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Outline

« Solar thermo-chemical hydrogen production (STCH) background and the US
DOE HydroGEN consortium

« Addressing needs for STCH community

« |dentification of benchmarking metrics and applying them to exemplar
materials

« New materials identification aided by computational discovery with
machine learning approach

+ Revisiting oxygen non-stoichiometry in Lay gSry,MnO5 5 at STCH reducing
temperatures (>1200 °C), and new High Entropy Perovskite Oxide (HEPO)




Solar Thermo-Chemical Hydrogen Production (STCH) h
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Single phase materials to avoid cycling degradation

Oxides that “breathe” oxygen needed - non-stoichiometric oxides

Goldilocks reduction enthalpy (H,)

Also use heat from other sources = Thermo-chemical hydrogen production (TCH)




Department of Energy HydroGEN Consortium (H2ZAWSM.org)

Research focus areas

&

Photoelectrochemical
Water Splitting

@4,
Low- and High-Temperature Solar Thermochemical
Advanced Electrolysis Water Splitting

Leverage capabilities at national laboratories

« National Renewable Energy Laboratory (Lead)
« Lawrence Berkeley National Laboratory

« Sandia National Laboratories

« |daho National Laboratory

* Lawrence Livermore National Laboratory

Collaboration with industry and academia seedlings
supported by HydroGEN funding opportunities

Sandia node capabilities used for this presentation:
« Thermo-gravimetric analysis (Sean Bishop)
« STCH reactor (Tony McDaniel)
 Electron microscopy and composition analysis (Josh Sugar)




Hydrogen production and kinetic \\
Exemplar Material Viability Study parameter (from flow reactor)
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Metrics and Exemplar Benchmarking

Exemplars normalized to state-of-the-art CeO,

Descriptor Target
VEIRES

Metrics

Cycle
Efficiency
(STH)

Material
Efficiency

Reduction
Capacity

STCH Capacity
(Maximum
Yield)

STCH Capacity
(Low Yield)

STCH Capacity
(Moderate
Yield)

Kinetic
Performance

* Evaluation framework created and metrics identified
* Weakness of exemplars in low steam/H, ratio = critical

Solar-to-hydrogen conversion efficiency derived from
detailed cycle analysis using a thermodynamic model
based on specific plant operational assumptions

%}3&5 is the maximum possible thermal efficiency of
0
the two-step process. (Agg, . evaluated at 25°C)

mmol O / mol atom in solid reduced @ neutral low
condition

mmol H, / mol atom in solid reduced @ neutral low
condition, oxidized in pure H,O @ optimal Ty for
material

mmol H, / mol atom in solid reduced @ neutral low
condition, oxidized in steam-to-fuel ratio H,O/H, =
1000 @ optimal Ty for material

mmol H, / mol atom in solid reduced @ neutral low
condition, oxidized in steam-to-fuel ratio H,O/H, =
100 @ optimal Ty for material

Time to 90% of ayy ya in pure H,0 at optimal Tey for
specific material in a dispersed powder configuration

need for new materials
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..but H, “consumption” in low steam/H, > only
LSM20 competitive with CeO,

H, Prod. (Mod.)

«Hz, Moderate (-)




Discovery of New STCH Materials Aided by Machine Learning

First-principles DFT workflow is robust but costly (using NRELMatDb hosts)

N

ML screens 10,000’s
of MP structures in

minutes that would
take 1,000’s of DFT
months

AHy (dGNN) [eV]

Expected AH, 4 MAE
for unseen
compounds <450
meV (threshold for ML
to be predictive).

AH4 min(V,), eV ~ reduction enthalpy

> Examples: Identified Ba(Fe,In),0,
and (Ba,Sr)g(La,Y),Fe,O,«

15 -
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5 J
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= Other
0 -
1 I
0 10

AHy4 (DFT) [eV]

M. Witman, Nature Computational Science, 3 (2023) 675
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BaFe,O,: V5 Point Defect Mechanism, and Al Addition to Increase
Temperature Stability N\

»

Melting of BFO in low pO, mitigated by
BaFe,0, Al substitution!

Orthorhombic (Bb21m) phase

Higher melting point
expected with Al

1400 °C in Ar (~20 0 ppm. 0,) * BaAl,0, (hexagonal P6;,
. , s stuffed tridymite)

melting point ~1820 °C

« MgAlLO, (cubic Fd-3m,
spinel) melting point
~2130 °C

A BaAl, ,Fe, ;O, stable at
. 1450 °C in air!
BaAIMFe1 6O - Hexagonal (P63) phase BaFe,0, Ty~ 1420 °C

DFT = oxygen vacancy
preferred vs. cation defects

-> Enables higher reduction temperature
and resistance to densification




BaAl, ,Fe, ;O,: Water Splitter in Low Steam/H,!

H, production measurement using flow reactor
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¢ (min)

(Do) I

Reduction at 1425 °C in ~1
ppm O,

Oxidation at 850 °C in steam
or 1% H, in steam

| _—— Reduction largely reproducible after cycle

—— Some continued H, production in pure steam

H, proauction even in 1% H, environment!




H, Production Over 20 Cycles

* Reduction at 1425 °Cin ~1
ppm O,
] « Oxidation at 850 °C in steam
Tm BaAlO.4Fel'6O4:> AnH2 =6.31 _ l§>
7§ 012 Ce0,= An, =7.12 ? E
© i 2 o
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Severe Change in Morphology and Phase After Cycling

Initial powder  After 20 redox cycles

Post-cycled sample initial diffraction analysis at SLAC

« BaAlL,O, (P65) is 20.34 wt% > starting phase

BaFe,O, (Cmc21)is 75.17 wt%
BaFeO; (P65/mmc) is 4.48 wt%

+

Decomposition
products

Ad per atom
(AS in BaAly 4Feq ¢0,4.5)/ (7 atoms)

0.000 | oo

-0.005 |-

-0.010

-0.015

-0.020 |

Long-term reduction at 1425 °C
= continuous oxygen release

BaAl, ,Fe, .0, TGA

—————r
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Detailed Compositional Analysis - 3-phases
EDS map of post- ZO cycled Sample |

« Purple phase consistent with ~BaAlFeO, (the
expected Pos structure)

« Tan phase consistent with ~BaFeO;, with
possible melting

« Green phase consistent with ~BaFe,O,, with

possible melting

N
AN

»

N\

In situ reduction in TEM = evolution of
decomposition

FIB cross-section of BaAl, ,Fe, O,

Ficial RT /700 °C

Vacuum

T um

Fe-rich particles formed

Future Work:

> jnvestigating role of each phase in water
splitting and durability

> HTXRD in simulated water splitting
condiitions
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AN

(Ba,Sr).La,Fe,O,; and (Ba,Sr).Y,Fe,O,; ML Predicted Water Splitters h

Generalized monoclinic structure (excluding Ba Sr)\
1099-?9(.?'.0. e et et Fe apex sharing dimers (not in hexagonal Structure\
0.000 &4 ] Bagla,Fe Oy515) _

BagSrLa,Fe 045
Ba5SrY2Fe4O15(1_5}

o
o) BagY,Fe Oq55
© _
g 00051 = Hexagonal
= 1/ P6smc

-0.010- v &*: E \_' Monoclinic
1350 °C (30 ppm O,) 4 P2c
0 10 20 30 40 50 60 70 80 90

Time [h]
STCH screening protocol' - Ba.Y,Fe, O, is best
'Sanders et al., Front. Energy Res. 10:856943 (2022)

Monoclinic > Aé > CeO,

Future Work = Flow reactor measurements
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AN

Re-Visiting La, sSr, ,MnO;: Oxygen Stoichiometry at High Temp.
Limited 6 data above 1200 °C =2 evaluate at higher temperatures (e.g., STCH conditions)
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Log(pO, [atm])
Less super-stoichiometry than previously
estimated, in agreement with Bork model

Kuo et al,, J. Sol. State Chem., 83 (1989) 52
Bork et al., Adv. Energy Mater. 7 (2017) 1601086
Grundy et al.,, CALPHAD 28 (2004) 191

Log(pO, [atm])

*Mines: In collaboration with M. Sanders at CSM

Future Work = Defect equilibria moaeling
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Impact of Acceptor Dopant Content on Reducibility

La;  Sr,MNO4 ¢

3.00 F 1400 °C O___o____o____o__-o_-
[ 0/ _ m— —H]
[ ZO% Sl’ O/ - "’"A’.
2.99 | R _
: o Ve ]
208 S ]
3305 M T -
% [ / /
297 L / / .
i - /
E Y
2.96 | )/ A :
[ o /A’ 40% Sr (Takacs) :
2.95 | A -
[ A ]
2 04 I T T A R 1
-5 4 -3 2 -1 0

Log(pO, [atm])
Takacs, et al., Acta Mater., 103 (2016) 700

B *330% Sr in collaboration with X. Liu and J. Luo (WVU and UCSD)

“1 20% Sr

o
w
|

Sr.r.r:

Site Fraction

o
=

M1y,

0.0

T T T T T T T T
-14.0 -13.5 -13.0 -=12.5 -12.0 -11.5 -11.0 -10.5
Log(pO2 [atm])

o1 40% Sr

&

< <
] N
=] wu

Site Fraction

0.05 +

0.00

T T T T T T T T
—=14.0 -13.5 -=13.0 -12.5 -12.0 -11.5 -=11.0 -10.5
Log(pO2 [atm])

Increasing [Sr] = more oxygen vacancies
due to charge compensation
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Enhanced Reducibility of High Entropy Perovskite Oxide (HEPO)

(Lay/6Pri/gNdy6Gd; 6BayeSr,6)MNnO5 ¢ (HEPO)™

« HEPO and LSM33 have similar
* Average A-site ionic radius
« Lattice parameter
« Total acceptor dopant content

 Even more reducible than LSM40

Explanation?: Large cations “fracked” LSM
(small cation - oxygen bonds weakened)

el oy T e w LR e
LI M e o ) - -

Shale Oil and Gas Handbook (2015)

La;, Sr,MNnO; ¢

3.00 |  o—0—0

20% Sr 00" _ _aq""
o AT X _
- 7 a w7 ]
2.98 | A */, _
[ 33%ST A ;
2.96 | L7 L7 HEPO _
o ! . A / (33% acceptor) ]
I A d _
ooal  40%Sr ¥ )
(Takacs) 7 :

/
292 | x ]
_ ) _
% 1400 °C
ool . F .

-5 -4 -3 -2 -1 0

Takacs, et al.,, Acta
Log(pO; [atm])  aier. 103 (2016) 700

S. Bishop et al., ECS Trans. (2023)

*In collaboration with X. Liu (WVU) and J. Luo (UCSD)
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H,. Decrease for HEPO
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3.8 *Calculated by Yang

Takacs, et al., Acta Mater., 103 (2016) 700
Mizusaki, et al.,, Solid State lonics, 129 (2000) 163
Yang, J. Mater. Chem. A, 2 (2014) 13612

Van't Hoff analysis

1 I 1
—ABO; ;> —ABO: .« +501(g)

« Lower H, for HEPO compared to LSM

AH E::vllul —TA S?tdu.‘l )

Kiedon = (pO;) ¥ = exp( — T

« Entropy similar
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AN

N AN
SEM/EDS: No significant evidence of compositional heterogeneity HAADF-STEM: No significant )
- — evidence of A-site cation ordering \

Homogeneous Composition and Disordered Atomic Structure h

« Expected perovskite structure of HEPO
~ and LSM33
Lag 65510 35Mn03(PDF#54-1195)|  * HEPO ~0.2% smaller cell volume

L LSM33
M A I\ A

20 30 40 50 60 70 80
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Dramatic Increase in STCH H, Production

_8

------------------------ - MI
— 4 20
Zaoof 3
2 2
= 2
e 60 © | | _
2 = 46% increase in H, production
35 200 3 with HEPO compared to LSM33!
Q
:Z 0 5
o 100 =1
T Q
X,
1] ) —— P e ] E

Cijie Liu et al., J. Mater. Chem. A,
2024,12,3910-3922
1350 °C N, reduction; 1100 °C 40% steam oxidation

19




Summary

Presented exemplar STCH materials and key STCH metrics

* |dentified significant gap in H, production in low steam/H, ratio materials
Demonstrated successful water splitting with ML predicted compound

» Improved thermal stability with Al addition

« Competitive H, production to CeO, in low steam/H,

« Despite severe morphological and phase changes, maintains H, production after many
cycles

Examined high temperature (>1200 °C) oxygen non-stoichiometry in LSM20
« Experimental differences from thermodynamic predictions in high pO,

Discussed new (La, xPr,,Nd,,cGd, Ba, :Sr,c)MNnO; s (HEPO) STCH material with much lower
reduction enthalpy than LSM of same acceptor content
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