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2 ‘ Heterogeneous Numerical Methods

Model

Numerical parts

HNM

DOE applications require
diverse “mathematical parts”:

PDEs, integral equations, classical
DFT, potential-based atomistic...

Diverse math. models require
diverse “"numerical parts”:
mesh based (FE, FV, FD),
meshless (SPH, MLS), implicit,
explicit, Eulerian, Lagrangian...

Q;
High-fidelity
FEM model
(Physics 2)
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- mesh-free

Q3
High-fidelity

model
(Physics 3)

HNM = Collection of diverse
numerical parts from multiple
disciplines functioning together
as a unified simulation tool
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Exemplar - Advection-Diffusion

Coupled problem with "matching” interface conditions:

ui,t — V . O_z(z) = fz n Qz
u; =0 on I
U1 = Ug 0N FO

o1(u1) -ny = —oa(uz) -ng on Iy

Non-overlapping DD of 2 = 2, U 0, .

where 0;(u) = v;Vu — a;u



Review - Decomposition with Optimization-Based Coupling m

4

1 1
n o,mn M\ .__ n n |2 n (|2
Js(uf,uf,g") = 5 lui — |}, + 5009”1, |
min
gn J5(u7117u379n) ‘
s.t. finding u,;" € X; satisfying I
1 — n n 1 M
o — )+ (o), Vo) = (7 0) + (<1 (0" o), Ve Vi |

where X; = {u € H'(Q)lu=00onT;},V;={vec H' () :v=0o0nT;} I



We next introduce a Lagrangian in order to relax the constrained minimization problem,

2
n n n n n n 1 n — n
L(uf,uy,g," p1, p2) == Js(uy',ug, g )+Z[Kt(uz —u; 1,,LL7;)—|—(O'Z'(U7;),V,LLZ')

—(f7, 1) + (1" (g", )1 ]

I
s | Review - Relaxation with Lagrangian m

1=1

and we solve for its stationary points.

85(“1’“2’9’ M:k2) _ o (State, primal problem) (W )+ (oi(uf), Vo) = (f0) + (=1 (g", v)r, Yo €V,

13

8£(’U/1augpga Ml’uQ) -0 (Ad_]0|nt prob'em) E(Mz,n) + (I/,LV,U,Z -+ al,uZ,Vn) = (—1)7'(u71l — ug,?])ro V’I7 - Xln I
;!

aﬁ(“?’“g’g’n PuH2) o (Informs update to control) 5(1,9™)re = — (¥, 1 — p2)r, V3 € L*(Tp) I
gn

Gradient Descent g"’(k) = (1— oz5)g"’(k_1) — Oz(,ugk) (k))|1“0




s | Application of Finite Element Method to OBC

Find @7 € R satisfying

1 1
M+ (n K — AN = Fr 4 (=1) My, ;" + — Man ! (FEM State)
At At
Find fi; € RN satisfying
1 : .
EM“L_L,L + (V,LK,L + A,'ZT),L_L,L = (—1)1MF07@'<’(_1,1 — 1_1,2) (FEM AdJOlnt)

where (M;),; = (i k, Dij), (Ki)rj = (Voir, Vi j), (A, = (adik, Vi j),
(f = (f', k), and (Mry.i)k,; = (€ro,55 &irk)

Given g™(©
for k=1,2,... do

Solve FEM state using g™*~1) for @} and u}

= (k) = (k)

Solve FEM adjoint using @} and @4 for fiy ~ and fis

gk = (1 — ad)g" n,(k=1) _ a(Il_m,u( ) Iz—>0# ))|Fo

end for




; I Adaptation to ROM-ROM Coupling

Find 47 € RN« satisfying

1 A . 1
EMiﬂ?Jr(ViKi—Ai)ﬁ = fI'+ (=1)'Mrp, ;g + ~— Mya; !

At (ROM State)
Find fi; € RMwir satisfying
1

EMiﬂi + (K + ANy = (=1 (O] Mrpy i(W 6] — W, 005) + UL (BF — BY))

(ROM Adjoint)
where M; == U1 MW, ;. K; = UL KU, ;, A =0T A0,

with ROM change of basis:
U itf + Bl =ay; i € RNwr
U, ity = s f; € RNwor

>

How is the adjoint reduced basis
VY, ; generated?

Given g™(©
for k=1,2,... do

Solve ROM state using g™ *~1 for 4% and a3

~ (k) A(k)

Solve ROM adjoint using 7, and 43 for g7’ and [

g ® = (1 -ad)gnt-D — Oé(f1—>0‘1’u,1ﬂgk) - I2—>0‘11u,2ﬂ;k))|1"0

end for




How do we most appropriately/efficiently generate snapshots for a suitable ROM basis
for the adjoint system?

» Collecting snapshots of the state problem is well understood
« We make the assumption that the state snapshots are still available at the time
of generating adjoint snapshots
« Below are several obvious ways to collect snapshots (a,b) and another way
proposed
by our group and investigated in this presentation (c):
a) Use state snapshots to form a reduced basis for the adjoint
b) Sequentially solve the FOM-FOM coupled problem with an OBC approach,
storing all iterations at all timesteps
c) A modified version of b) that uses state snapshots to decouple timesteps
and a fixed number of gradient descent iterations per timestep to reduce
the adjoint snapshot size

I
. | Adaptation to ROM-ROM Coupling Eﬂq




9 ‘ Adaptation to ROM-ROM Coupling

Gradient Descent m for Reduced Adjoint
Given g™
for k=1,2,... do
Solve FEM state using @/ ", u5 ', and g™»*~V for @} and u%

Solve FEM adjoint using @} and u4 for ﬁgk) and ﬂék)

§® = (1 - ad)g™* =V — a(li oS — Ioofis?)Ir,

end for

T

Modified Gradient Descent m for Reduced Adjoint

Given g™(©)

for k=1,2,... do
Solve FEM state using u%yY 1, 14y, and g™*=1 for af and u}

= (k)

Solve FEM adjoint using @} and @5 for fi;’ and ﬁgk)

gn’(k) = (1 - aé)gn’(k_l) - a(IlﬁOﬂgk) - I2—>0ﬂék))|ro

end for

With traditional gradient descent, the solution
at timestep (n-1) is needed and must be highly
accurate (very tight tolerance for OBQ)

Observation: Replace solution at previous
timestep (n-1) with solution corresponding to
that time in state snapshot matrix (breaks
connection between timesteps [parallel] and
allows GD tolerance to be loosened [cheaper])

Leaves open the choice of what to choose for g(®
at each timestep. We choose g™(® = 0.

o



I Numerical Result - OBC FOM-FOM Coupled Problem

Initial conditions l(=)E5M-FEM coupling for /= 1.0e-05 at time t =27 ‘
. " ——FEM solution for Ql
0.4 —FEM solutionforQ2 1
Monolithic Solution
0.3
o Coupled FEM-FEM results
with § = 1e — 16 and tolerance
i of 1e — 14 results in:
O eoses
01 0.2 0.4 0.6 0.8 1 ”uc - um”Lz

=7.8e—8

llum 2
FEM-FEM coupling for v = 1e — 5 at time t=2x

Balance of mismatched states
and penalty term for the
control indicates error should

be roughly Vtolerance

‘\\\\\,\.?'

l/;z
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1 ‘ Numerical Result - Applicability of P-ROM m

Snapshot Energy in Q, Snapshot Energy in 2,
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for the Adjoint

I
> | Numerical Result - Comparison Using Different Reduced Spaces m

RS - Reduced state Takeaway #1: State solutions used to
FS - FOM state produce reduced basis for adjoint
doesn’t work until ~1500 modes
SRA - State solution-based reduced adjoint retained. Replacing SRA with FA has
MGD1RA - Modified gradient descent - 7 iteration significant impact. Can we do better?
FA - FOM adjoint
RS-FA RS-SRA FS-SRA RS-MGD1RA | FS-MGD1RA
Modes | Error | Iters. Modes | Error | Iters. | Error | Iters. Modes | Error | Iters. | Error | Iters.
50 10~ * 50 10—3 % 10~ * 50 10~4 * 10~° *
100 10~ 7 50.1 100 1073 * 10~4 * 100 107° | 2342.8 | 1078 4.2
250 10=7 | 36.9 250 10—° s 10~4 * 250 107% | 4015 | 1078 4
500 10~ 7 21.4 500 106 * 107° * 500 107 102.8 10~8 3.7
1000 10~ 7 9.8 1000 1077 * 106 * 1000 10~7 35.2 108 3.7 I
1500 | 10=% | 4.4 1500 | 10=7 | 506.7 | 10=® | 139.8 1500 | 1078 7.8 1078 | 3.7
1600 10~8 4.4 1600 10~8 68.6 10~8 48.2 1600 108 6.6 108 3.7 I
1700 | 1078 | 44 1700 | 10=% | 21.1 | 1078 | 11.9 1700 | 1078 6.5 1078 | 3.7
1800 108 4.4 1800 10~8 14.8 10~8 9 1800 10~8 6.5 10~8 3.7
2016 10~8 3 2016 10~8 3 10~8 3 2016 10~8 3 10~8 3

6 = le — 16 and tolerance of le — 14, v = 1e — 5



s | Numerical Result - Comparison Using Different Reduced Spaces
for the Adjoint

@

RS - Reduced state Takeaway #2: MGD1RA outperforms SRA
FS - FOM state and doesn’t require many modes
(# of state modes kept is more important)
SRA - State solution-based reduced adjoint
MGD1RA - Modified gradient descent - 7 iteration
FA - FOM adjoint
RS-FA RS-SRA FS-SRA RS-MGD1RA | FS-MGD1RA
Modes | Error | Iters. Modes | Error | Iters. | Error | Iters. Modes | Error | Iters. | Error | Iters.
50 10~1 * 50 1073 % 1074 * 50 1074 * 10~ X
100 107 | 50.1 100 1073 * 10~ * 100 107° | 2342.8 | 10~8 4.2
250 | 1077 | 36.9 250 | 107° * 1074 * 250 | 107% | 401.5 | 1078 4
500 1077 | 21.4 500 106 * 10~° * 500 10=7 102.8 | 1078 3.7
1000 107 9.8 1000 107 * 10~ * 1000 107 35.2 10-8 3.7 I
1500 | 1078 | 4.4 1500 | 1077 | 506.7 | 1078 | 139.8 1500 | 1078 | 7.8 | 1078 | 3.7
1600 108 4.4 1600 1078 | 68.6 | 1078 | 48.2 1600 10~8 6.6 10-8 3.7 I
1700 | 1078 | 4.4 1700 | 10=% | 21.1 | 1078 | 11.9 1700 | 107=% | 6.5 | 1078 | 3.7
1800 10~8 4.4 1800 108 14.8 | 1078 9 1800 10~8 6.5 108 3.7
2016 108 3 2016 108 3 108 3 2016 10-8 3 108 3 I

6 = le — 16 and tolerance of le — 14, v = 1e — 5



2« 1| Numerical Result - Projection Errors (State and Adjoint)

@

SRA
Mod E(pr, Py, E(pa, Uy
o (“110_1 L (”120_1 2 Takeaway #3: State
2000 10~ 1071 solutions should not be
RS 2001 18:2 }8:2 used to generate reduced
Modes | E(u1, Py 1) | E(uz, Uy o) 9015 10-3 10-3 basis for adjoint
50 107 10-2 2016 | 10715 10-15
-8 —
100 10_9 10_8 Projection of adjoint solutions onto reduced basis
250 10 10 generated from state solution snapshots
500 10~° 108
1000 10=° 108 GDRA MGD1RA
1500 1079 10°8 Modes |  &E(p1,¥,1) E(pz, ¥, 2) E(pr, Y1) E(pa, ¥, 2)
2016 1071 1071 50 100*-10% [10%—-10°| 100*—10"% [106—-107F
100 | 10715 —10~1 10~ 10715 — 10714 10~19
o . 500 10715 — 10~ 10710 10715 — 10~ 10710
Projection of state solutions onto 1500 | 10-15 — 10—14 10-15 10-15 _ 10—14 10—15
reduced basis generated from 15 15 15 15
: 2016 10 10 10 10
state solution snapshots
Projection of adjoint solutions onto reduced basis
generated from GDRA and MGD1RA

v=1e -5




s | Numerical Result - Interplay of state and adjoint ROM modes

State/Adjoint Reduced Space Modal Size Comparison

@

Takeaway #4:

Important to balance
reduced space state and
reduced space adjoint
number of modes.

Also, loosening tolerance
and increasing penalty
increases rate of
convergence.

RS Modes 50 100 250
MGD1RA Modes | Avg. Iters. | Error | Avg. Iters. | Error | Avg. Iters. | Error
25 % 10~% 4498.8 106 * 10-4
50 * 10— 761.5 a6 2119.8 106
100 * 10— 2342.8 10=° 536.9 10~

§ =1le—16 and tolerance of le— 14, v =1e—5

RS Modes 50 100 250
MGD1RA Modes | Avg. Iters. | Error | Avg. Iters. | Error | Avg. Iters. | Error
25 * 10~* 349 107° 4246.4 106
50 * 10-4 170.7 10~° 312.4 106
100 * 10~4 150.4 goa 129.5 107°

§ = le — 14 and tolerance of le— 12, v=1e -5

RS Modes 50 100 250
MGDI1RA Modes | Avg. Iters. | Error | Avg. Iters. | Error | Avg. Iters. | Error
25 15.2 103 9.3 10~* 15.6 10~
50 18.9 10~3 11.4 T 8.8 10~
100 12.7 103 8.4 TO— 6.2 10~

6 =1le — 10 and tolerance of le— 8, v =1e —5




.« 1| Numerical Result - MGDmRA vs. GDRA
What is lost from limiting ourselves to m iterations?

Average Iteration Comparison

— RS Modes 100 250
?I;ake?'wav #SéISImltl'ar MGD1RA Modes | Avg. Iters. | Error | Avg. Iters. | Error
iterations and runtimes —5 —5
for GDRA and MGD1RA; 50 170.7 10_5 312.4 10_5
both beating the FOM- 100 150.4 10 129.5 10
FOM coupled problem GDRA Modes
50 170.7 10~° 371.2 10~
100 242.1 107° 143.2 107°
v=1e -5
Runtime Comparison
v=10"" S —10-3
FOM | MGD1RA ROM | GDRA ROM FOM MGD1RA ROM | GDRA ROM
86 sec 33 sec 32 sec 131 sec 76 sec 76 sec




7 1 Conclusions

* Introduced a snapshot collection technique (MGDmRA) for producing a reduced
basis for the adjoint of a ROM-ROM OBC problem

+ Broke the connection between timesteps by using state snapshot data
« Fixed memory / computational footprint by selecting a fixed subset of gradient
descent iterations per timestep

« Numerical experiments indicate:

« State snapshots are not effective for producing a reduced basis for the adjoint

« MGDmRA produces a basis that is competitive with the reduced basis generated by
gradient descent (run sequentially with a tight tolerance) in iteration counts,
projection errors, and computational time (with reduced offline cost).

Future Work

» Explore FOM-ROM combinations
« Improved optimization algorithms (far fewer iterations)
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