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Many mechanical systems are naturally described by a
2 I combined Eulerian & Lagrangian description.

[e]

Lagrangian for solids with low to moderate strain rates
Eulerian description for materials that flow: fluids, solids at high strain rate

[e]

[e]

Blast-on-structure is a common environment in the defense industry
o Structural integrity

o Lethality
© SyStem assessments (a) Simulation (b) Experiment
- Computational simulations are challenging Fragmentation of bomb case (R. Teeter)

o Fluid-structure interactions (FSI)
> Particle velocity discrepancies introduce complexity
o Differing numerical methods for the physics domains

COMPRESS0R INJECTOR COMBUSTION GAS JET EXHAUST

CHAMBER  TORBINE NOZILE Ballistic resistance prediction (Zochowski et al., 2021)

—» Detonation front

Base material

i
Explosive welding

Turbomachinery applications



Our goal is to develop a robust and accurate coupling of
existing finite element codes.
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SABLE S
« SABLE: Shock Adaptive BLock Eulerian * Sierra Solid Mechanics (Sierra/SM)
» Shock physics  Large deformation, non-linear material
« Shock wave formation and propagation behavior with fracture and failure
« Multi- and mixed-phase materials * Linear and quadratic elements
- Elastic, viscous, plastic solids with fracture/failures * Explicit and implicit solution procedures

Massively parallel implementation
Contact mechanics

Extensive material model library
Equation of state models

Explicit time stepping — central difference

* High explosive detonations

 Structured mesh with Adaptive Mesh Refinement
(AMR)

* Hex8 linear finite elements

* Solves mass, momentum, energy equations
* Equations of state
» Constitutive models

 Satisfies balance laws, including angular momentum
 Lagrangian solution step followed by remap
 Explicit time stepping — central difference



Immersed methods are a natural choice for SABLE-to-
+ 1 Sierra Solid Mechanics coupling.

Schematic representation of the computational
domain [Christon et al., SAND2022-12772]

» Single (nodal) velocity field in SABLE

* No need to resolve “boundary layer’” phenomena

* Precise pointwise field values on the interface are not
of primary importance

* Prefer accuracy of integrated quantities (e.g. total
force) over an appropriate collection of Lagrangian

faces.
Nfaces
Fl= )" /JE[n]dS
f=1 71

» Structured background mesh |
i

* Modified Immersed FEM (mIFEM, cf. Wang &
Zhang, CMAME, 2013) is an approach that allows
for separate Lagrangian and Eulerian solvers.



Domains are coupled via linear momentum balance.

(9V

pW—VJ —OHIQE
pLa(;; _V.ol=0 in Q"

UL[IIL] -+ UE[IIE] =0 on FEL (dynamic)

G(VE,VL) — 0 on I'El  (kinematic)

 Eulerian domain is doing a Lagrange step!

» Kinematic interface condition can be no-slip, slip, dynamic
friction...

**Body forces, initial & boundary conditions omitted for brevity

FEL




Virtual work statement is obtained via the immersed
approach.

Problem 1 (Principle of virtual work)
Choose Vv € (HL(2))4. Then,

/ Pl - 8L—|—Vv ov dV+/ PV - al—i—VV o ydV = 0
QL ot O ot

* Immersed approach: single velocity field represents both
Lagrangian and Eulerian materials.

» Multiply by v, integrate over each domain, integrate by parts, QE
strongly enforce dynamic interface condition (force balance)

» Single velocity field has implications for E-L (inter-material) slip

Problem 2 (Weak form)
Find v¥ € (HY(QE))4 and vt € (HY(QY))? such that

L
/ ptvh ov™ + Vvl dV + / pEvE oV +Vv-c®dV =0
QL ot OF ot
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MIFEM introduces an artificial material to mimic the

Lagrangian response.

* “Artificial” domain is the image of the Lagrangian domain immersed in the

background

» Kinematics (velocity) on the artificial domain should mimic the Lagrangian

Kinematics
* Benefit: use existing solid models & Lagrangian codes

: Exteng the{E‘hlmn@ﬁ veIOC|ty a{rd‘“siteﬁs”‘l,nto the ariificial@Emain’
p¥ in QF
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Plroplestige(NkRsliied weak form)
Find v € (H*(Q))? such that
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MIFEM introduces an artificial material to mimic the

Lagrangian response.

* “Artificial” domain is the image of the Lagrangian domain immersed in the

background

» Kinematics (velocity) on the artificial domain should mimic the Lagrangian

Kinematics
* Benefit: use existing solid models & Lagrangian codes

- Extend the{E‘hlmn@ﬁ veIOC|ty a{rd‘“siteﬁs”‘l,nto the ariificial@Bnmainl

P E E
pF in o in Q QL ~ QA

Problem 3 (Modified weak form)
Find v € (HY(Q))¢ such that

/ pv - 6—V—|-VV % dV—/ v FEY vy e (HG ()%
Q ot QA

NG, v’ )
LAQ-FELI:LA{G-(p 8;’ pLg;;)—i—Vv-(aA—aL)}dV
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mIFEM solution algorithm advances Lagrangian and

° I Eulerian domains sequentially without iterations.

For each time step: [ Ja

1. Interpolate traction on Lagrangian boundary from Lo
backgrounglmatetial] L _ahaaalaa) ol

N Iiti >

2. Solve Lagrangian solid dynamics E . QFu Q=0
Problem 4 (Lagrangian weak form) 'E“"E""%"""‘E‘" :::: Q
Find v* € (H'(Q%))? such that T T T e [L = pint

Schematic representation of the computational

/ {pL‘I}L _ ovh i vl . O’L} dv — / vl . oE [nL] dS =0 domain [Christon et al., SAND2022-12772]
QL at EL
| vl e (Hj (")
ali = M [ (uk) — " ()
1
V7I§+1/2 = VrrIZ—l/z + 9 (Atn—l/Q + Atn—l—l/?) a,

L _ ..L L
U,11 = U, + Atn-|-1/2Vn—|—1/2

3. ldentify artificial domaif?® as the image of the foreground

Lagrangian domain in the background mesh (via an ‘indicator
function’)
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mIFEM solution algorithm advances Lagrangian and
0 ¥ Eulerian domains sequentially without iterations.

For each time step:

4. Evaluate the coupling force

L
v-FEH =5 (pAZ:—pLEg;) + VY- (o? ")

5. Solve the Eulerian (background) domain

Problem 3 (Modified weak form)
Find v € (H'(Q))? such that

3,
/Q {p\? : a—‘t’ + Vv a} dV = /QA v-FEML vy e (H ()"
where

L
/O-FELI:/ {v-(pA%;’pL%‘;)+w-(aAgL)}dv
QA J QA

o Mass conservation and internal energy are also solved
o Calculate fluxes and remap deformed state to initial grid
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Schematic representation of the computational
domain [Christon et al., SAND2022-12772]
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1 | Example: impedance matched shock wave propagation

Eulerian domain:
Dimensions: [-2,2]x[-0.05,]x[-0.72,0.72] cm
Elements: 400x10x10
Material: Mie-Gruneisen (linearized)
Pressure differential = 1e8 Pa
Density differential = 0.05 g/cm?

Lagrangian domain:

Dimensions: [0.5,1.5]x[-0.05,]x[-0.72,0.72] cm [ae:a .
Material: elastic, impedance matched e
I o
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2 I Example: Fragmentation of concentric rings

Eulerian domain:
Dimensions: [0,28.8]x[0,28.8]x[-0.72,0.72] cm
Elements: 80x80x2 = 12,800 total
Material: Air (tabulated equation of state)
Initial inner pressure = 110 Pa
Initial outer pressure = 0.82e6 Pa

Lagrangian domain:
Inner radius = 11.2 cm
Ring thickness = 1.8 cm
Materials: Tungsten - inner, 8400 elements
Steel - outer, 9680 elements

Weibull distribution of
yield stress adds
stochasticity
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13 | Take-away messages

1.

Two-way immersed coupling of Sierra Solid Mechanics (FEM) and
SABLE (shock physics) for explicit transient dynamics simulations will
be an enabling technology for next-generation blast-on-structure
analysis.

Immersed FEM approach is needed for block structured shock physics
code

Modified IFEM coupling methodology offers features needed for our
coupling strategy: theoretical basis, partitioned solvers, additional
flexibility

Initial investigations show promising results for high strain rate
scenarios

Research and development work is in progress
. Stability and convergence results — theory &

2. Z-scheme (e.g. CSS) temporal offsets for robustness and accuracy
3. Strong scaling and running ‘at scale’ needs to be demonstrated



