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Outline
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• Solar thermo-chemical hydrogen production (STCH) background and the US 
DOE HydroGEN consortium

• Addressing needs for STCH community

• Identification of benchmarking metrics and applying them to exemplar 
materials

• New materials identification aided by computational discovery with 
machine learning approach

• Revisiting oxygen non-stoichiometry in La0.8Sr0.2MnO3-δ at STCH reducing 
temperatures (>1200 oC), and new High Entropy Perovskite Oxide (HEPO)



Solar Thermo-Chemical Hydrogen Production (STCH)
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Tred = 1300-1500° C

Tox = 800-1000° C
MOx-ᵯ�   + ᵯ� H2O 

MOx MOx-ᵯ�

ᵯ� H2
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pO2 @ TR = 10-3 – 10-6 atm

National Solar Thermal Test Facility at Sandia National Labs

energy.sandia.gov

• Single phase materials to avoid cycling degradation
• Oxides that “breathe” oxygen needed  non-stoichiometric oxides
• Goldilocks reduction enthalpy (Hr)
• Also use heat from other sources  Thermo-chemical hydrogen production (TCH)

Sunlight (heat) + water   Hydrogen



Department of Energy HydroGEN Consortium (H2AWSM.org)
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• National Renewable Energy Laboratory (Lead)
• Lawrence Berkeley National Laboratory
• Sandia National Laboratories
• Idaho National Laboratory
• Lawrence Livermore National Laboratory

Leverage capabilities at national laboratoriesResearch focus areas

Sandia node capabilities used for this presentation:
• Thermo-gravimetric analysis (Sean Bishop)
• STCH reactor (Tony McDaniel)
• Electron microscopy and composition analysis (Josh Sugar)

Collaboration with industry and academia seedlings 
supported by HydroGEN funding opportunities



Exemplar Material Viability Study

5

• Define STCH metrics
• Benchmark exemplar materials against state of the art (CeO2)
• Identify technology gaps

Thermodynamic parameters (from 
thermo-gravimetric analysis)

Hydrogen production and kinetic 
parameter (from flow reactor)

Cycle efficiency estimation

BCM: BaCe0.25Mn0.75O3
HEPO: La1/6Pr1/6Nd1/6Gd1/6Ba1/6Sr1/6)MnO3
LSM20: La0.8Sr0.2MnO3

Exemplars

H 2 p
roductio

n 

windowLSM20



Metrics and Exemplar Benchmarking
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Metric Descriptor Target 
Values

Cycle 
Efficiency 

(STH)

Solar-to-hydrogen conversion efficiency derived from 
detailed cycle analysis using a thermodynamic model 

based on specific plant operational assumptions
STH > 26%

Material 
Efficiency Max  > 50%

Reduction 
Capacity

mmol O / mol atom in solid reduced @ neutral low 
condition O > 5

STCH Capacity 
(Maximum 

Yield)

mmol H2 / mol atom in solid reduced @ neutral low 
condition, oxidized in pure H2O @ optimal TOX for 

material
H2,Max > 5

STCH Capacity 
(Low Yield)

mmol H2 / mol atom in solid reduced @ neutral low 
condition, oxidized in steam-to-fuel ratio H2O/H2 = 

1000 @ optimal TOX for material
H2,Low > 2.5

STCH Capacity 
(Moderate 

Yield)

mmol H2 / mol atom in solid reduced @ neutral low 
condition, oxidized in steam-to-fuel ratio H2O/H2 = 

100  @ optimal TOX for material
H2,Mod  > 1

Kinetic 
Performance

Time to 90% of H2,Max in pure H2O at optimal TOX for 
specific material in a dispersed powder configuration  > 0.20

Metrics CeO2

Large reduction

...but H2 “consumption” in low steam/H2  only 
LSM20 competitive with CeO2

High H2 production 
in high steam/H2

Exemplars normalized to state-of-the-art CeO2
Reduction

H2 Prod. 
(Max.)

H2 Prod. (Low)

H2 Prod. (Mod.)Kinetics

Mat. Eff.

Cycle Eff.

• Evaluation framework created and metrics identified
• Weakness of exemplars in low steam/H2 ratio critical 

need for new materials



Discovery of New STCH Materials Aided by Machine Learning
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M. Witman, Nature Computational Science, 3 (2023) 675

MP Screen  STCH “Base”  Ba(Fe,In)

 Examples: Identified Ba(Fe,In)2O4 
and (Ba,Sr)6(La,Y)2Fe4O15 

Hr

Hypothesized

ML screens 10,000’s 
of MP structures in 
minutes that would 
take 1,000’s of DFT 

months

Expected Δᵃ� 0,d MAE 
for unseen 
compounds < 450 
meV (threshold for ML 
to be predictive).



BaFe2O4: VO
 Point Defect Mechanism, and Al Addition to Increase 

Temperature Stability
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BaAl0.4Fe1.6O4 – Hexagonal (P63) phase

1400 oC in Ar (~20 ppm O2)

BaFe2O4

BaAl0.4Fe1.6O4

 Enables higher reduction temperature 
and resistance to densification

• BaAl2O4 (hexagonal P63, 
stuffed tridymite) 
melting point ~1820 oC

• MgAl2O4 (cubic Fd-3m, 
spinel) melting point 
~2130 oC

Alumina crucibles

Higher melting point 
expected with Al

BaAl0.4Fe1.6O4 stable at 
1450 oC in air!
BaFe2O4 Tmelt,air~1420 oC

BaFe2O4

DFT  oxygen vacancy 
preferred vs. cation defects

Orthorhombic (Bb21m) phase 

Melting of BFO in low pO2 mitigated by 
Al substitution!



BaAl0.4Fe1.6O4: Water Splitter in Low Steam/H2!
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• Reduction at 1425 oC in ~1 
ppm O2

• Oxidation at 850 oC in steam 
or 1% H2 in steam

H2

O2

H2 production measurement using flow reactor

H2O/H2 H2O/H2 H2O/H2

H2 production even in 1% H2 environment!

Some continued H2 production in pure steam

Reduction largely reproducible after cycle

H2 production in steam



H2 Production Over 20 Cycles
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• Reduction at 1425 oC in ~1 
ppm O2

• Oxidation at 850 oC in steam

Comparable H2 production 
performance to CeO2 retained for 20 
cycles!



Severe Change in Morphology and Phase After Cycling
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Long-term reduction at 1425 oC 
 continuous oxygen release

Initial powder After 20 redox cycles

Post-cycled sample initial diffraction analysis at SLAC

• BaAl2O4 (P63) is 20.34 wt%  starting phase
• BaFe2O4 (Cmc21) is 75.17 wt% 
• BaFeO3 (P63/mmc) is 4.48 wt%

Decomposition 
products



Detailed Compositional Analysis – 3-phases

12

• Purple phase consistent with ~BaAlFeO4 (the 
expected P63 structure)

• Tan phase consistent with ~BaFeO3, with 
possible melting

• Green phase consistent with ~BaFe2O4, with 
possible melting

Future Work:
 investigating role of each phase in water 

splitting and durability
 HTXRD in simulated water splitting 

conditions

EDS map of post-20 cycled sample

Initial, RT

Fe-rich particles formed

In situ reduction in TEM  evolution of 
decomposition

FIB cross-section of BaAl0.4Fe1.6O4 

700 oC

vacuum 1 μm



(Ba,Sr)6La2Fe4O15 and (Ba,Sr)6Y2Fe4O15 ML Predicted Water Splitters
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Monoclinic  Δδ > CeO2

STCH screening protocol1  Ba6Y2Fe4O15 is best

1350 oC (30 ppm O2)

1000 oC (air)
1.

6x
 C

eO
2-

δ

1Sanders et al., Front. Energy Res. 10:856943 (2022)

Fe1

Fe2

O

Oct

Generalized monoclinic structure (excluding Ba,Sr)
Fe apex sharing dimers (not in hexagonal structure)

Future Work  Flow reactor measurements

Hexagonal 
P63mc

Monoclinic 
P2/c



Re-Visiting La0.8Sr0.2MnO3: Oxygen Stoichiometry at High Temp.
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Limited δ data above 1200 oC  evaluate at higher temperatures (e.g., STCH conditions)

1200 oC

Less super-stoichiometry than previously 
estimated, in agreement with Bork model *Mines: In collaboration with M. Sanders at CSM

Increase in δ with temperature, as expected

Open: Sandia
Closed: Mines*

Kuo et al., J. Sol. State Chem., 83 (1989) 52
Bork et al., Adv. Energy Mater. 7 (2017) 1601086
Grundy et al., CALPHAD 28 (2004) 191

Future Work  Defect equilibria modeling



Impact of Acceptor Dopant Content on Reducibility
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20% Sr

33% Sr

40% Sr (Takacs)

Takacs, et al., Acta Mater., 103 (2016) 700

Si
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20% Sr

40% Sr

Increasing [Sr]  more oxygen vacancies 
due to charge compensation 

1400 oC

La1-xSrxMnO3-δ

*33% Sr in collaboration with X. Liu and J. Luo (WVU and UCSD)



1400 oC

Enhanced Reducibility of High Entropy Perovskite Oxide (HEPO)
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(La1/6Pr1/6Nd1/6Gd1/6Ba1/6Sr1/6)MnO3-δ (HEPO)*

• HEPO and LSM33 have similar
• Average A-site ionic radius
• Lattice parameter
• Total acceptor dopant content

• Even more reducible than LSM40

Takacs, et al., Acta 
Mater., 103 (2016) 700

S. Bishop et al., ECS Trans. (2023)

20% Sr

33% Sr

40% Sr
(Takacs)

HEPO 
(33% acceptor)

Shale Oil and Gas Handbook (2015)

Explanation?: Large cations “fracked” LSM 
(small cation – oxygen bonds weakened)

Proppant 
(large cation)

La1-xSrxMnO3-δ

*In collaboration with X. Liu (WVU) and J. Luo (UCSD)



Hr Decrease for HEPO
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Van’t Hoff analysis Takacs, et al., Acta Mater., 103 (2016) 700
Mizusaki, et al., Solid State Ionics, 129 (2000) 163
Yang, J. Mater. Chem. A, 2 (2014) 13612

HEPO

• Lower Hr for HEPO compared to LSM

• Entropy similar



Homogeneous Composition and Disordered Atomic Structure
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SEM/EDS: No significant evidence of compositional heterogeneity HAADF-STEM: No significant 
evidence of A-site cation ordering

HEPO

LSM33 • Expected perovskite structure of HEPO 
and LSM33

• HEPO ~0.2% smaller cell volume

Nd



Dramatic Increase in STCH H2 Production
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LSM33 HEPOOther HEPOs

1350 oC N2 reduction; 1100 oC 40% steam oxidation

46% increase in H2 production 
with HEPO compared to LSM33!

Cijie Liu et al., J. Mater. Chem. A, 
2024,12, 3910-3922



Summary
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• Presented exemplar STCH materials and key STCH metrics

• Identified significant gap in H2 production in low steam/H2 ratio materials 

• Demonstrated successful water splitting with ML predicted compound

• Improved thermal stability with Al addition

• Competitive H2 production to CeO2 in low steam/H2

• Despite severe morphological and phase changes, maintains H2 production after many 
cycles

• Examined high temperature (>1200 oC) oxygen non-stoichiometry in LSM20

• Experimental differences from thermodynamic predictions in high pO2

• Discussed new (La1/6Pr1/6Nd1/6Gd1/6Ba1/6Sr1/6)MnO3-δ (HEPO) STCH material with much lower 
reduction enthalpy than LSM of same acceptor content
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