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Computational simulations often require constitutive/closure models
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* represent unresolved phenomena
e enhance computational efficiency

e correct model-form error



Nonlinear structural dynamics
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Learn a nonlinear spring force

Closure and constitutive models arise in a variety of application areas

Epidemiological modeling
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Learn a state-dependent transition
rate into quarantine




Data-driven methods are a promising new direction for developing

constitutive and closure models
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Training data-driven closures within complex dynamical system models
is computationally prohibitive
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- Gradient-based training requires differentiation through governing equations
« Each training step requires solving complex dynamical system model

« High cost limits data-driven model exploration



Multiple scenarios for generalizability exacerbates this issue
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Multiple scenarios requires multiple costly model solves per training step.



How can we practically
develop data-driven
closure models that are
generalizable and
scalable with quantified
uncertainties?

Quantified
uncertainties

Generalizable

' Scalable




Idea: decouple the costly model-based inference from data-driven
closure formulation and training

Model-based inference Closure-model training
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Idea: decouple the costly model-based inference from data-driven
closure formulation and training

Model-based inference Closure-model training
4 ) 4 )
Get u(t), Q(t) pairs using data R Learn data-driven closure for
assimilation Q as operator acting on u
- J - J

* Incur costly model-based calibration once

« Data-driven closure model formulation & training now a straightforward
(much cheaper) regression problem

- Enables greater model exploration and uncertainty quantification



Bayesian data assimilation generates approximate posterior samples

* x,0Q samples are time-marched together

« “Synthetic dynamics” (e.g., Brownian motion) are assumed for Q
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When will data assimilation be successful?

How much time between observations?

l I

How much
noise in
observations?
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We investigated these questions in the context of the Duffing oscillator

u+03u—u+Q(u) =F(t) True Q(u) = u?®
Copious clean data Copious noisy data Sparse noisy data
1 Data 14 14 °
u(t) ¢
07 Data- 0- 0 -
generating
—17 process —1- ~1-
(I) FI> 110 115 (I) FIJ 1'0 1'5 (') F'> 110 115
t t t

Can we obtain accurate estimates of Q?

Can we get better estimates using assumed dynamics for Q?
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( estimates degrade with noisier sparser data if no
dynamics for Q are assumed
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Sparse, noisy data can produce good Q estimates if good baseline
dynamics are assumed

No prior information on Q dynamics Close but not perfect dynamics assumed for Q
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Could use previously developed closure/constitutive models as baseline dynamics.
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Using inferred Q to develop a data-driven closure/constitutive model

2 - /
Q samples - /
o

u samples

Different colors represent different sample time series.

We can now explore many
formulations for Q with no
further dynamical system
model evaluations.

Neural nets
e GPs

Polynomials
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Conclusions and future work

- Data-driven closure models (DDCMs) can significantly advance beyond current state of the
art in many application areas.

 Trustworthy DDCMs must be scalable and generalizable with quantified uncertainties.

- Our approach achieves these goals by decoupling costly dynamical-system based inference
from DDCM formulation and training.

- We have investigated when this approach can be successful and methods to address sparse
and noisy data.

* Next steps:
= ML models with quantified input and output uncertainties
= Qut-of-distribution detection for quantified regions of applicability
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