

Exceptional service in the national interest

Trustworthy and Scalable Data-Driven Closure Models

Teresa Portone, Moe Khalil, Kyle Neal

16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics

Vancouver, British Columbia, Canada, July 21-26, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Computational simulations often require constitutive/closure models

$$\frac{\partial \mathbf{u}}{\partial t} = R(\mathbf{u}, Q) \quad Q \approx \hat{Q}(\mathbf{u}; \theta)$$

- represent unresolved phenomena
- enhance computational efficiency
- correct model-form error

Nonlinear structural dynamics

$$\ddot{u} + 0.3 \dot{u} - u + Q(u) = F(t)$$

Learn a nonlinear spring force

Epidemiological modeling

$$\frac{dS}{dt} = - \frac{\beta IS}{N_{pop}}$$

$$\frac{dI}{dt} = \frac{\beta IS}{N_{pop}} - \gamma I - \xi(S, I, R)I$$

$$\frac{dQ}{dt} = \xi(S, I, R)I - \delta Q$$

$$\frac{dR}{dt} = \gamma I + \delta Q$$

Learn a state-dependent transition rate into quarantine

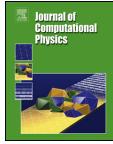
Data-driven methods are a promising new direction for developing constitutive and closure models

Journal of Computational Physics 429 (2021) 110010

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp



Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning

Kevin Linka ^{a,*}, Markus Hillgärtner ^b, Kian P. Abdolazizi ^{a,b}, Roland C. Aydin ^c,
Mikhail Itskov ^b, Christian J. Cyron ^{a,c}

Journal of Computational Physics 398 (2019) 108910

Contents lists available at ScienceDirect

Journal of Computational Physics

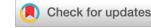
www.elsevier.com/locate/jcp

Deep neural networks for data-driven LES closure models

Andrea Beck ^{*}, David Flad, Claus-Dieter Munz

Received: 16 December 2021 | Revised: 21 February 2022 | Accepted: 21 February 2022

DOI: 10.1002/nme.6957



WILEY

RESEARCH ARTICLE

A mechanics-informed artificial neural network approach in data-driven constitutive modeling

Faisal As'ad¹ , Philip Avery¹ , Charbel Farhat^{1,2,3}

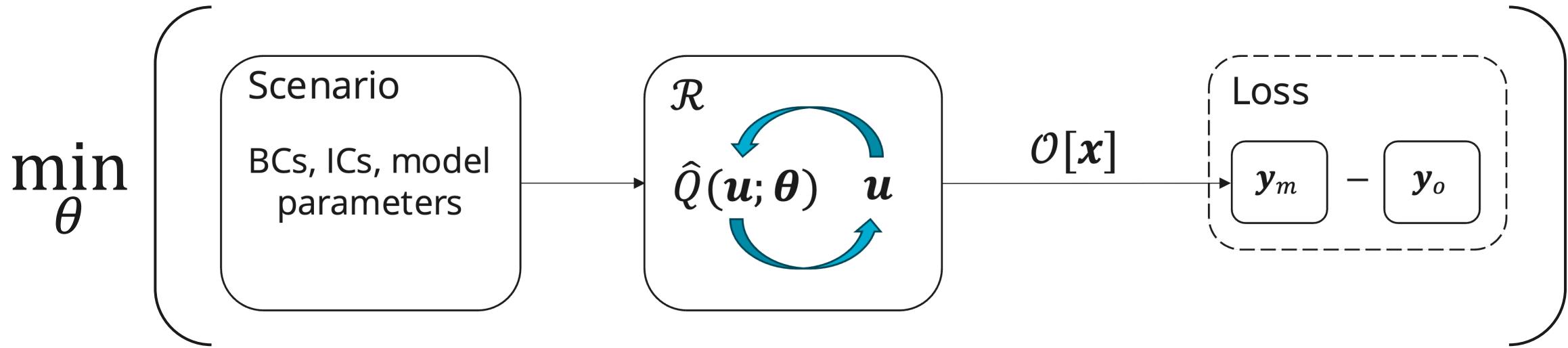
SIAM J. APPLIED DYNAMICAL SYSTEMS
Vol. 17, No. 4, pp. 2381–2413

© 2018 Society for Industrial and Applied Mathematics

Data-Driven Discovery of Closure Models*

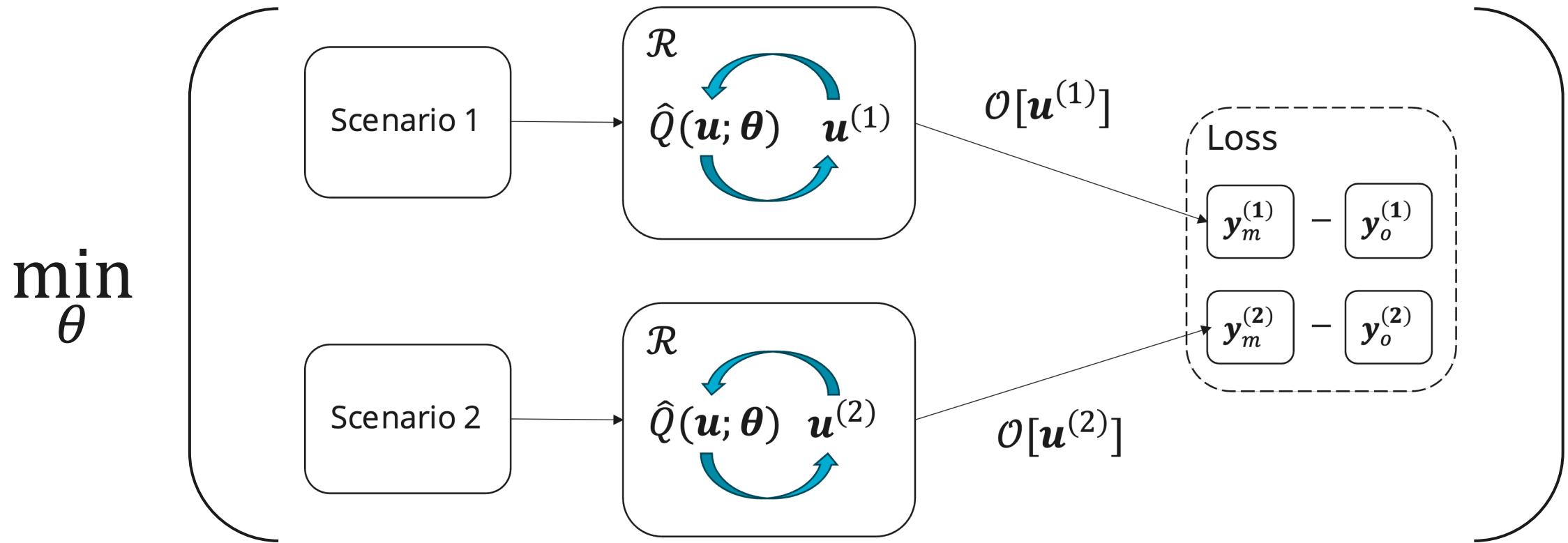
Shaowu Pan[†] and Karthik Duraisamy[†]

Training data-driven closures within complex dynamical system models is computationally prohibitive



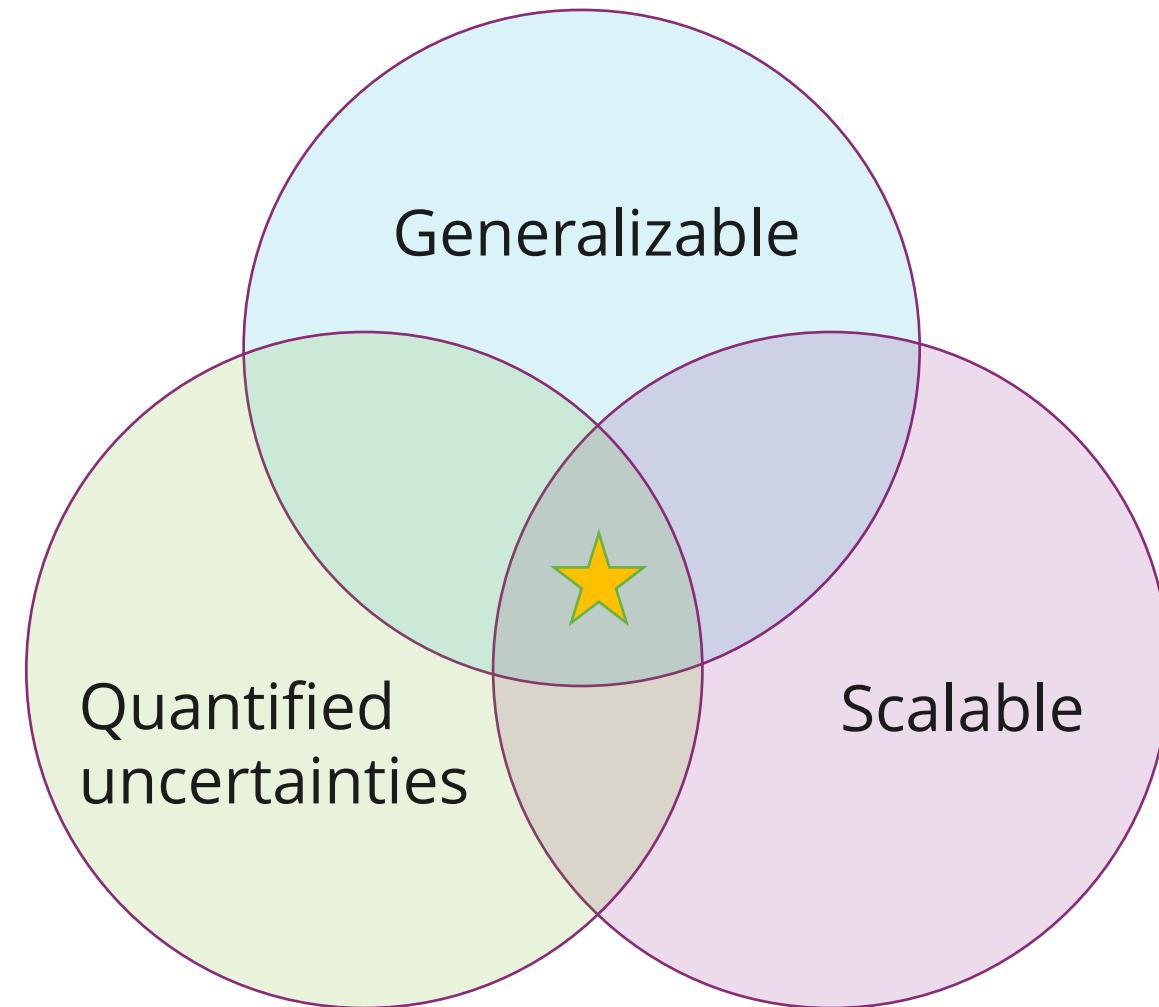
- Gradient-based training requires differentiation through governing equations
- Each training step requires solving complex dynamical system model
- **High cost limits data-driven model exploration**

Multiple scenarios for generalizability exacerbates this issue



Multiple scenarios requires multiple costly model solves per training step.

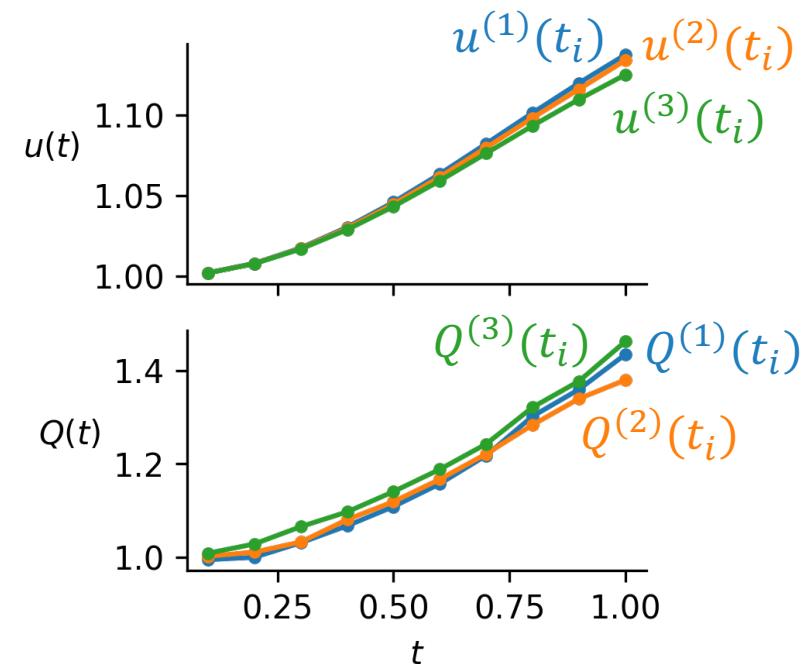
How can we *practically* develop data-driven closure models that are generalizable and scalable with quantified uncertainties?



Idea: decouple the costly model-based inference from data-driven closure formulation and training

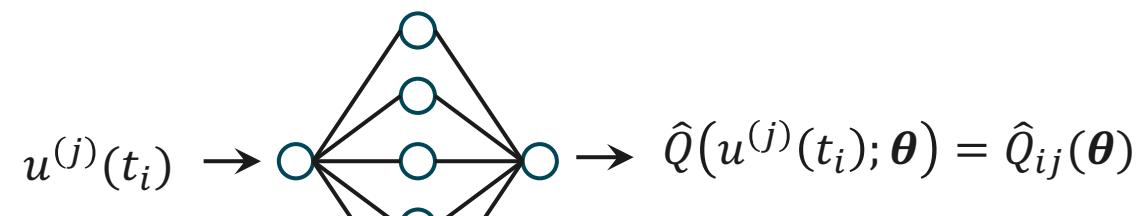
Model-based inference

Get $\mathbf{u}(t), Q(t)$ pairs using data assimilation



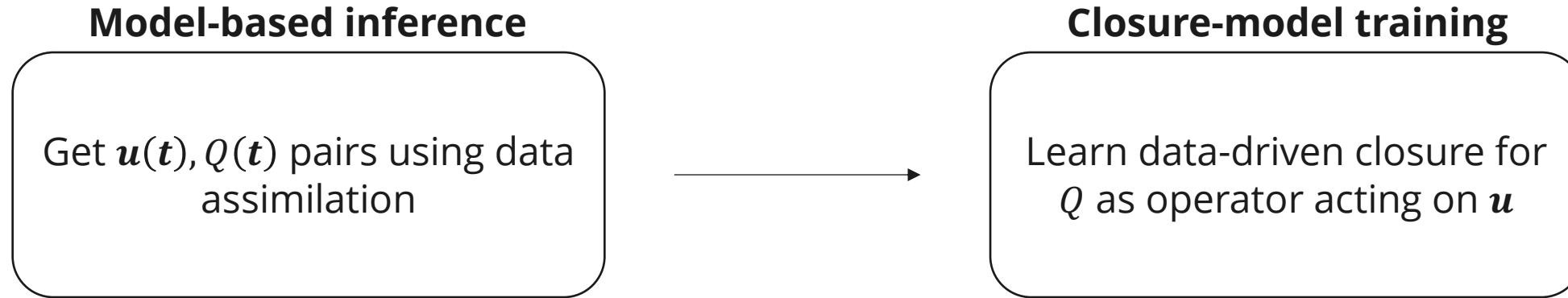
Closure-model training

Learn data-driven closure for Q as operator acting on \mathbf{u}



$$\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \propto \sum_{ij} \|\hat{Q}_{ij}(\boldsymbol{\theta}) - Q^{(j)}(t_i)\|$$

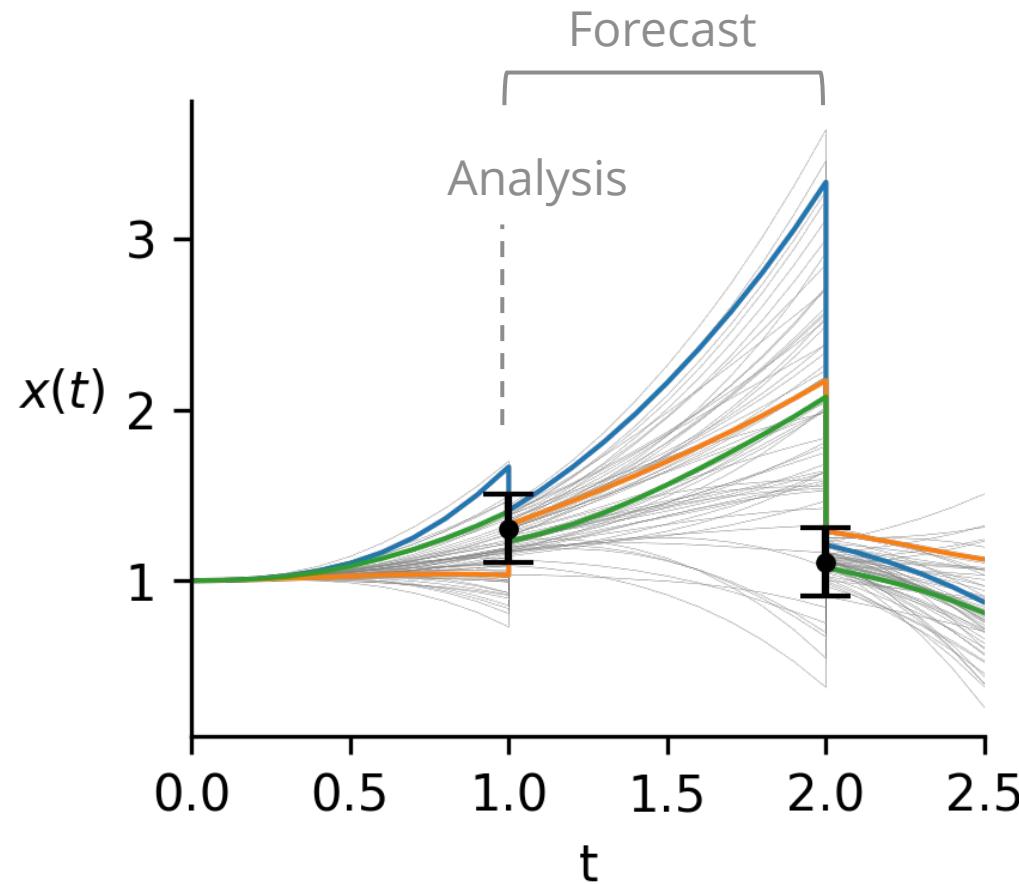
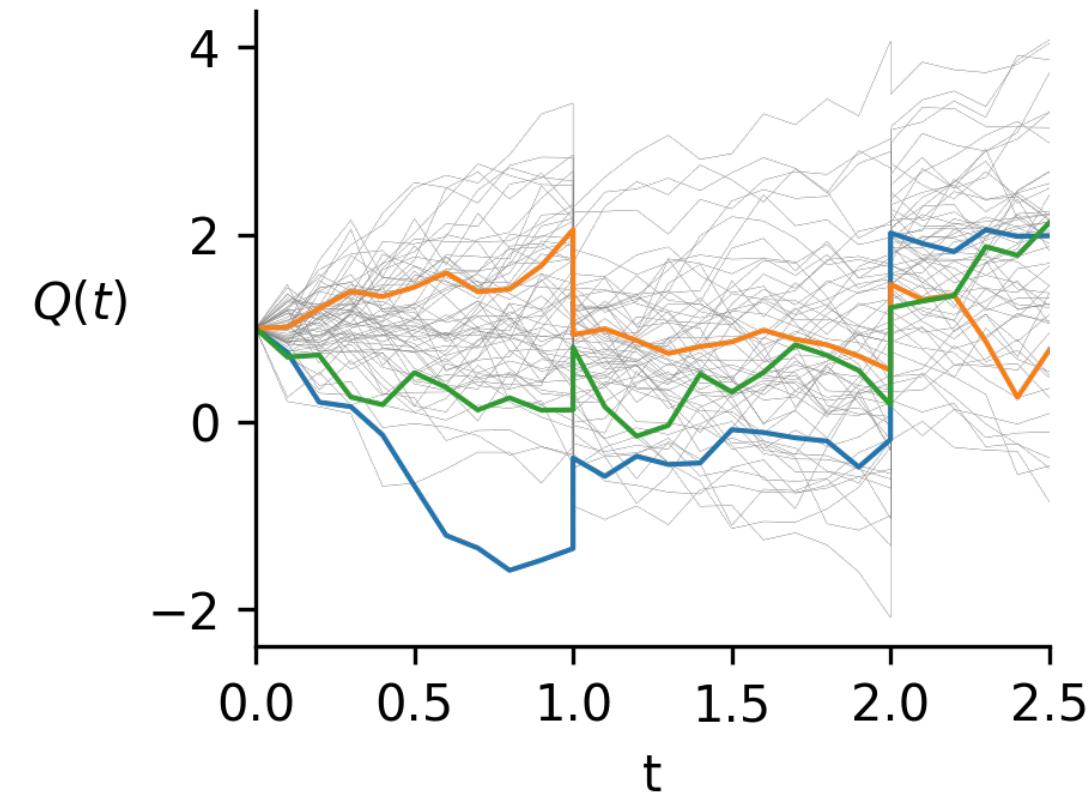
Idea: decouple the costly model-based inference from data-driven closure formulation and training



- Incur costly model-based calibration once
- Data-driven closure model formulation & training now a straightforward (much cheaper) regression problem
 - **Enables greater model exploration and uncertainty quantification**

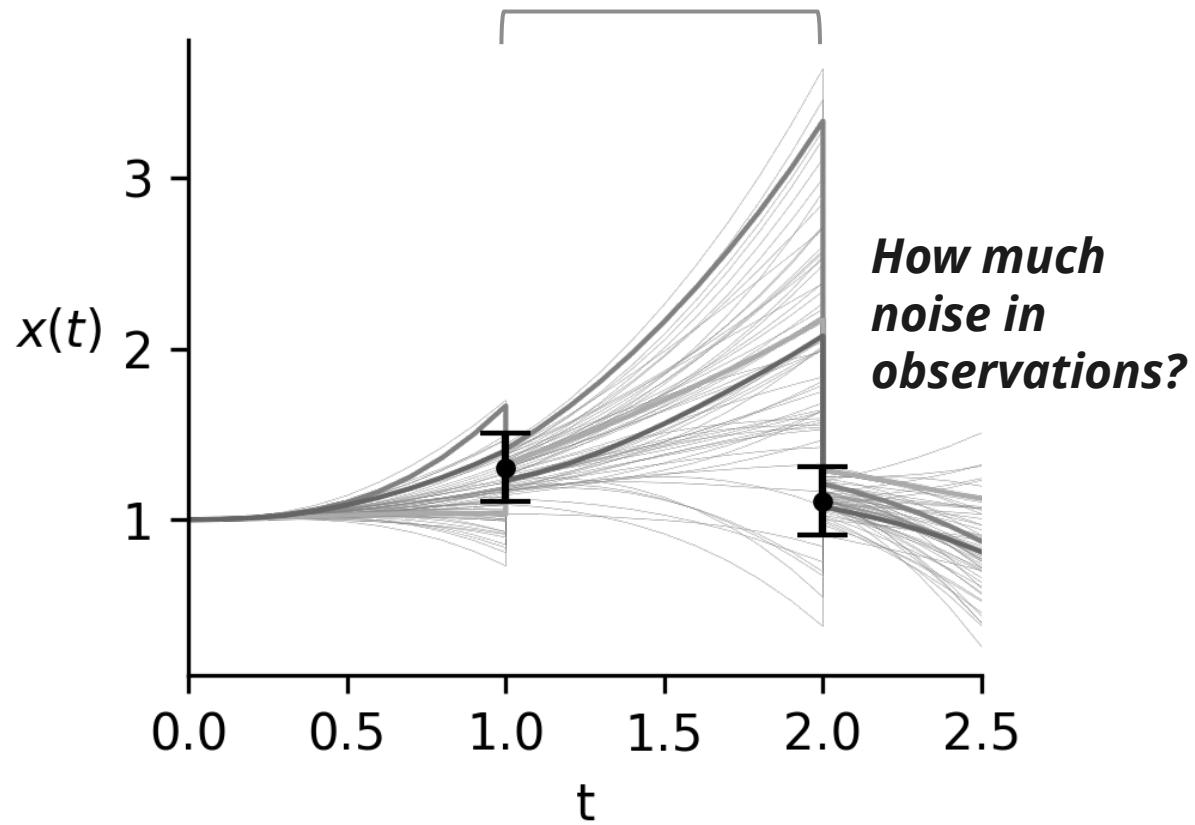
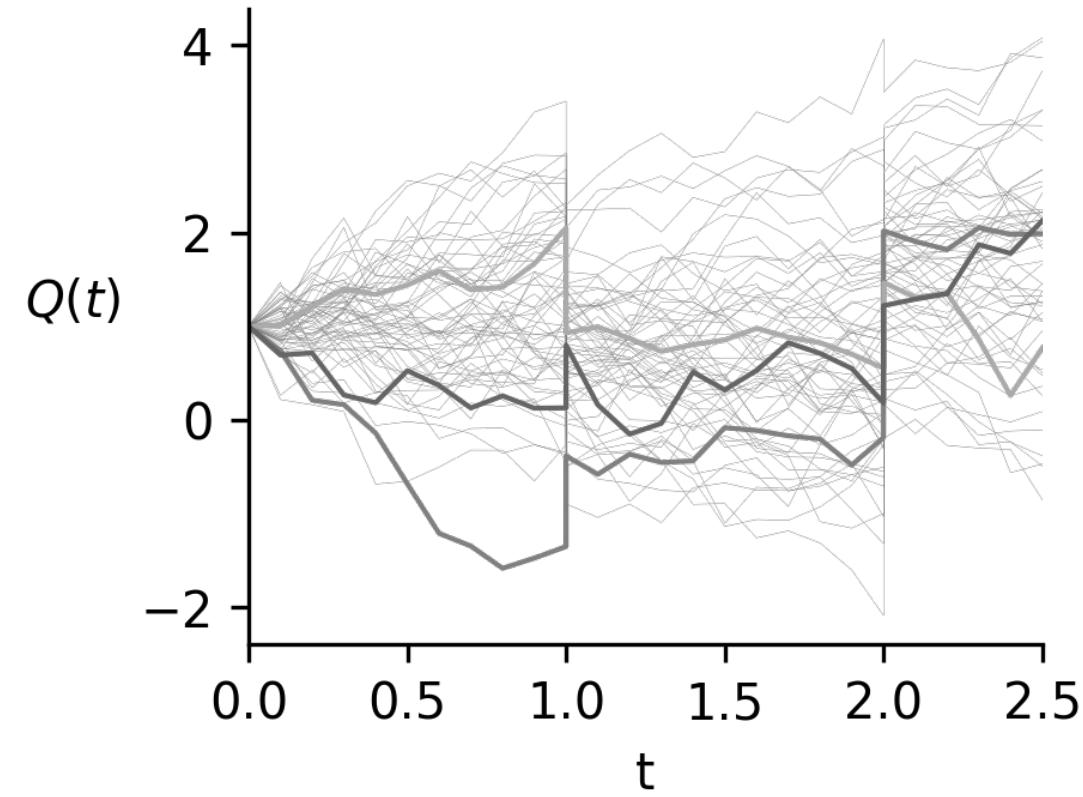
Bayesian data assimilation generates approximate posterior samples

- x, Q samples are time-marched together
- “Synthetic dynamics” (e.g., Brownian motion) are assumed for Q



When will data assimilation be successful?

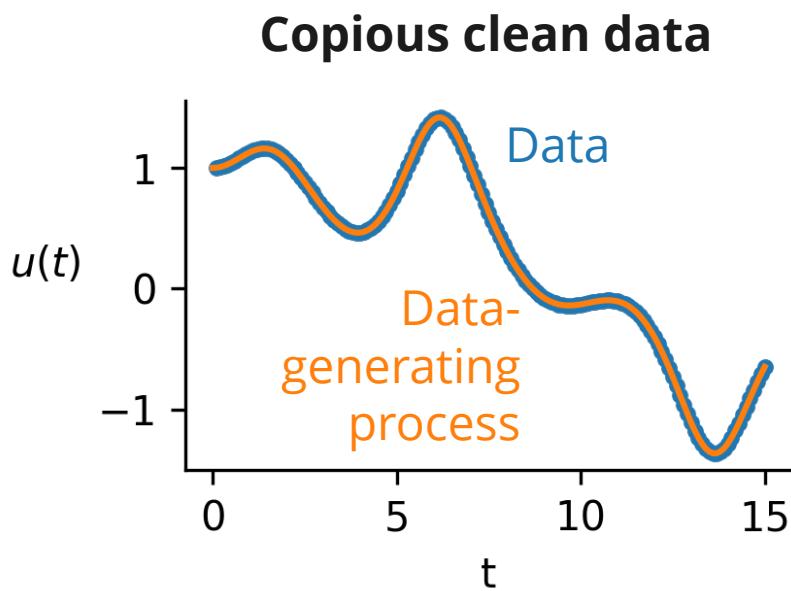
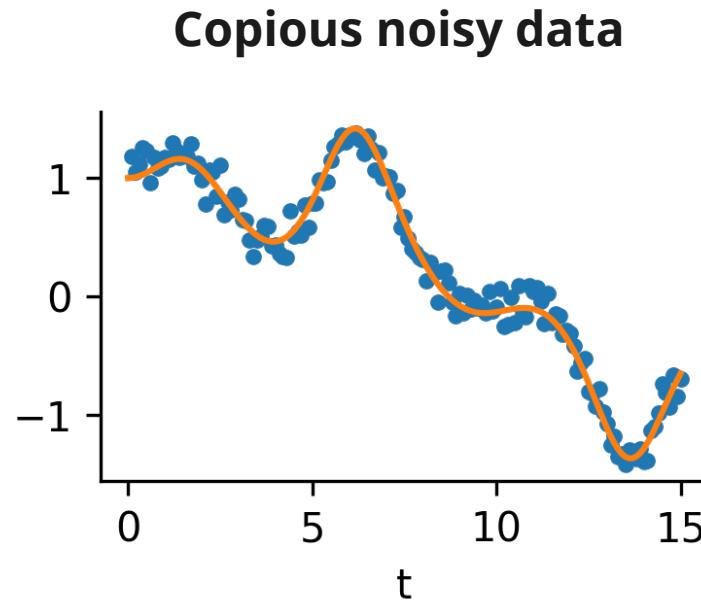
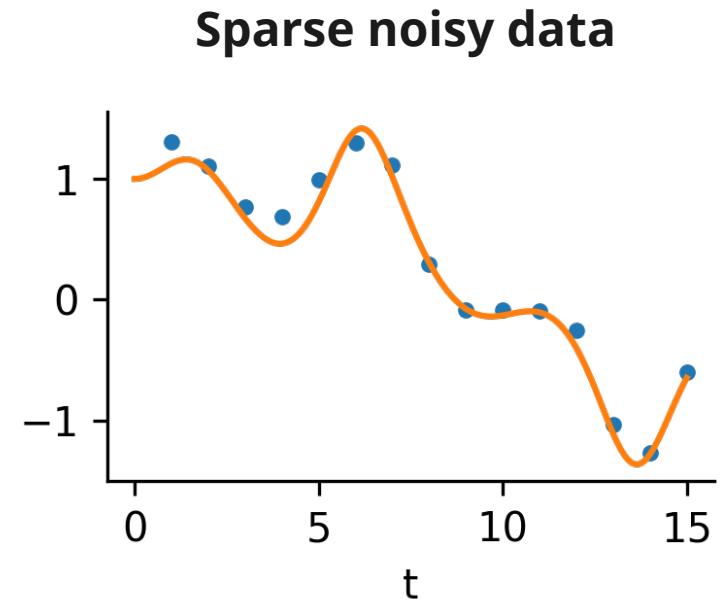
How much time between observations?



We investigated these questions in the context of the Duffing oscillator

$$\ddot{u} + 0.3 \dot{u} - u + Q(u) = F(t)$$

True $Q(u) = u^{2.8}$



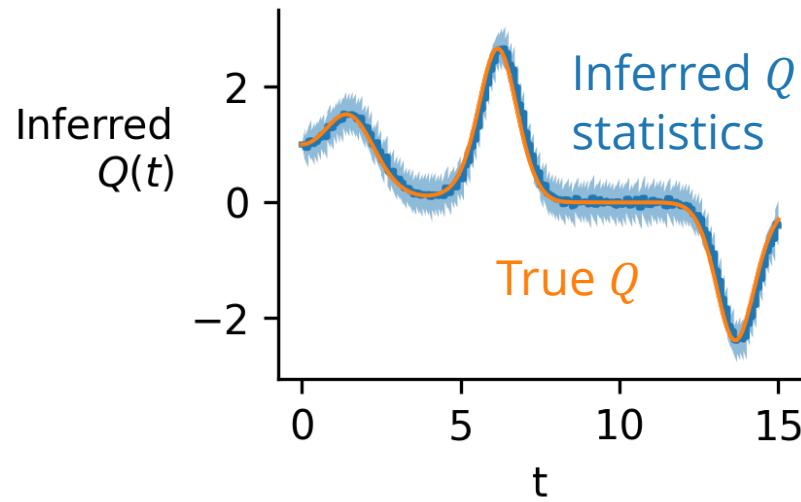
Can we obtain accurate estimates of Q ?

Can we get better estimates using assumed dynamics for Q ?

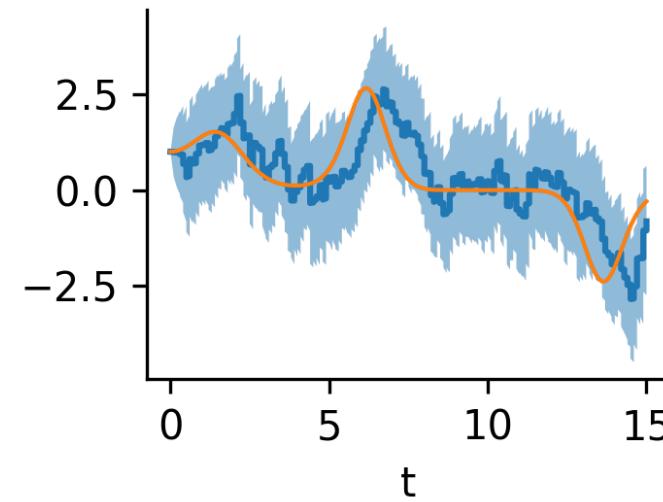
Q estimates degrade with noisier sparser data if no dynamics for Q are assumed

$$dQ_t = \sigma_Q dW_t$$

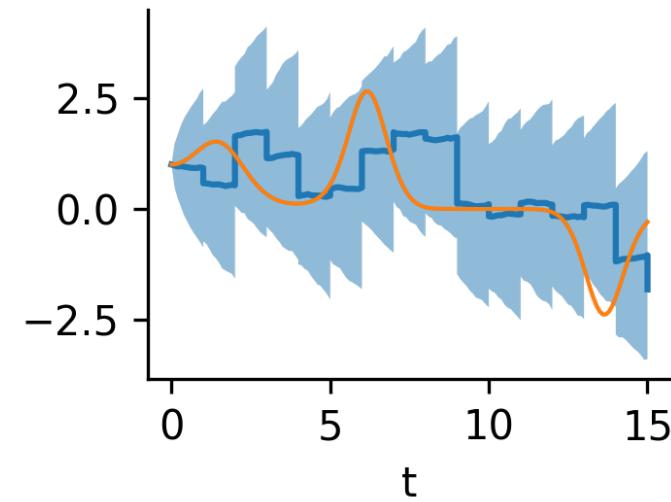
Copious clean data



Copious noisy data



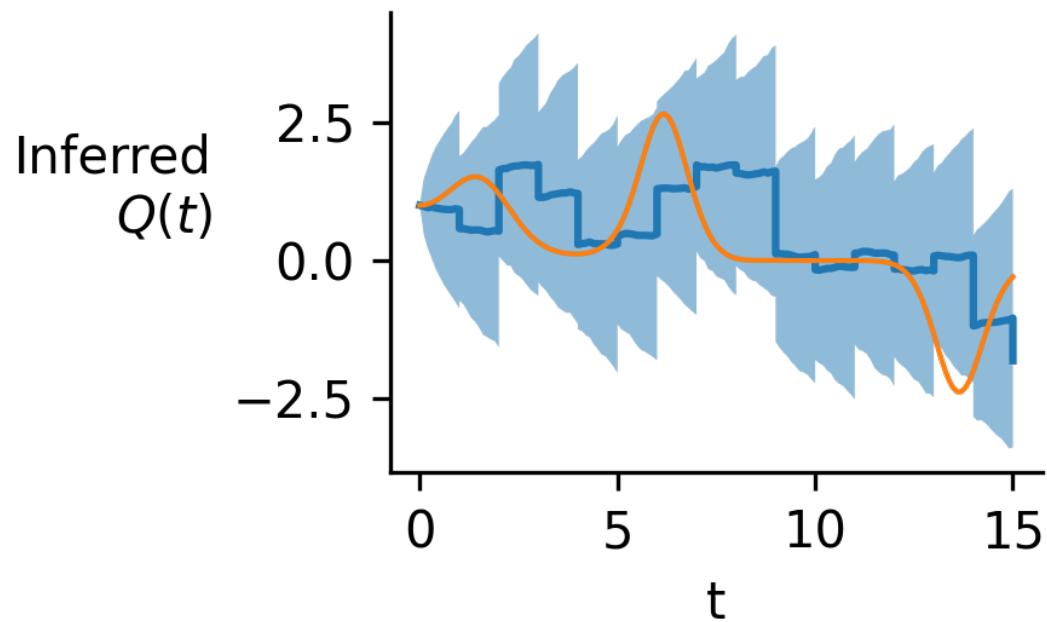
Sparse noisy data



Sparse, noisy data can produce good Q estimates if good baseline dynamics are assumed

No prior information on Q dynamics

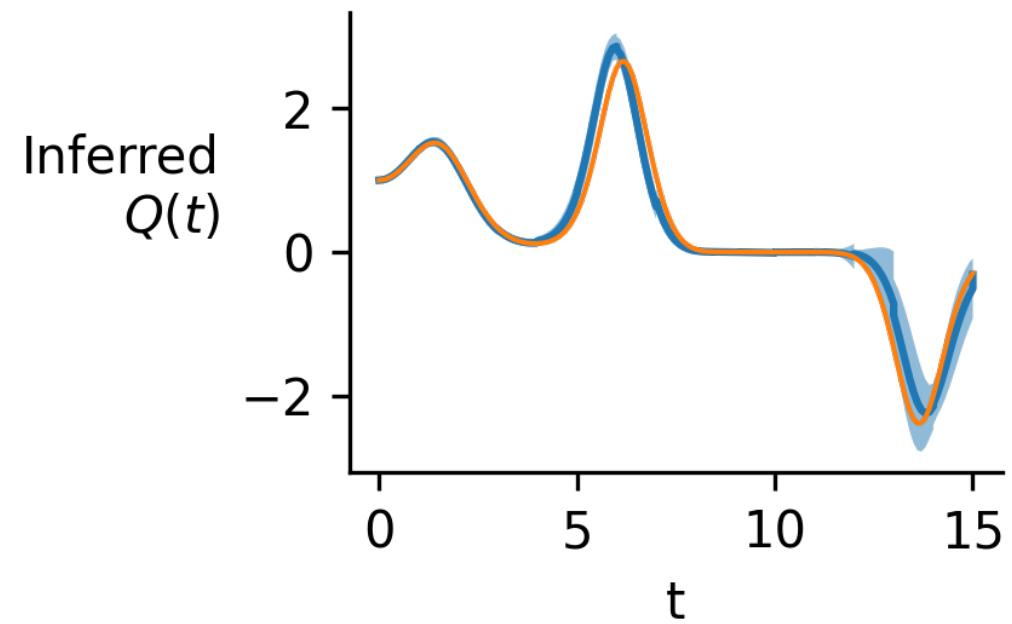
$$dQ_t = \sigma_Q dW_t$$



Close but not perfect dynamics assumed for Q

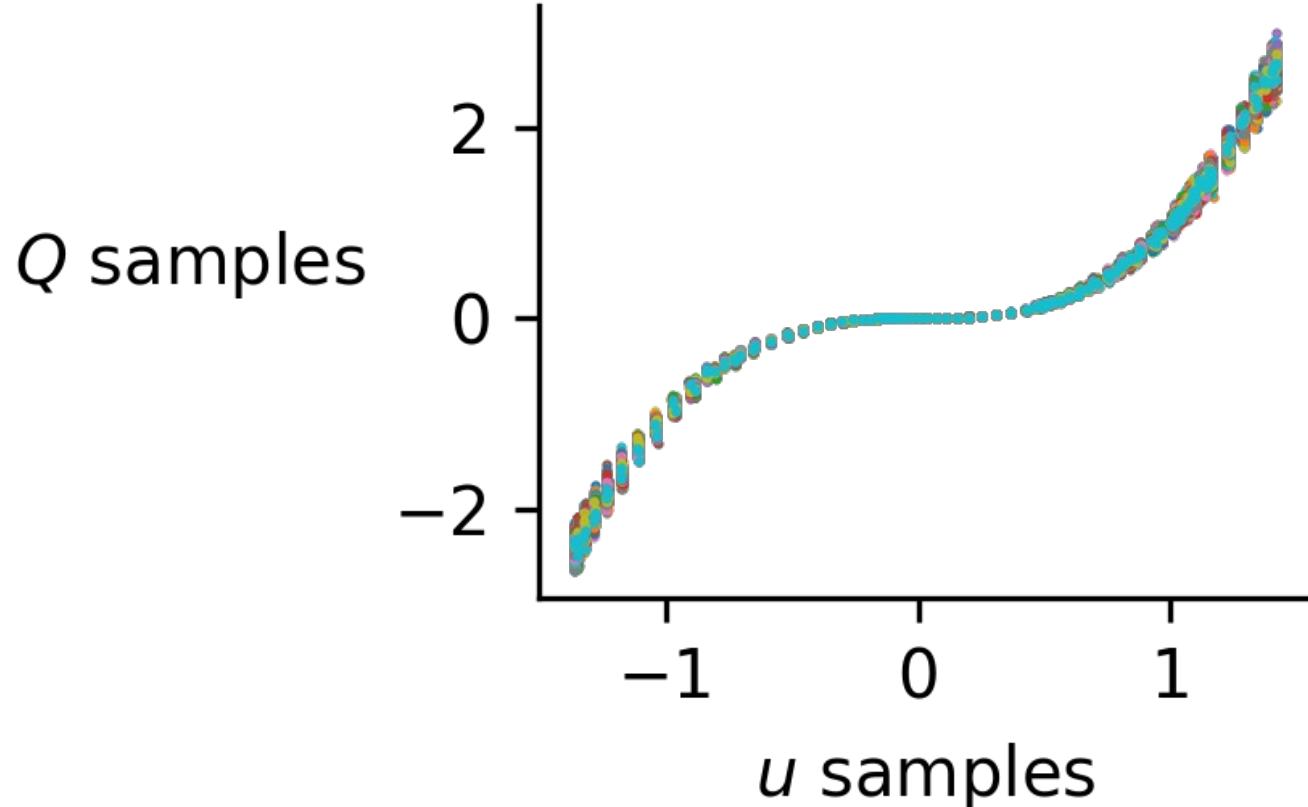
$$\begin{aligned} Q_t &= cu^3, \\ dc_t &= \sigma_c dW_t \end{aligned}$$

$$\text{True } Q(u) = u^{2.8}$$



Could use previously developed closure/constitutive models as baseline dynamics.

Using inferred Q to develop a data-driven closure/constitutive model



We can now explore many formulations for Q with ***no further dynamical system model evaluations***.

- Neural nets
- GPs
- Polynomials
- ...

Different colors represent different sample time series.

Conclusions and future work

- Data-driven closure models (DDCMs) can significantly advance beyond current state of the art in many application areas.
- Trustworthy DDCMs must be scalable and generalizable with quantified uncertainties.
- Our approach achieves these goals by decoupling costly dynamical-system based inference from DDCM formulation and training.
- We have investigated when this approach can be successful and methods to address sparse and noisy data.
- Next steps:
 - ML models with quantified input and output uncertainties
 - Out-of-distribution detection for quantified regions of applicability