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Objective: Investigate mechanism of Calcium Zincate and additives to improve performance

Background:

Metallic zinc (Zn) is used industrially for primary and rechargeable Zn batteries such as
Zn/N1, Zn/Air, Ag/Zn, and Zn/MnO,
* Zinc chemistry provides a high theoretical capacity, relative abundance, non-toxic, and non-
flammable nature which make zinc batteries inherently safer for energy storage .
*  Failure mechanisms of zinc batteries include passivation, shape change/redistribution, dendrite g
formation, hydrogen evolution, and the crossover of zincate (Zn(OH),%") into the cathode ! L, o @Rl L R N
*  Preliminary results |nd_|cate that an(?d_es _contalnlng calcium zincate may mitigate some of Calcium Zincate Synthesis Formation Reaction: w0
these problems due to its low solubility in KOH electrolyte
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*  On charge the reaction product Ca(OH), readily compounds with zincate ions to keep zincate 2 éﬂggln:l )Zélincztec &,((S)Irll_é)z Zﬁﬂé?_}‘_ Cazn,(OH)g -2H,0 + 40H

concentrations low In the porous electrode material. CaZn,(OH), -2H,0 + 4e~ =& Ca(OH), + 2Zn + 40H~ +2H,0
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Preliminary Experiments Cycling Results
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« Comparing Zn anodes with CaZn anodes both with BI,0,
=" - - 275 4 2x
under the same conditions there is approximately 25% 250 Prelimi C lUS I E Di i
Increase In the raw materials cost, but a five time increase 2] refiminary L.onciusions uture Directions
in cycle life. 175 . The addition of Titanium Nitride (TiIN) Is investigated as an additive for Calcium Zincate anodes
» When considering the cost of the anodes per cycle life, g]::j 3 showing poor performance on its own and requires bismuth oxide to cycle properly
there is a noticeable decrease of cost from ~$0.016 per kg 75 . Long durational discharge Is investigated but shows poor ~60% coulombic and energy efficiency
per discharge kWh per cycle (pure Zn) to ~ $0.012 per s0 ] . Will investigate Calcium Zincate nanostructure before, during, and after cell failure to understand the
cycle (pure CazZn) equating to a ~25% reduction in cost per >} mechanism of CaZn cycling behaviors

cycle. 081 0268 266081 GsEEl  OsEiC 086CCTAB «  Will investigate hydrogen evolution reaction (HER) and possible additives to reduce zinc anode gassing

Anode Composition
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