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OVERVIEW

S

scalar vector matrix tensor

« Goal: Understand key relationships in tensor data

« Current approach
« Low-rank tensor models (canonical polyadic, Tucker, tensor train, ...)

« Parameter inference via maximum likelihood estimation

* Our approach
« Latent-variable model formulation
- Parameter inference via complete-data loglikelihood
* EM algorithms for maximum likelihood estimation
« Fisher information matrix




FROM DENSE-CONTINUOUS TO SPARSE-DISCRETE TENSOR DATA ANALYSIS X\

Netflix Prize [1]

« Sparse data: only ~1% of entries are observed

« Ranking data (1-5)

« Winner algorithm used matrix factorization
techniques

« This led to increased interest in non-Gaussian
matrix factorization

Movies
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[1] Bennett and Lanning, The Netflix Prize, Proc. of KDD Cup and Workshop, 2007.
‘[2] O'Brien, Crisis Early Warning and Decision Support: Contemporary Approaches and Thoughts on Future Research, ISR, 2010. 3

ICEWS Database [2] N

N\

Countries as receivers and senders
Events such as threats or aid

Count data: number of times an event
happens from a receiver to a sender
Sparse data, low-count data

Receiver




POISSON CANONICAL POLYADIC (PCP) TENSOR MODEL [3][4]

The count tensor follows a Poisson distribution element-wise

. indep. .
X ~ Poisson(M) <= X,;;r ~ Poisson(M; ;) Btk
way tensors, but our work

generalizes to arbitrary

Z [x% 7 k * log(Mz 3, ) M?ﬂ,j,k] + constant D—vvay tensors
1,5,k

The parameter tensor is imposed a Canonical Polyadic tensor structure

L L. £ 0 = [vec(A) vec(B) vec(C)'
B + doret

M R

L T J 1 Mi,j,k — ZAi,rBj,er,fr

Rank-1 tensor Rank summation r—1

[3] Lee and Seung, Algorithms for Non-negative Matrix Factorization, NeurlPS 2000.
‘[4] Chiand Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012.




PCP TENSOR MODEL: CHALLENGES AND APPROACHES h

R \*
0(6) = > [Xi ;i *1og(Mi k) — M jk] + constant Mije =Y AirBj Crr N
i:jak r=1

Optimization Approach [3,4] Our Approach Probabilistic Approach [5]

How to efficiently optimize the PCP is a latent-variable How many entries do | need to

loglikelihood? model! recover M?

« MM optimization [3,4] + EM algorithms « Matrix/tensor completion

- : : » Typically an upper bound on MSE
Their MM algorithms are / *, Fisher information ypically g ipp

Our Fisher Info can be used for

actually EM algorithms!
Cramer Rao bounds on MSE!

« Higher order methods

Our Fisher Info can be used for
Fisher scoring optimization!

Evaluate model and fit
» Well-posed statistical problems
» FEvaluate convergence of algorithm

[3] Lee and Seung, Algorithms for Non-negative Matrix Factorization, NeurlPS 2000.
[4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012,
‘[5] Cao and Xie, Poisson Matrix Recovery and Completion, IEEE TSP 2016 .




AN

FIRST MAIN RESULT: PCP IS A LATENT-VARIABLE MODEL h

AN
Random Variable Latent Random Variable ‘\
Zl Zz ZR A
X = E %, — [
R - - | -
X ~ Poisson (Z Al:,r] o B:,r] o C[:jr]) 2 ~ Poisson (A[:,r] o B[:,r] o C[:,7])
r=1 -

X follows a rank-R PCP mode|

|

X is the sum of R independent Z,
each following a rank-1 PCP model




PCP AS A LATENT-VARIABLE MODEL N
Observed Data x = vec(X) 9:[VeC(A),VeC(B)IVeC(C)’]’ \

Loglikelihood  z;;, ~ Poisson (Z AZ-,TB]-WC’/{,T>

X = f
{(x]@) : = log p(x|6)
Complete Data = = vec(Z) ~ logp(216) - log p(z]x, 6)
% % %r t:(216) tm (2],6)
¥
Z — Complete loglikelihood

Zri ke ~ Poisson(4; B, Ckr)

Missing loglikelihood

(21,i4k - - - ZRi ik )| Ti ik ~ Multinomial(n = z; ; ., p1, ..., DR)
A Bj Ol

br= ZT AL_TBj,erm

mechanism

R
Latent X g ZZ’T
r=1




SECOND MAIN RESULT: EXISTING MM ALGORITHMS CAN BE \\
DERIVED AS EM ALGORITHMS N\

Estep Q(60:0) : =E, |5 6(£c(0)) N
- Z [Zm’,j,k +log(Air BjrCryr) — (Ai=TBj’TCk’T)}
T7?:7j7k
Zfr,i,j,k‘ _ Ez|m,é(zr,i,j,k) _ Ai B Cg r <_This s the mean of a

1,0,k S x‘_li,rBj,rC_'k,r multinomial
CM-step Here@ is split into 3 blocks, corresponding to A, B and C.
( 3

sove argmaxQ(8;01) = § 3%, 6 = Ax (X © (AC © BY)(Co B))
* \ J:k J 1,7 #

- . This is the update used in
This is EM algorithm! '3] and [4]!

[3] Lee and Seung, Algorithms for Non-negative Matrix Factorization, NeurlPS 2000.
‘[4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012.




A PATH TOWARDS THE FISHER INFORMATION

mechanism

R
d
Latent X < Z Z‘r
r=1

The Missing Information Principle [6]
“observed information” equals the “complete information” minus the “missing information”

82
1(0:x) :=— /(x|0
(0:) 1= — 5 ((]6)
02 02
—FE [_8969’€C(2’m|9)‘m] —E {_8989’€m(z|$’9)‘$]
7.(0: z) T,,(6: )
observed complete missing
information information information
Li,j,k 11,5,k (2145k - ZRiijk)|Ti ik
Poisson (Z Ai,,nBj,f,«C’kjr) Poisson(A; »B;,Cl.r) Multinomial(n = z; ; , p1, - - -, PR)

‘ [6] Orchard and Woodbury, A missing information principle: theory and applications, Berkeley Symp. on Math. Statist. and Prob., 1972
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RANK 1 PCP CASE: FISHER INFORMATION MATRIX h

When R=1, the complete data is observed X = % . No information is lost. Parameter \-
. Vector N
Model X ~ Poisson(aobo c) 0 — [a'b'c]

Loglikelihood ~ €(8) =) [Xi;x *log(aibjck) — aibjcx] + constant

ik

Fisher " diag(a™?) 11’ 11
information Z(0) = 11/ Mdiag(b~!) A1l

1 A1 A diag(e 1) |

Above we are parameterizing @ so that A =a’l and 1 =b'1 = ¢'1 . Any parameterization follows from this
For X of size N1 X N2 X N3 | Z(@) issquare with Ny + Na + N3 rows and columns
Z(0) is singular of rank N1 + Ng + N3 — 2

The FIM is nonsingular if you remove any one entry from b and any one entry from €

. 10




GENERAL RANK PCP CASE, AND OAKES' THEOREM

For the general rank case, we have missing information.

Unlike Gaussian CP, the Fisher information for R=1 is not a special case of general rank
Direct differentiation of the loglikelihood is challenging

We can leverage the missing information principle

1(0;z) = 1.(0; ) — Ln(0; x) ~
T T meLcar;cgrr\]itsm X = Z Zor
Similar to Challenging r=1

R=1 case

« Many techniques exist for obtaining/estimating Tm(0;x) from the complete loglikelihood

« Most popular is Louis’ method [7], but can only be evaluated at the MLE. \
82

| use Oakes’ method [8], which is more general: 7 (@; z) = [8989’62(9’ 9)}7 ]Ez|w 5(£:(0))
0=0 ’

[7] Louis, Finding the Observed Information Matrix when Using the EM Algorithm, JRSSB 1982

‘ [8] Oakes, Direct Calculation of the Information Matrix via the EM Algorithm, JRSSB 1999 "
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GENERAL RANK PCP: FISHER INFORMATION MATRIX N
Model Xy ™ Doisson(Mop) Parameter Vector \_
abe ™~ oisson (M, p..
b b 9:[vec(A)'vec(B)’Vec(C)’]' \
Loglikelihood 00) =) [Xape*logMape) —Mape]  Mape= ZA a,7)Blb, 7]Cc, 7]
a,b,c
Fisher s s diagonal matrix k =1
Information 1(6) = {{Gk:!}rﬁ:l ..... R}k,,g:l,z,s Gt = {dea:lgsz jlatr?x k#1

Z(0) is a 3 x 3 block matrix, where each block is itself a R x R block matrix

Above is for arbitrary parameterization of 6

For X of size N1 X Na X N3 , Z(0) issquare with R(N1 + No+ N3)  rows and columns
Z(0) is singular of rank R(N1 + Na + N3 — 2)

The FIM is nonsingular if you remove one entry from each column of B, and one entry from each column of C

. .
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BIAS-VARIANCE TRADE-OFF AND THE CRAMER-RAO LOWER BOUND N\

AN
Consider a true parameter vector Monte-Carlo Study \\
0o = [ vec(A)' vec(B)' vec(C)']" . Do e
and its estimated counterpart 6 raw L iom oisson(M(6o))
« Estimate 6; from X;.
Call : :
i  Repeat for some large K
1. Bias® |E(0) — 0o]* k=1,2,...,K
2. Variance: E||@ — E(0)|[? o
. Monte-Carlo approximations:
3. MSE: E||§ — 6,]|?
.. CRLB: tr(Z1(6o)) 1. Mean: Omc = K~" 1, 6
: . n 2
Then: 2. Blas2: HQMC 90|,|\ )
) 3. Variance:  K='%", |16} — Oumc||?
- MSE = Bias“+Variance _ Ay
. . 4. MSE: K=" > 110r — 6o/
» Blas? =0 — CRLB < Variance

13




AN

BIAS-VARIANCE TRADE-OFF AND THE CRAMER-RAO LOWER BOUND N\

AN
Cramer-Rao Lower Bound A\
Simulation S 0 %, ! A
imulation Setup (%E(e)) 7(6) (89 (9)) < var(d)
Visualize the bias-variance trade-off
15, 0
- Entry-wise mean s = 1,2,3,4 IE3(19) Cov (9 59 o8 (X; 9))
S = mean(M) l
- Sizes N = 10, 15,20 Score simplification )
M € RNXNxN p vec[8;)(C ® B)]
- RankR =1,2,...,16 %'ng(x 0) = | vec[8y;)(C O A)
i V@C:S(3)(B @A):_
\
8,‘ — f)C,-/M,- — 1

14
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CONCLUSIONS AND PATH FORWARD h

\\

PCP is a very popular method, we demonstrate it's a latent variable model N\
« Applications in topic modeling, document clustering and classification, poll analysis, etc.
« We allow for parameter inference through complete loglikelihood

We rediscover popular estimating algorithms as instances of EM algorithms
* Shed light on the properties of existing algorithms
« Help bridge two fields of machine learning research

Derived novel Fisher information matrix, using the missing information principle
» (Can be used to propose new Fisher scoring algorithms, Cramer Rao inequalities
 Allows us to gauge the conditions for a well-posed parameter inference problem

Variance-trade off simulation study
* Bias-variance trade-off of PCP
e Comparison against CRLB

. .
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Carlos Llosa cjllosa@sandia.gov



mailto:cjllosa@sandia.gov

