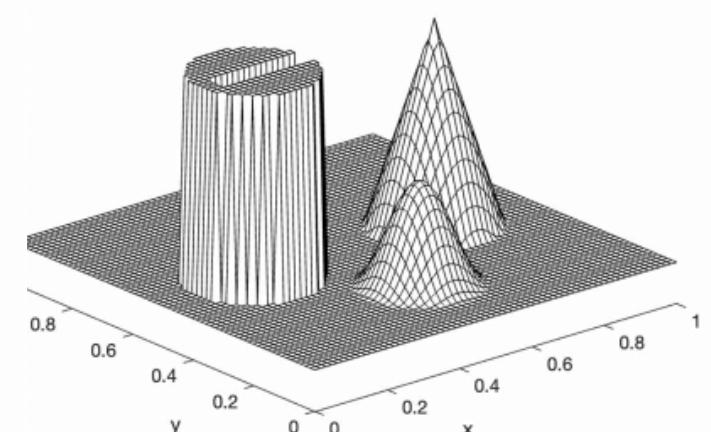
Full subdomain RB ROM-ROM



Composite RB ROM-ROM



FOM-FOM



Conclusions

We presented extension of the ESPS scheme to ROM-FEM and ROM-ROM coupling:

- Use of ROM on one or both subdomains reduces simulation time by over an order of magnitude
- Accuracy retained with a relatively small number of modes in the RB

Choice of RB basis is essential for a provably well-posed ROM-FEM and ROM-ROM couplings:

- **Full subdomain RB:**
 - Standard in many ROM+DD schemes but does not guarantee non-singular Schur complement
 - Size of the interface problem dependent on the size of the RB – governed by accuracy considerations including *all* DoFs
- **Split subdomain RB:**
 - Provably non-singular Schur complement
 - Requires two, but smaller size SVDs: cost comparable to the full subdomain case
 - Allows more flexibility by choosing RB for the interior and the interface independently

Ongoing work:

- Couplings involving equation-free, e.g., DMD sub-models
- Multi-rate & heterogeneous time integration schemes