

Sandia
National
Laboratories

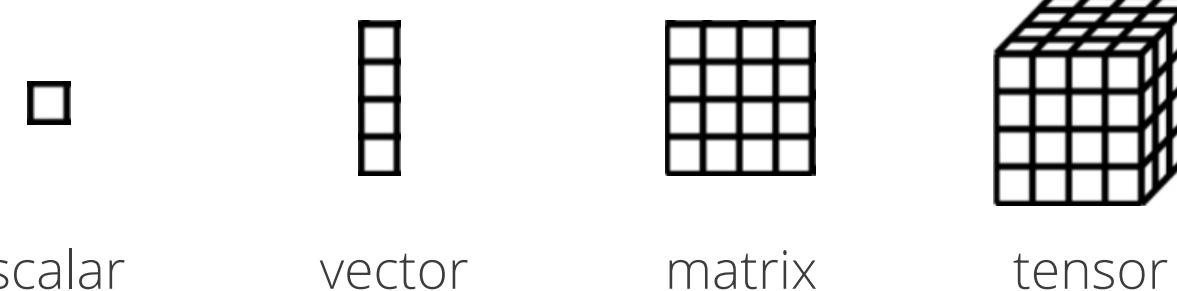
Exceptional service in the national interest

THE POISSON CANONICAL POLYADIC TENSOR MODEL AS A LATENT-VARIABLE MODEL

Carlos Llosa, Daniel M. Dunlavy, Richard B. Lehoucq,
Oscar Lopez, Arvind Prasadan

December 16 2023, CMStatistics Berlin

OVERVIEW



- **Goal:** Understand key relationships in tensor data
- **Current approach**
 - Low-rank tensor models (canonical polyadic, Tucker, tensor train, ...)
 - Parameter inference via maximum likelihood estimation
- **Our approach**
 - Latent-variable model formulation
 - Parameter inference via complete-data loglikelihood
 - EM algorithms for maximum likelihood estimation
 - Fisher information matrix

FROM DENSE-CONTINUOUS TO SPARSE-DISCRETE TENSOR DATA ANALYSIS

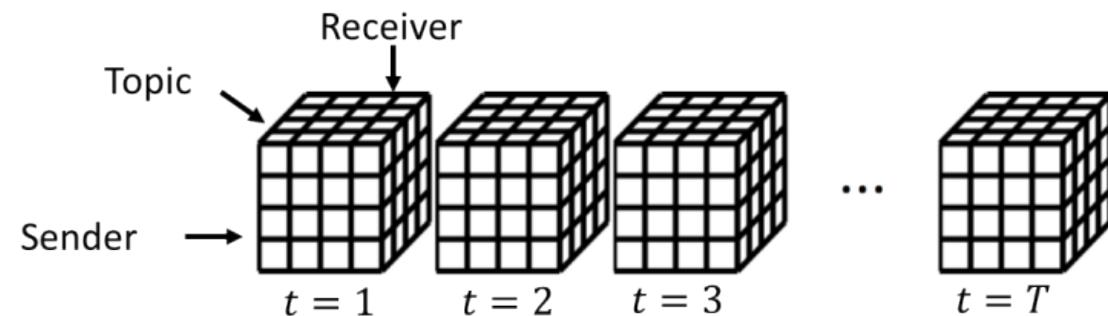
Netflix Prize [1]

- Sparse data: only ~1% of entries are observed
- Ranking data (1-5)
- Winner algorithm used matrix factorization techniques
- This led to increased interest in non-Gaussian matrix factorization

		Movies									
		1	2	3	4	5	6	7	8	...	17,700
Users	1		4		2	4					
	2	3		3				3			
3		3			1						
4			2			4		1		5	
...											
480,000			2					3		1	

ICEWS Database [2]

- Countries as receivers and senders
- Events such as threats or aid
- Count data: number of times an event happens from a receiver to a sender
- Sparse data, low-count data



[1] Bennett and Lanning, *The Netflix Prize*, Proc. of KDD Cup and Workshop, 2007.

[2] O'Brien, *Crisis Early Warning and Decision Support: Contemporary Approaches and Thoughts on Future Research*, ISR, 2010.

POISSON CANONICAL POLYADIC (PCP) TENSOR MODEL [3][4]

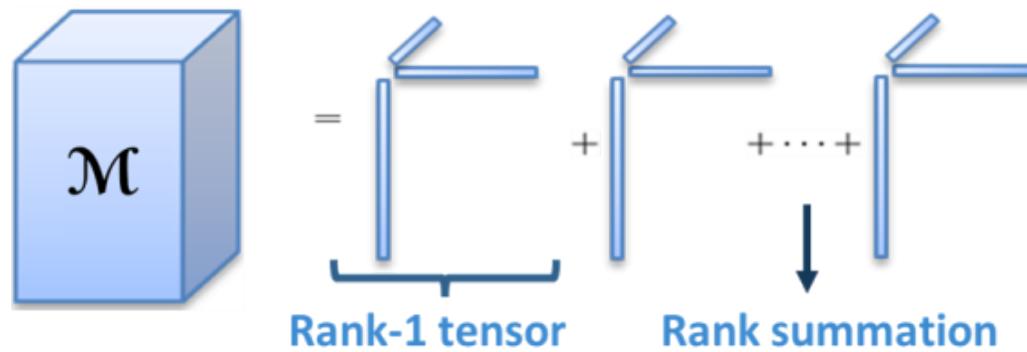
The count tensor follows a Poisson distribution element-wise

$$\mathbf{x} \sim \text{Poisson}(\mathbf{M}) \iff \mathbf{x}_{i,j,k} \stackrel{\text{indep.}}{\sim} \text{Poisson}(\mathbf{M}_{i,j,k})$$

$$\ell(\boldsymbol{\theta}) = \sum_{i,j,k} [\mathbf{x}_{i,j,k} * \log(\mathbf{M}_{i,j,k}) - \mathbf{M}_{i,j,k}] + \text{constant}$$

We present results for 3-way tensors, but our work generalizes to arbitrary D-way tensors

The parameter tensor is imposed a Canonical Polyadic tensor structure



$$\boldsymbol{\theta} = [\text{vec}(A)' \text{vec}(B)' \text{vec}(C)']'$$

$$\mathbf{M}_{i,j,k} = \sum_{r=1}^R A_{i,r} B_{j,r} C_{k,r}$$

[3] Lee and Seung, *Algorithms for Non-negative Matrix Factorization*, NeurIPS 2000.

[4] Chi and Kolda, *On Tensors, Sparsity, and Nonnegative Factorizations*, SIMAX 2012.

PCP TENSOR MODEL: CHALLENGES AND APPROACHES

$$\ell(\boldsymbol{\theta}) = \sum_{i,j,k} [\mathcal{X}_{i,j,k} * \log(\mathcal{M}_{i,j,k}) - \mathcal{M}_{i,j,k}] + \text{constant}$$

$$\mathcal{M}_{i,j,k} = \sum_{r=1}^R A_{i,r} B_{j,r} C_{k,r}$$

Optimization Approach [3,4]

How to efficiently optimize the loglikelihood?

- MM optimization [3,4]

Their MM algorithms are actually EM algorithms!

- Higher order methods

Our Fisher Info can be used for Fisher scoring optimization!

Our Approach

PCP is a latent-variable model!

- EM algorithms
- Fisher information

Evaluate model and fit

- Well-posed statistical problems
- Evaluate convergence of algorithm

Probabilistic Approach [5]

How many entries do I need to recover \mathcal{M} ?

- Matrix/tensor completion
- Typically an upper bound on MSE

Our Fisher Info can be used for Cramer Rao bounds on MSE!

[3] Lee and Seung, *Algorithms for Non-negative Matrix Factorization*, NeurIPS 2000.

[4] Chi and Kolda, *On Tensors, Sparsity, and Nonnegative Factorizations*, SIMAX 2012.

[5] Cao and Xie, *Poisson Matrix Recovery and Completion*, IEEE TSP 2016

FIRST MAIN RESULT: PCP IS A LATENT-VARIABLE MODEL

Random Variable

$$\mathbf{x} \sim \text{Poisson} \left(\sum_{r=1}^R A[:, r] \circ B[:, r] \circ C[:, r] \right)$$

$$+ \cdots +$$

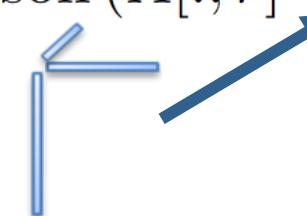
Latent mechanism

$$x \stackrel{d}{=} \sum_{r=1}^R z_r$$

Latent Random Variable

$$\mathcal{Z} = \left[\begin{array}{ccc} \mathcal{Z}_1 & \mathcal{Z}_2 & \dots & \mathcal{Z}_R \end{array} \right]$$

$$\mathbf{z}_r \sim \text{Poisson}(A[:, r] \circ B[:, r] \circ C[:, r])$$



\mathbf{x} follows a rank- R PCP model

\mathbf{x} is the sum of R independent \mathbf{z}_r ,
each following a rank-1 PCP model

PCP AS A LATENT-VARIABLE MODEL

Observed Data $\mathbf{x} = \text{vec}(\mathbf{X})$

$$\mathbf{X} = \begin{matrix} \text{cube} \end{matrix}$$

Complete Data $\mathbf{z} = \text{vec}(\mathbf{Z})$

$$\mathbf{Z} = \left[\begin{matrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_R \\ \text{cube} & \text{cube} & \dots & \text{cube} \end{matrix} \right]$$

Latent mechanism

$$\mathbf{X} \stackrel{d}{=} \sum_{r=1}^R \mathbf{z}_r$$

$$\boldsymbol{\theta} = [\text{vec}(A)' \text{vec}(B)' \text{vec}(C)']'$$

Loglikelihood $x_{i,j,k} \sim \text{Poisson} \left(\sum_r A_{i,r} B_{j,r} C_{k,r} \right)$

$$\begin{aligned} \ell(\mathbf{x}|\boldsymbol{\theta}) &:= \log p(\mathbf{x}|\boldsymbol{\theta}) \\ &= \underbrace{\log p(\mathbf{z}|\boldsymbol{\theta})}_{\ell_c(\mathbf{z}|\boldsymbol{\theta})} - \underbrace{\log p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})}_{\ell_m(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})} \end{aligned}$$

Complete loglikelihood $z_{r,i,j,k} \sim \text{Poisson}(A_{i,r} B_{j,r} C_{k,r})$

Missing loglikelihood $(z_{1,i,j,k} \dots z_{R,i,j,k}) | x_{i,j,k} \sim \text{Multinomial}(n = x_{i,j,k}, p_1, \dots, p_R)$

$$p_r = \frac{A_{i,r} B_{j,r} C_{k,r}}{\sum_r A_{i,r} B_{j,r} C_{k,r}}$$

SECOND MAIN RESULT: EXISTING MM ALGORITHMS CAN BE DERIVED AS EM ALGORITHMS

E-step $Q(\theta; \bar{\theta}) := \mathbb{E}_{z|x, \bar{\theta}}(\ell_c(\theta))$

$$= \sum_{r,i,j,k} \left[\bar{Z}_{r,i,j,k} * \log(A_{i,r}B_{j,r}C_{k,r}) - (A_{i,r}B_{j,r}C_{k,r}) \right]$$

$$\bar{Z}_{r,i,j,k} := \mathbb{E}_{z|x, \bar{\theta}}(Z_{r,i,j,k}) = \mathbf{x}_{i,j,k} \frac{\bar{A}_{i,r} \bar{B}_{j,r} \bar{C}_{k,r}}{\sum_r \bar{A}_{i,r} \bar{B}_{j,r} \bar{C}_{k,r}}$$

This is the mean of a multinomial

CM-step Here θ is split into 3 blocks, corresponding to A , B and C .

Solve $\underbrace{\arg\max_A Q(\theta; \theta^{(t)})}_{\text{This is EM algorithm!}} = \left\{ \sum_{j,k} \bar{Z}_{r,i,j,k}^{(t)} \right\}_{i,r} = A * \underbrace{([\mathbf{x}_{(1)} \oslash (A(C \odot B)')](C \odot B))}_{\text{This is the update used in [3] and [4]!!}}$

[3] Lee and Seung, *Algorithms for Non-negative Matrix Factorization*, NeurIPS 2000.

[4] Chi and Kolda, *On Tensors, Sparsity, and Nonnegative Factorizations*, SIMAX 2012.

A PATH TOWARDS THE FISHER INFORMATION

Latent mechanism $\mathbf{x} \stackrel{d}{=} \sum_{r=1}^R \mathbf{z}_r$

The Missing Information Principle [6]

“observed information” equals the “complete information” minus the “missing information”

$$\begin{aligned} \mathcal{I}(\theta; \mathbf{x}) &:= - \frac{\partial^2}{\partial \theta \partial \theta'} \ell(\mathbf{x} | \theta) \\ &= \underbrace{\mathbb{E} \left[- \frac{\partial^2}{\partial \theta \partial \theta'} \ell_c(\mathbf{z}, \mathbf{x} | \theta) \middle| \mathbf{x} \right]}_{\mathcal{I}_c(\theta; \mathbf{x})} - \underbrace{\mathbb{E} \left[- \frac{\partial^2}{\partial \theta \partial \theta'} \ell_m(\mathbf{z} | \mathbf{x}, \theta) \middle| \mathbf{x} \right]}_{\mathcal{I}_m(\theta; \mathbf{x})} \end{aligned}$$

observed
information

$$\text{Poisson} \left(\sum_r A_{i,r} B_{j,r} C_{k,r} \right)$$

complete
information

$$\text{Poisson}(A_{i,r} B_{j,r} C_{k,r})$$

missing
information

$$(z_{1,i,j,k} \dots z_{R,i,j,k}) | x_{i,j,k}$$

$$\text{Multinomial}(n = x_{i,j,k}, p_1, \dots, p_R)$$

RANK 1 PCP CASE: FISHER INFORMATION MATRIX

When $R=1$, the complete data is observed $\mathbf{x} = \mathbf{z}$. No information is lost.

Parameter Vector
 $\boldsymbol{\theta} = [\mathbf{a}' \mathbf{b}' \mathbf{c}']'$

Model

$$\mathbf{x} \sim \text{Poisson}(\mathbf{a} \circ \mathbf{b} \circ \mathbf{c})$$

Loglikelihood

$$\ell(\boldsymbol{\theta}) = \sum_{i,j,k} [\mathbf{x}_{i,j,k} * \log(\mathbf{a}_i \mathbf{b}_j \mathbf{c}_k) - \mathbf{a}_i \mathbf{b}_j \mathbf{c}_k] + \text{constant}$$

Fisher Information

$$\mathcal{I}(\boldsymbol{\theta}) = \begin{bmatrix} \text{diag}(\mathbf{a}^{-1}) & \mathbf{1}\mathbf{1}' & \mathbf{1}\mathbf{1}' \\ \mathbf{1}\mathbf{1}' & \lambda \text{diag}(\mathbf{b}^{-1}) & \lambda \mathbf{1}\mathbf{1}' \\ \mathbf{1}\mathbf{1}' & \lambda \mathbf{1}\mathbf{1}' & \lambda \text{diag}(\mathbf{c}^{-1}) \end{bmatrix}$$

- Above we are parameterizing $\boldsymbol{\theta}$ so that $\lambda = \mathbf{a}'\mathbf{1}$ and $\mathbf{1} = \mathbf{b}'\mathbf{1} = \mathbf{c}'\mathbf{1}$. Any parameterization follows from this
- For \mathbf{x} of size $N_1 \times N_2 \times N_3$, $\mathcal{I}(\boldsymbol{\theta})$ is square with $N_1 + N_2 + N_3$ rows and columns
- $\mathcal{I}(\boldsymbol{\theta})$ is singular of rank $N_1 + N_2 + N_3 - 2$
- The FIM is nonsingular if you remove any one entry from \mathbf{b} and any one entry from \mathbf{c}

GENERAL RANK PCP CASE, AND OAKES' THEOREM

- For the general rank case, we have missing information.
- Unlike Gaussian CP, the Fisher information for R=1 is not a special case of general rank
- Direct differentiation of the loglikelihood is challenging
- We can leverage the missing information principle

$$\mathcal{I}(\boldsymbol{\theta}; \mathbf{x}) = \mathcal{I}_c(\boldsymbol{\theta}; \mathbf{x}) - \mathcal{I}_m(\boldsymbol{\theta}; \mathbf{x})$$

 Similar to $R=1$ case Challenging

Latent mechanism $\mathbf{x} \stackrel{d}{=} \sum_{r=1}^R \mathbf{z}_r$

- Many techniques exist for obtaining/estimating $\mathcal{I}_m(\boldsymbol{\theta}; \mathbf{x})$ from the complete loglikelihood
- Most popular is Louis' method [7], but can only be evaluated at the MLE.
- I use Oakes' method [8], which is more general:

$$\mathcal{I}_m(\boldsymbol{\theta}; \mathbf{x}) = \left[\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \bar{\boldsymbol{\theta}}'} Q(\boldsymbol{\theta}, \bar{\boldsymbol{\theta}}) \right]_{\bar{\boldsymbol{\theta}}=\boldsymbol{\theta}} \quad \mathbb{E}_{\mathbf{z}|\mathbf{x}, \bar{\boldsymbol{\theta}}}(\ell_c(\boldsymbol{\theta}))$$

[7] Louis, *Finding the Observed Information Matrix when Using the EM Algorithm*, JRSSB 1982

[8] Oakes, *Direct Calculation of the Information Matrix via the EM Algorithm*, JRSSB 1999

GENERAL RANK PCP: FISHER INFORMATION MATRIX

Model

$$\mathbf{x}_{a,b,c} \stackrel{\text{indep.}}{\sim} \text{Poisson}(\mathbf{M}_{a,b,c})$$

Loglikelihood

$$\ell(\boldsymbol{\theta}) = \sum_{a,b,c} [\mathbf{x}_{a,b,c} * \log(\mathbf{M}_{a,b,c}) - \mathbf{M}_{a,b,c}]$$

Fisher Information

$$\mathcal{I}(\boldsymbol{\theta}) = \left\{ \left\{ G_{k,l}^{r,s} \right\}_{r,s=1,\dots,R} \right\}_{k,l=1,2,3}$$

$$G_{k,l}^{r,s} = \begin{cases} \text{diagonal matrix} & k = l \\ \text{dense matrix} & k \neq l \end{cases}$$

Parameter Vector

$$\boldsymbol{\theta} = [\text{vec}(A)' \text{vec}(B)' \text{vec}(C)']'$$

$$\mathbf{M}_{a,b,c} = \sum_{r=1}^R A[a,r]B[b,r]C[c,r]$$

- $\mathcal{I}(\boldsymbol{\theta})$ is a 3×3 block matrix, where each block is itself a $R \times R$ block matrix
- Above is for arbitrary parameterization of $\boldsymbol{\theta}$
- For \mathbf{x} of size $N_1 \times N_2 \times N_3$, $\mathcal{I}(\boldsymbol{\theta})$ is square with $R(N_1 + N_2 + N_3)$ rows and columns
- $\mathcal{I}(\boldsymbol{\theta})$ is singular of rank $R(N_1 + N_2 + N_3 - 2)$
- The FIM is nonsingular if you remove one entry from each column of B, and one entry from each column of C

BIAS-VARIANCE TRADE-OFF AND THE CRAMER-RAO LOWER BOUND

Consider a true parameter vector

$$\theta_o = [\text{vec}(A)^\top \text{vec}(B)^\top \text{vec}(C)^\top]^\top$$

and its estimated counterpart $\hat{\theta}$

Call

1. Bias² $\|\mathbb{E}(\hat{\theta}) - \theta_o\|^2$

2. Variance: $\mathbb{E}\|\hat{\theta} - \mathbb{E}(\hat{\theta})\|^2$

3. MSE: $\mathbb{E}\|\hat{\theta} - \theta_o\|^2$

4. CRLB: $\text{tr}(\mathcal{I}^\dagger(\theta_o))$

Then:

- MSE = Bias² + Variance

- Bias² = 0 \implies CRLB \leq Variance

Monte-Carlo Study

- Draw \mathcal{X}_k^* from $\text{Poisson}(\mathcal{M}(\theta_o))$
- Estimate $\hat{\theta}_k^*$ from \mathcal{X}_k^* .
- Repeat for some large K
 $k = 1, 2, \dots, K$

Monte-Carlo approximations:

1. Mean: $\bar{\theta}_{MC} = K^{-1} \sum_k \hat{\theta}_k^*$

2. Bias2: $\|\bar{\theta}_{MC} - \theta_o\|^2$

3. Variance: $K^{-1} \sum_k \|\hat{\theta}_k^* - \bar{\theta}_{MC}\|^2$

4. MSE: $K^{-1} \sum_k \|\hat{\theta}_k^* - \theta_o\|^2$

BIAS-VARIANCE TRADE-OFF AND THE CRAMER-RAO LOWER BOUND

Simulation Setup

Visualize the bias-variance trade-off for tensors $\mathcal{M}(\theta_0)$ with varying:

- Entry-wise mean $s = 1, 2, 3, 4$
 $s = \text{mean}(\mathcal{M})$
- Sizes $N = 10, 15, 20$
 $\mathcal{M} \in \mathbb{R}^{N \times N \times N}$
- Rank $R = 1, 2, \dots, 16$

Cramer-Rao Lower Bound

$$\left(\frac{\partial}{\partial \theta} \mathbb{E}(\hat{\theta}) \right) \mathcal{I}^\dagger(\theta) \left(\frac{\partial}{\partial \theta} \mathbb{E}(\hat{\theta}) \right)^\top \leq \text{Var}(\hat{\theta})$$

↓

$$\frac{\partial}{\partial \theta} \mathbb{E}(\hat{\theta}) = \text{Cov} \left(\hat{\theta}, \frac{\partial}{\partial \theta} \log f(\mathbf{x}; \theta) \right)$$

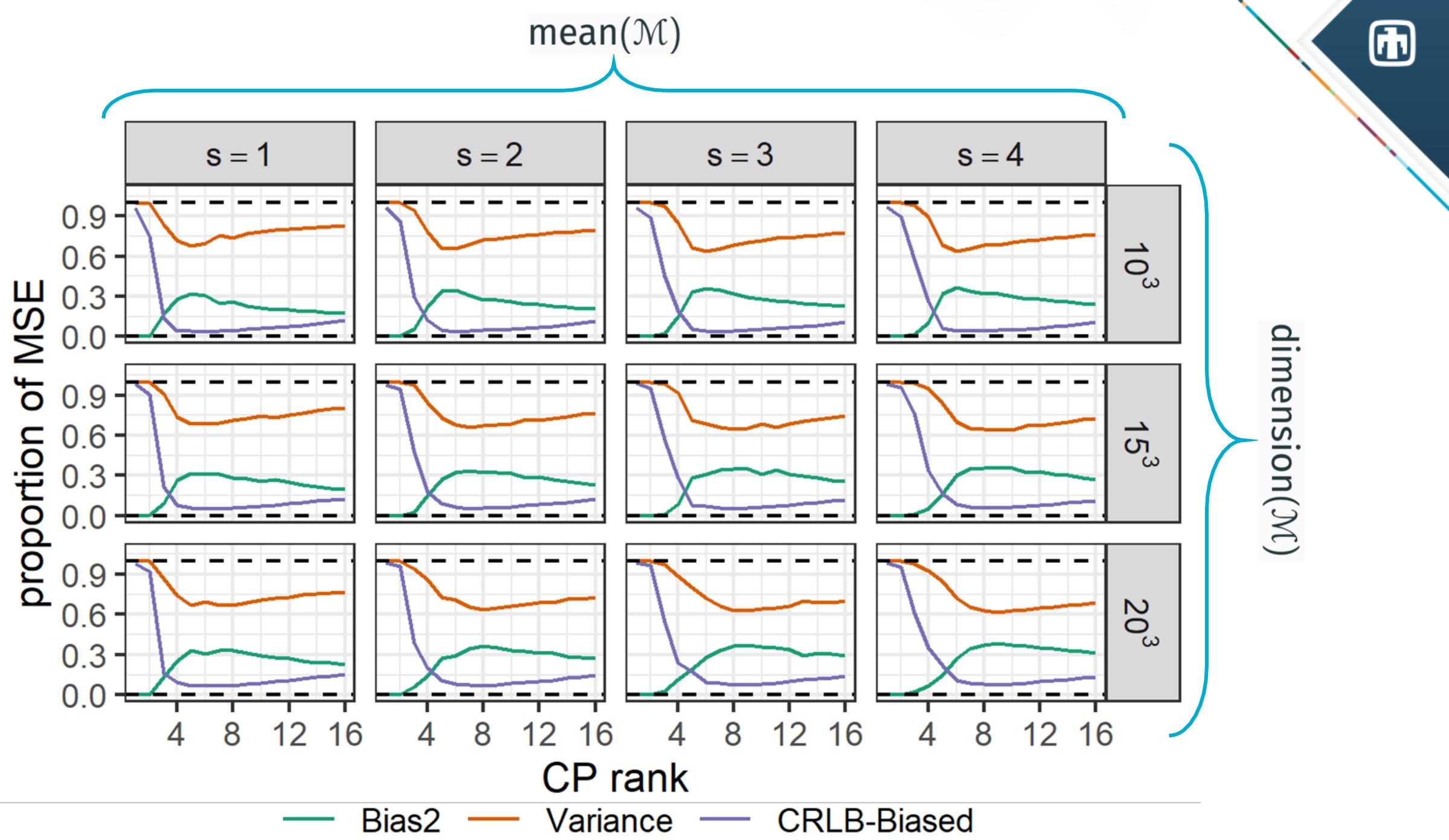
Jacobian identity

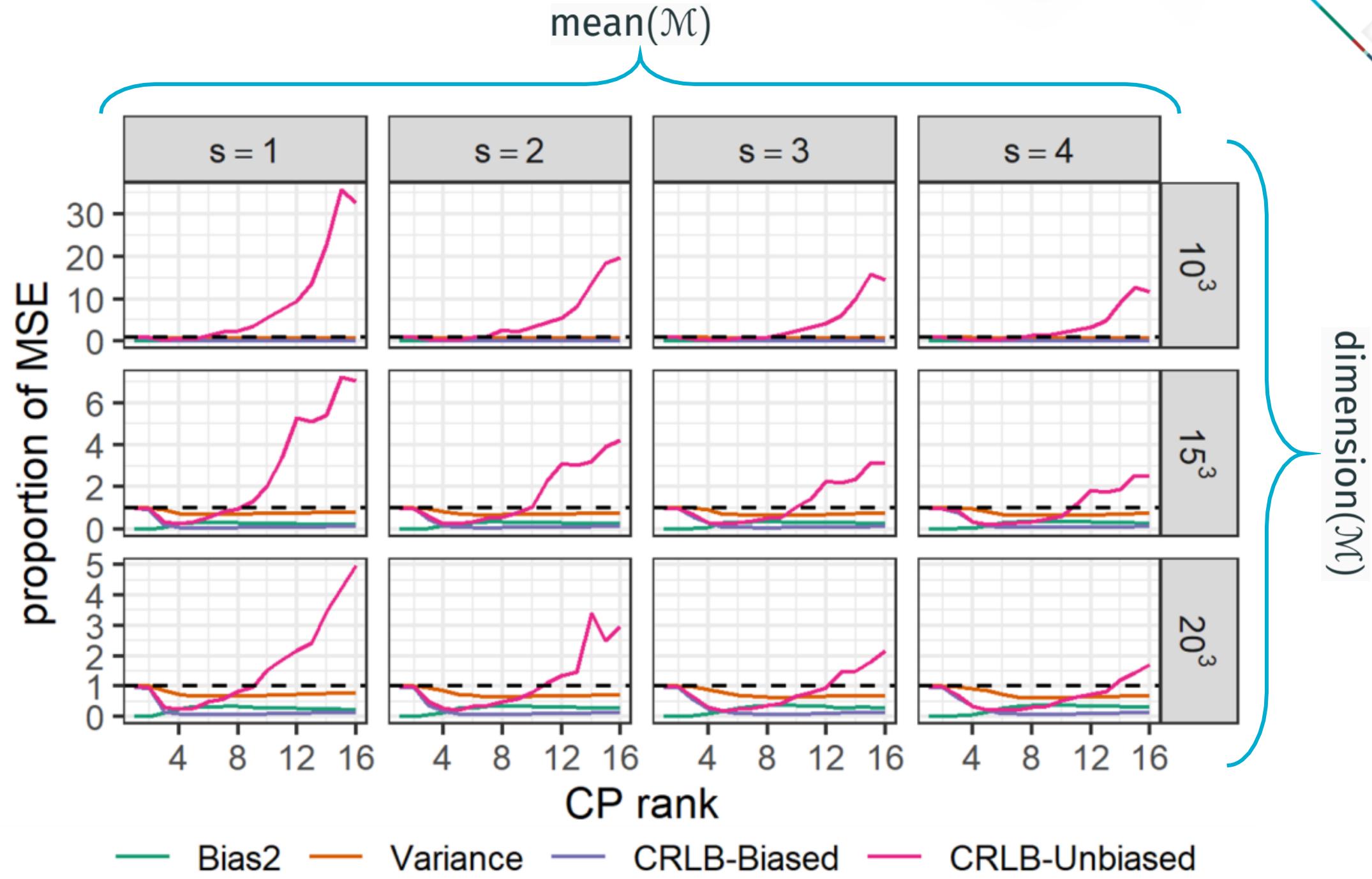
Score simplification

$$\frac{\partial}{\partial \theta} \log f(\mathbf{x}; \theta) = \begin{bmatrix} \text{vec}[\mathcal{S}_{(1)}(C \odot B)] \\ \text{vec}[\mathcal{S}_{(2)}(C \odot A)] \\ \text{vec}[\mathcal{S}_{(3)}(B \odot A)] \end{bmatrix}$$

↓

$$\mathcal{S}_i = \mathcal{X}_i / \mathcal{M}_i - 1$$





CONCLUSIONS AND PATH FORWARD

- PCP is a very popular method, we demonstrate it's a latent variable model
 - Applications in topic modeling, document clustering and classification, poll analysis, etc.
 - We allow for parameter inference through complete loglikelihood
- We rediscover popular estimating algorithms as instances of EM algorithms
 - Shed light on the properties of existing algorithms
 - Help bridge two fields of machine learning research
- Derived novel Fisher information matrix, using the missing information principle
 - Can be used to propose new Fisher scoring algorithms, Cramer Rao inequalities
 - Allows us to gauge the conditions for a well-posed parameter inference problem
- Variance-trade off simulation study
 - Bias-variance trade-off of PCP
 - Comparison against CRLB

THANK YOU!

The Poisson Canonical Polyadic Tensor Model as a Latent-Variable Model

Carlos Llosa cjllosa@sandia.gov