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Computational simulations often require constitutive/closure models
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𝜕𝒖
𝜕𝑡

= 𝑅(𝒖, 𝑄)

• represent unresolved phenomena

• enhance computational efficiency

• correct model-form error

𝑄 ≈ +𝑄(𝒖; 𝜽)
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Closure and constitutive models arise in a variety of application areas

𝑢̈ + 0.3	𝑢̇ − 𝑢 + 𝑄(𝑢) = 𝐹(𝑡)

Nonlinear structural dynamics

Learn a nonlinear spring force

𝑑𝑆
𝑑𝑡

= −
𝛽𝐼𝑆
𝑁!"!

𝑑𝐼
𝑑𝑡
=
𝛽𝐼𝑆
𝑁!"!

− 𝛾𝐼 − 𝜉 𝑆, 𝐼, 𝑅 𝐼

𝑑𝑄
𝑑𝑡

= 𝜉 𝑆, 𝐼, 𝑅 𝐼 − 𝛿𝑄
𝑑𝑅
𝑑𝑡 = 𝛾𝐼 + 𝛿𝑄

Epidemiological modeling

Learn a state-dependent transition 
rate into quarantine
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Data-driven methods are a promising new direction for developing 
constitutive and closure models
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In this paper we introduce constitutive artificial neural networks (CANNs), a novel machine 
learning architecture for data-driven modeling of the mechanical constitutive behavior of 
materials. CANNs are able to incorporate by their very design information from three 
different sources, namely stress-strain data, theoretical knowledge from materials theory, 
and diverse additional information (e.g., about microstructure or materials processing). 
CANNs can easily and efficiently be implemented in standard computational software. They 
require only a low-to-moderate amount of training data and training time to learn without 
human guidance the constitutive behavior also of complex nonlinear and anisotropic 
materials. Moreover, in a simple academic example we demonstrate how the input of 
microstructural data can endow CANNs with the ability to describe not only the behavior of 
known materials but to predict also the properties of new materials where no stress-strain 
data are available yet. This ability may be particularly useful for the future in-silico design 
of new materials. The developed source code of the CANN architecture and accompanying 
example data sets are available at https://github .com /ConstitutiveANN /CANN.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Over the last decades, data acquisition technologies in science and engineering have substantially advanced. These ad-
vances include devices for faster and more accurate mechanical tests, imaging technologies such as nanotomography or 
magnetic resonance imaging (MRI), and high-precision sensor and actuator systems harvesting by the way large amounts 
of diverse data during materials processing and handling [1,2]. How these data can effectively be used to model the me-
chanical constitutive behavior of materials, that is, the relation between mechanical stress and strain, is a key question. This 
question is addressed within the emerging field of data-driven constitutive modeling, which can be divided into two major 
branches.
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Data-Driven Discovery of Closure Models⇤

Shaowu Pan† and Karthik Duraisamy†

Abstract. Derivation of reduced order representations of dynamical systems requires the modeling of the trun-
cated dynamics on the retained dynamics. In its most general form, this so-called closure model has
to account for memory e↵ects. In this work, we present a framework of operator inference to extract
the governing dynamics of closure from data in a compact, non-Markovian form. We employ sparse
polynomial regression and artificial neural networks to extract the underlying operator. For a special
class of nonlinear systems, observability of the closure in terms of the resolved dynamics is analyzed,
and theoretical results are presented on the compactness of the memory. The proposed framework is
evaluated on examples consisting of linear to nonlinear systems with and without chaotic dynamics,
with an emphasis on predictive performance on unseen data.

Key words. data-driven closures, dynamical system closures, reduced order modeling, machine learning
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1. Introduction. Complex problems in science and engineering are typically character-
ized by high-dimensional dynamics. Examples include the modeling of turbulent fluid flows,
molecular dynamics, and astrophysical plasmas. When such problems are viewed from a dy-
namical systems perspective, the high dimensionality of phase space is a consequence of the
fact that important physical processes occur over a wide range of spatial and temporal scales.
However, e↵ective computational models of these systems for the purposes of analysis, design,
and control require accurate low-dimensional representations. Popular techniques to obtain
low-dimensional representations include projection-based reduced order models [22, 6, 52, 9],
reduced basis methods [50, 37], proper generalized decomposition [10], and Krylov subspace
techniques [4]. All of these techniques aim to capture the dynamics essential to a quantity of
interest in by solving for a small number of uknowns (usually by restricting the dynamics to a
low-dimensional manifold). In most practical situations, however, the multiscale nature of the
problem is such that a low-dimensional representation requires closure. In other words, the
influence of the discarded degrees of freedom on the retained unknowns becomes important
and must be modeled.

The closure problem is well-recognized by the scientific computing community and is typ-
ically addressed by invoking physical and/or mathematical arguments. A pertinent example

⇤
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In this work, we present a novel data-based approach to turbulence modeling for Large 
Eddy Simulation (LES) by artificial neural networks. We define the perfect LES formulation 
including the discretization operators and derive the associated perfect closure terms. We 
then generate training data for these terms from direct numerical simulations of decaying 
homogeneous isotropic turbulence. We design and train artificial neural networks based on 
local convolution filters to predict the underlying unknown non-linear mapping from the 
coarse grid quantities to the closure terms without a priori assumptions. We show that 
selecting both the coarse grid primitive variables as well as the coarse grid LES operator 
as input features significantly improves training results. All investigated networks are able 
to generalize from the data and learn approximations with a cross correlation of up to 
47% and even 73% for the inner elements, demonstrating that the perfect closure can 
indeed be learned from the provided coarse grid data. Since the learned closure terms 
are approximate, a direct application leads to stability issues. We show how to employ the 
artificial neural network output to construct stable and accurate models. The best results 
have been achieved with a data-informed, temporally and spatially adaptive eddy viscosity 
closure. While further investigations into the generalizability of the approach is warranted, 
this work thus represents a starting point for further research into data-driven, optimal 
turbulence models.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Machine learning algorithms and in particular deep neural networks (DNN) thrive in situations where a structural rela-
tion between input and output is presumably present but unknown, when sufficiently many training samples exist and the 
computing power to train and deploy these algorithms is available. The confluence of these three conditions in the last half 
decade has given rise to an extraordinary interest in these algorithms and their applications, e.g. from mastering the game 
of Go [55], to object detection and steering in self-driving cars [10] to natural language processing [9]. At the center of each 
of these applications lies the search for a non-linear model that approximates the underlying functional relationship with-
out a priori assumptions or analytical considerations. Based on the reported successes in a number of fields, this “learning 
from data” approach could provide a powerful method for model development in fluid mechanics, wherever the governing 
equations derived from first principles need to be augmented by some form of closure term which typically incorporates 
information from different physical effects or scales [29].
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Abstract
A mechanics-informed artificial neural network approach for learning consti-
tutive laws governing complex, nonlinear, elastic materials from strain–stress
data is proposed. The approach features a robust and accurate method for train-
ing a regression-based model capable of capturing highly nonlinear strain–stress
mappings, while preserving some fundamental principles of solid mechanics. In
this sense, it is a structure-preserving approach for constructing a data-driven
model featuring both the form-agnostic advantage of purely phenomenologi-
cal data-driven regressions and the physical soundness of mechanistic models.
The proposed methodology enforces desirable mathematical properties on the
network architecture to guarantee the satisfaction of physical constraints such
as objectivity, consistency (preservation of rigid body modes), dynamic stabil-
ity, and material stability, which are important for successfully exploiting the
resulting model in numerical simulations. Indeed, embedding such notions in a
learning approach reduces a model’s sensitivity to noise and promotes its robust-
ness to inputs outside the training domain. The merits of the proposed learning
approach are highlighted using several finite element analysis examples. Its
potential for ensuring the computational tractability of multi-scale applications
is demonstrated with the acceleration of the nonlinear, dynamic, multi-scale,
fluid-structure simulation of the supersonic inflation dynamics of a parachute
system with a canopy made of a woven fabric.

K E Y W O R D S
artificial neural network, constitutive modeling, convexity, hyperelasticity, machine learning,
stability, supersonic parachute inflation dynamics

1 INTRODUCTION

The constitutive modeling of a complex material exhibiting a highly nonlinear behavior can be a difficult task. Two main
approaches for obtaining strain–stress relationships are available for this purpose: phenomenological modeling based
on empirical observations;1,2 and mechanistic models derived from first principles based on the material’s underlying
structure.3 Phenomenological models are appealing (and perhaps even necessary) in the context of highly heterogeneous
materials with complex or even ambiguous micro-structures. However, they are subject to the typical shortcomings of
empirical relationships. Namely, they can violate some fundamental principles that govern the material they describe

2738 © 2022 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nme Int J Numer Methods Eng. 2022;123:2738–2759.
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Training data-driven closures within complex dynamical system models 
is computationally prohibitive

• Gradient-based training requires differentiation through governing equations

• Each training step requires solving complex dynamical system model

• High cost limits data-driven model exploration

min
!
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Multiple scenarios for generalizability exacerbates this issue

Multiple scenarios requires multiple costly model solves per training step.

min
!
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Scalable

Generalizable

Quantified 
uncertainties

How can we practically 
develop data-driven 

closure models that are 
generalizable and 

scalable with quantified 
uncertainties?
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Idea: decouple the costly model-based inference from data-driven 
closure formulation and training

Get 𝒖 𝒕 , 𝑄 𝒕  pairs using data 
assimilation

Learn data-driven closure for 
𝑄 as operator acting on 𝒖

Model-based inference Closure-model training

𝑢(")(𝑡$) 𝑢(%)(𝑡$)
𝑢(&)(𝑡$)

𝑄(")(𝑡$)

𝑄(%)(𝑡$)

𝑄(&)(𝑡$)

+𝑄 𝑢 ' 𝑡$ ; 𝜽 = +𝑄$'(𝜽)𝑢 ' (𝑡$)

min
𝜽
𝐿 𝜽 ∝@

/0

A𝑄/0 𝜽 − 𝑄(0) 𝑡/
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Idea: decouple the costly model-based inference from data-driven 
closure formulation and training

Get 𝒖 𝒕 , 𝑄 𝒕  pairs using data 
assimilation

Learn data-driven closure for 
𝑄 as operator acting on 𝒖

Model-based inference Closure-model training

• Incur costly model-based calibration once

• Data-driven closure model formulation & training now a straightforward 
(much cheaper) regression problem

• Enables greater model exploration and uncertainty quantification
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Bayesian data assimilation generates approximate posterior samples

Forecast

Analysis

• 𝑥, 𝑄 samples are time-marched together

• “Synthetic dynamics” (e.g., Brownian motion) are assumed for 𝑄
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When will data assimilation be successful?

How much time between observations?

How much 
noise in 
observations?
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We investigated these questions in the context of the Duffing oscillator

𝑢̈ + 0.3	𝑢̇ − 𝑢 + 𝑄(𝑢) = 𝐹(𝑡)

Copious clean data Copious noisy data Sparse noisy data

Can we obtain accurate estimates of 𝑄? 

Can we get better estimates using assumed dynamics for 𝑄?

Data

Data-
generating 

process

True 𝑄 𝑢 = 𝑢!.#
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𝑄 estimates degrade with noisier sparser data if no 
dynamics for 𝑄 are assumed

𝑑𝑄$ = 𝜎%𝑑𝑊$

Copious noisy data Sparse noisy dataCopious clean data

Inferred 𝑄 
statistics

True 𝑄
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Sparse, noisy data can produce good 𝑄 estimates if good baseline 
dynamics are assumed

𝑑𝑄! = 𝜎"𝑑𝑊!

No prior information on 𝑸 dynamics

𝑄! = 𝑐𝑢#,	
𝑑𝑐! = 𝜎$𝑑𝑊!

Close but not perfect dynamics assumed for 𝑸 

True 𝑄 𝑢 = 𝑢%.'

Could use previously developed closure/constitutive models as baseline dynamics.
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Using inferred 𝑄 to develop a data-driven closure/constitutive model

Different colors represent different sample time series.

We can now explore many 
formulations for 𝑄 with no 
further dynamical system 
model evaluations.

• Neural nets

• GPs

• Polynomials

• …



Conclusions and future work

• Data-driven closure models (DDCMs) can significantly advance beyond current state of the 
art in many application areas.

• Trustworthy DDCMs must be scalable and generalizable with quantified uncertainties. 

• Our approach achieves these goals by decoupling costly dynamical-system based inference 
from DDCM formulation and training.

• We have investigated when this approach can be successful and methods to address sparse 
and noisy data.

• Next steps:
§ ML models with quantified input and output uncertainties
§ Out-of-distribution detection for quantified regions of applicability
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