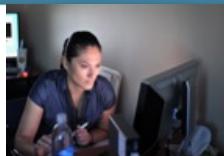


Sandia
National
Laboratories

An optimization-based coupling of reduced order models with efficient reduced adjoint basis generation approach



Elizabeth Hawkins^{1,2}, Pavel Bochev¹, Paul Kuberry¹

1- Center for Computing Research, Sandia National Laboratories

2- Clemson University

16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics

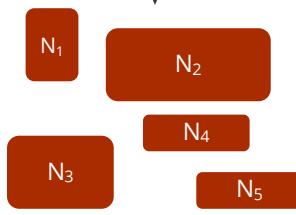
July 22, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

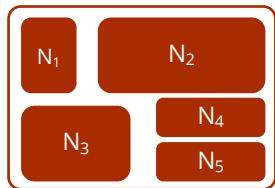
Heterogeneous Numerical Methods

Model

Numerical parts



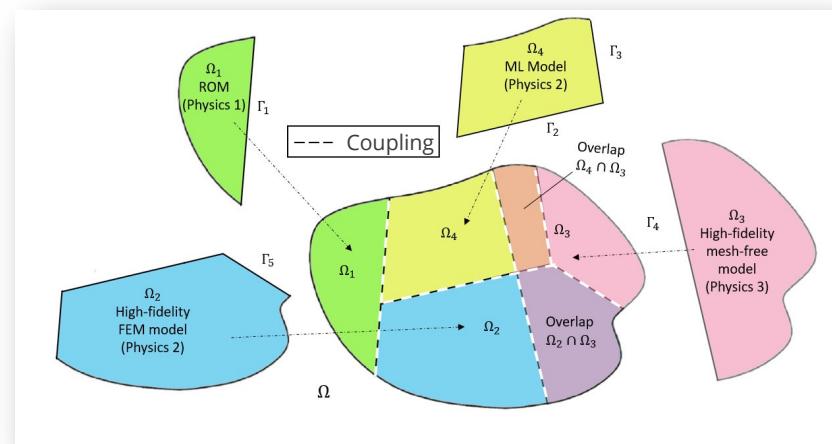
HNM



DOE applications require
diverse “mathematical parts”:
PDEs, integral equations, classical
DFT, potential-based atomistic...

Diverse math. models require
diverse “numerical parts”:
mesh based (FE, FV, FD),
meshless (SPH, MLS), implicit,
explicit, Eulerian, Lagrangian...

HNM = Collection of **diverse**
numerical parts from multiple
disciplines functioning together
as a **unified simulation tool**



Exemplar – Advection-Diffusion

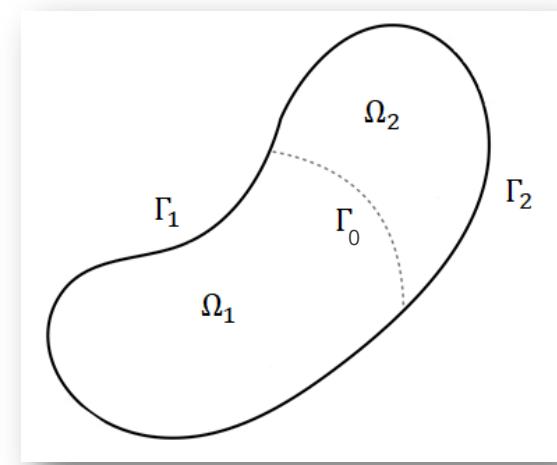
Coupled problem with "matching" interface conditions:

$$u_{i,t} - \nabla \cdot \sigma_i(u_i) = f_i \text{ in } \Omega_i$$

$$u_i = 0 \text{ on } \Gamma_i$$

$$u_1 = u_2 \text{ on } \Gamma_0$$

$$\sigma_1(u_1) \cdot n_1 = -\sigma_2(u_2) \cdot n_2 \text{ on } \Gamma_0$$



Non-overlapping DD of $\Omega = \Omega_1 \cup \Omega_2$.

where $\sigma_i(u) = \nu_i \nabla u - \mathbf{a}_i u$

Review - Decomposition with Optimization-Based Coupling

$$J_\delta(u_1^n, u_2^n, g^n) := \frac{1}{2} \| \color{red} u_1^n - u_2^n \|_{\Gamma_0}^2 + \frac{1}{2} \delta \| g^n \|_{\Gamma_0}^2$$

$$\min_{g^n} \quad J_\delta(u_1^n, u_2^n, g^n)$$

s.t. finding $u_i^n \in X_i$ satisfying

$$\frac{1}{\Delta t} (u_i^n - u_i^{n-1}, v) + (\sigma_i(u_i^n), \nabla v) = (f_i^n, v) + (-1)^i (\color{blue} g^n, v)_{\Gamma_0} \quad \forall v \in V_i$$

where $X_i = \{u \in H^1(\Omega_i) | u = 0 \text{ on } \Gamma_i\}$, $V_i = \{v \in H^1(\Omega_i) : v = 0 \text{ on } \Gamma_i\}$

Review - Relaxation with Lagrangian

We next introduce a Lagrangian in order to relax the constrained minimization problem,

$$\mathcal{L}(u_1^n, u_2^n, g^n, \mu_1, \mu_2) := J_\delta(u_1^n, u_2^n, g^n) + \sum_{i=1}^2 \left[\frac{1}{\Delta t} (u_i^n - u_i^{n-1}, \mu_i) + (\sigma_i(u_i^n), \nabla \mu_i) - (f_i^n, \mu_i) + (-1)^{i+1} (\mathbf{g}^n, \mu_i)_{\Gamma_0} \right]$$

and we solve for its stationary points.

$$\begin{aligned} \frac{\partial \mathcal{L}(u_1^n, u_2^n, g^n, \mu_1, \mu_2)}{\partial \mu_i} = 0 & \quad (\text{State, primal problem}) & \frac{1}{\Delta t} (u_i^n - u_i^{n-1}, v) + (\sigma_i(u_i^n), \nabla v) = (f_i^n, v) + (-1)^i (\mathbf{g}^n, v)_{\Gamma_0} \quad \forall v \in V_i \\ \frac{\partial \mathcal{L}(u_1^n, u_2^n, g^n, \mu_1, \mu_2)}{\partial u_i^n} = 0 & \quad (\text{Adjoint problem}) & \frac{1}{\Delta t} (\mu_i, \eta) + (\nu_i \nabla \mu_i + \mathbf{a}_i \mu_i, \nabla \eta) = (-1)^i (\mathbf{u}_1^n - \mathbf{u}_2^n, \eta)_{\Gamma_0} \quad \forall \eta \in X_i^n \\ \frac{\partial \mathcal{L}(u_1^n, u_2^n, g^n, \mu_1, \mu_2)}{\partial g^n} = 0 & \quad (\text{Informs update to control}) & \delta(\psi, g^n)_{\Gamma_0} = -(\psi, \mu_1 - \mu_2)_{\Gamma_0} \quad \forall \psi \in L^2(\Gamma_0) \end{aligned}$$

Gradient Descent $g^{n,(k)} = (1 - \alpha \delta) g^{n,(k-1)} - \alpha (\mu_1^{(k)} - \mu_2^{(k)})|_{\Gamma_0}$

Application of Finite Element Method to OBC

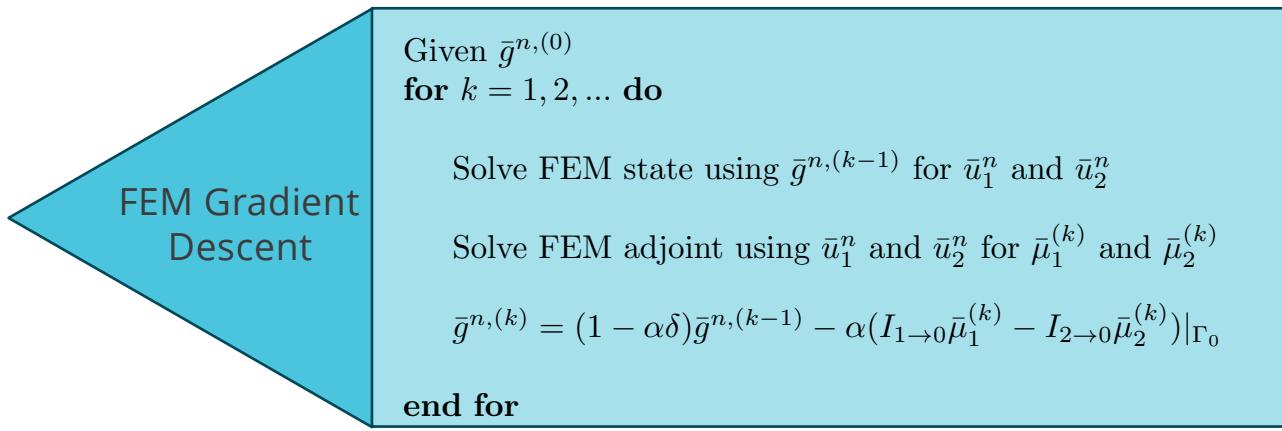
Find $\bar{u}_i^n \in \mathbb{R}^{N_i}$ satisfying

$$\frac{1}{\Delta t} M_i \bar{u}_i^n + (\nu_i K_i - A_i) \bar{u}_i^n = \bar{f}_i^n + (-1)^i M_{\Gamma_0, i} \bar{g}^n + \frac{1}{\Delta t} M_i \bar{u}_i^{n-1} \quad (\text{FEM State})$$

Find $\bar{\mu}_i \in \mathbb{R}^{N_i}$ satisfying

$$\frac{1}{\Delta t} M_i \bar{\mu}_i + (\nu_i K_i + A_i^T) \bar{\mu}_i = (-1)^i M_{\Gamma_0, i} (\bar{u}_1 - \bar{u}_2) \quad (\text{FEM Adjoint})$$

where $(M_i)_{k,j} := (\phi_{i,k}, \phi_{i,j})$, $(K_i)_{k,j} := (\nabla \phi_{i,k}, \nabla \phi_{i,j})$, $(A_i)_{k,j} := (\mathbf{a} \phi_{i,k}, \nabla \phi_{i,j})$, $(\bar{f}_i^n)_k := (f_i^n, \phi_{i,k})$, and $(M_{\Gamma_0, i})_{k,j} := (\xi_{\Gamma_0, j}, \xi_{i,k})$



Adaptation to ROM-ROM Coupling

Find $\hat{u}_i^n \in \mathbb{R}^{N_{u_i,r}}$ satisfying

$$\frac{1}{\Delta t} \hat{M}_i \hat{u}_i^n + (\nu_i \hat{K}_i - \hat{A}_i) \hat{u}_i^n = \hat{f}_i^n + (-1)^i M_{\Gamma_0,i} \bar{g} + \frac{1}{\Delta t} \hat{M}_i \hat{u}_i^{n-1} \quad (\text{ROM State})$$

Find $\hat{\mu}_i \in \mathbb{R}^{N_{\mu_i,r}}$ satisfying

$$\frac{1}{\Delta t} \tilde{M}_i \hat{\mu}_i + (\nu_i \tilde{K}_i + \tilde{A}_i^T) \hat{\mu}_i = (-1)^i (\Psi_{\mu,i}^T M_{\Gamma_0,i} (\Psi_{u,1} \hat{u}_1^n - \Psi_{u,2} \hat{u}_2^n) + \Psi_{u,i}^T (\bar{\beta}_1^n - \bar{\beta}_2^n)) \quad (\text{ROM Adjoint})$$

where $\hat{M}_i := \Psi_{\mu,i}^T M_i \Psi_{\mu,i}$, $\hat{K}_i = \Psi_{\mu,i}^T K_i \Psi_{\mu,i}$, $\hat{A}_i := \Psi_{\mu,i}^T A_i \Psi_{u,i}$

with ROM change of basis:

$$\Psi_{u,i} \hat{u}_i^n + \bar{\beta}_i^n = \bar{u}_i^n; \quad \hat{u}_i \in \mathbb{R}^{N_{u_i,r}}$$

$$\Psi_{\mu,i} \hat{\mu}_i = \bar{\mu}_i; \quad \hat{\mu}_i \in \mathbb{R}^{N_{\mu_i,r}}$$

How is the adjoint reduced basis $\Psi_{\mu,i}$ generated?

ROM Gradient Descent

Given $\bar{g}^{n,(0)}$
for $k = 1, 2, \dots$ do

Solve ROM state using $\bar{g}^{n,(k-1)}$ for \hat{u}_1^n and \hat{u}_2^n

Solve ROM adjoint using \hat{u}_1^n , and \hat{u}_2^n for $\hat{\mu}_1^{(k)}$ and $\hat{\mu}_2^{(k)}$

$$\bar{g}^{n,(k)} = (1 - \alpha\delta) \bar{g}^{n,(k-1)} - \alpha (I_{1 \rightarrow 0} \Psi_{\mu,1} \hat{\mu}_1^{(k)} - I_{2 \rightarrow 0} \Psi_{\mu,2} \hat{\mu}_2^{(k)})|_{\Gamma_0}$$

end for

Adaptation to ROM-ROM Coupling

How do we most appropriately/efficiently generate snapshots for a suitable ROM basis for the adjoint system?

- Collecting snapshots of the state problem is well understood
- We make the assumption that the state snapshots are still available at the time of generating adjoint snapshots
- Below are several obvious ways to collect snapshots (**a,b**) and another way proposed by our group and investigated in this presentation (**c**):
 - a) Use state snapshots to form a reduced basis for the adjoint
 - b) Sequentially solve the FOM-FOM coupled problem with an OBC approach, storing all iterations at all timesteps
 - c) A modified version of b) that uses state snapshots to decouple timesteps and a fixed number of gradient descent iterations per timestep to reduce the adjoint snapshot size

Adaptation to ROM-ROM Coupling

Gradient Descent m for Reduced Adjoint

Given $\bar{g}^{n,(0)}$

for $k = 1, 2, \dots$ **do**

Solve FEM state using \bar{u}_1^{n-1} , \bar{u}_2^{n-1} , and $\bar{g}^{n,(k-1)}$ for \bar{u}_1^n and \bar{u}_2^n

Solve FEM adjoint using \bar{u}_1^n and \bar{u}_2^n for $\bar{\mu}_1^{(k)}$ and $\bar{\mu}_2^{(k)}$

$\bar{g}^{n,(k)} = (1 - \alpha\delta)\bar{g}^{n,(k-1)} - \alpha(I_{1 \rightarrow 0}\bar{\mu}_1^{(k)} - I_{2 \rightarrow 0}\bar{\mu}_2^{(k)})|_{\Gamma_0}$

end for

With traditional gradient descent, the solution at timestep (n-1) is needed and must be highly accurate (very tight tolerance for OBC)

Modified Gradient Descent m for Reduced Adjoint

Given $\bar{g}^{n,(0)}$

for $k = 1, 2, \dots$ **do**

Solve FEM state using $\bar{u}_{SNAP,1}^{n-1}$, $\bar{u}_{SNAP,2}^{n-1}$, and $\bar{g}^{n,(k-1)}$ for \bar{u}_1^n and \bar{u}_2^n

Solve FEM adjoint using \bar{u}_1^n and \bar{u}_2^n for $\bar{\mu}_1^{(k)}$ and $\bar{\mu}_2^{(k)}$

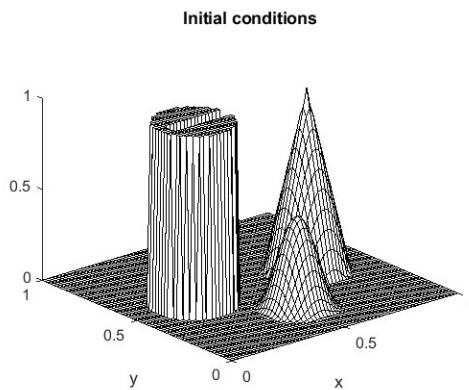
$\bar{g}^{n,(k)} = (1 - \alpha\delta)\bar{g}^{n,(k-1)} - \alpha(I_{1 \rightarrow 0}\bar{\mu}_1^{(k)} - I_{2 \rightarrow 0}\bar{\mu}_2^{(k)})|_{\Gamma_0}$

end for

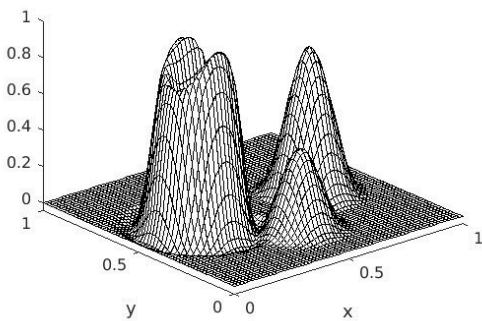
Observation: Replace solution at previous timestep (n-1) with solution corresponding to that time in state snapshot matrix (breaks connection between timesteps [parallel] and allows GD tolerance to be loosened [cheaper])

Leaves open the choice of what to choose for $\bar{g}^{n,(0)}$ at each timestep. We choose $\bar{g}^{n,(0)} = \vec{0}$.

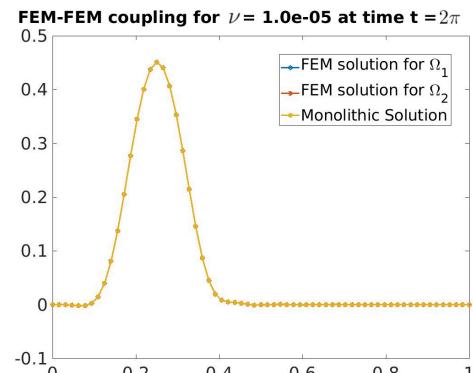
Numerical Result – OBC FOM-FOM Coupled Problem



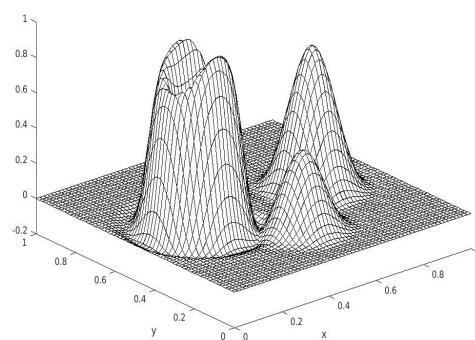
Monolithic FEM solution for $\nu = 1e - 5$ at time $t=2\pi$



$$\Delta t = 1.122398e - 3 \quad h = \frac{1}{64} \quad \nu = 1e - 5$$



FEM-FEM coupling for $\nu = 1e - 5$ at time $t=2\pi$

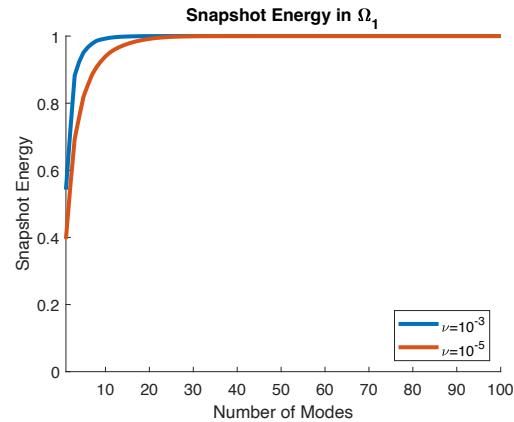
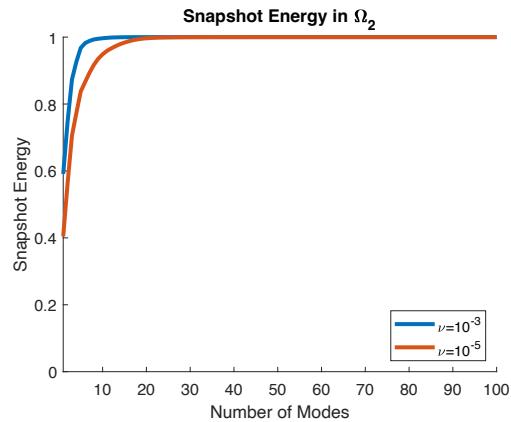


Coupled FEM-FEM results with $\delta = 1e - 16$ and tolerance of $1e - 14$ results in:

$$\frac{\|u_c - u_m\|_{L^2}}{\|u_m\|_{L^2}} = 7.8e - 8$$

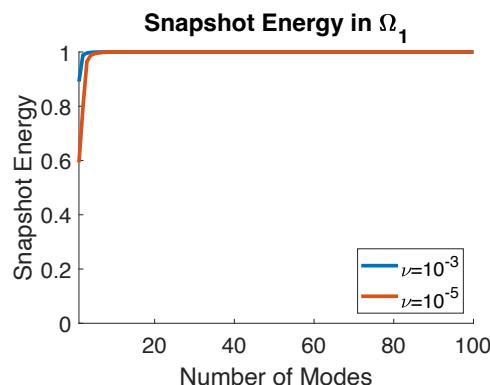
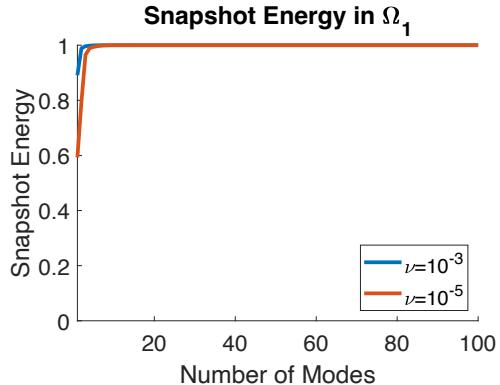
Balance of mismatched states and penalty term for the control indicates error should be roughly $\sqrt{\text{tolerance}}$

Numerical Result – Applicability of P-ROM



Snapshot energy in state solutions as a function of modes

Quick decay of snapshot energies w.r.t. # of modes



Snapshot energy in adjoint solutions as a function of modes

Numerical Result – Comparison Using Different Reduced Spaces for the Adjoint

RS - Reduced state

FS - FOM state

SRA - State solution-based reduced adjoint

MGD1RA - Modified gradient descent - 1 iteration

FA - FOM adjoint

Takeaway #1: State solutions used to produce reduced basis for adjoint doesn't work until ~ 1500 modes retained. Replacing SRA with FA has significant impact. Can we do better?

RS-FA		
Modes	Error	Iters.
50	10^{-4}	*
100	10^{-7}	50.1
250	10^{-7}	36.9
500	10^{-7}	21.4
1000	10^{-7}	9.8
1500	10^{-8}	4.4
1600	10^{-8}	4.4
1700	10^{-8}	4.4
1800	10^{-8}	4.4
2016	10^{-8}	3

RS-SRA			FS-SRA	
Modes	Error	Iters.	Error	Iters.
50	10^{-3}	*	10^{-4}	*
100	10^{-3}	*	10^{-4}	*
250	10^{-5}	*	10^{-4}	*
500	10^{-6}	*	10^{-5}	*
1000	10^{-7}	*	10^{-6}	*
1500	10^{-7}	506.7	10^{-8}	139.8
1600	10^{-8}	68.6	10^{-8}	48.2
1700	10^{-8}	21.1	10^{-8}	11.9
1800	10^{-8}	14.8	10^{-8}	9
2016	10^{-8}	3	10^{-8}	3

RS-MGD1RA			FS-MGD1RA	
Modes	Error	Iters.	Error	Iters.
50	10^{-4}	*	10^{-7}	*
100	10^{-5}	2342.8	10^{-8}	4.2
250	10^{-6}	401.5	10^{-8}	4
500	10^{-7}	102.8	10^{-8}	3.7
1000	10^{-7}	35.2	10^{-8}	3.7
1500	10^{-8}	7.8	10^{-8}	3.7
1600	10^{-8}	6.6	10^{-8}	3.7
1700	10^{-8}	6.5	10^{-8}	3.7
1800	10^{-8}	6.5	10^{-8}	3.7
2016	10^{-8}	3	10^{-8}	3

$\delta = 1e-16$ and tolerance of $1e-14$, $\nu = 1e-5$

Numerical Result – Comparison Using Different Reduced Spaces for the Adjoint

RS - Reduced state
FS - FOM state

SRA - State solution-based reduced adjoint
MGD1RA - Modified gradient descent – 1 iteration
FA - FOM adjoint

Takeaway #2: MGD1RA outperforms SRA and doesn't require many modes (# of state modes kept is more important)

RS-FA		
Modes	Error	Iters.
50	10^{-4}	*
100	10^{-7}	50.1
250	10^{-7}	36.9
500	10^{-7}	21.4
1000	10^{-7}	9.8
1500	10^{-8}	4.4
1600	10^{-8}	4.4
1700	10^{-8}	4.4
1800	10^{-8}	4.4
2016	10^{-8}	3

RS-SRA			FS-SRA	
Modes	Error	Iters.	Error	Iters.
50	10^{-3}	*	10^{-4}	*
100	10^{-3}	*	10^{-4}	*
250	10^{-5}	*	10^{-4}	*
500	10^{-6}	*	10^{-5}	*
1000	10^{-7}	*	10^{-6}	*
1500	10^{-7}	506.7	10^{-8}	139.8
1600	10^{-8}	68.6	10^{-8}	48.2
1700	10^{-8}	21.1	10^{-8}	11.9
1800	10^{-8}	14.8	10^{-8}	9
2016	10^{-8}	3	10^{-8}	3

RS-MGD1RA			FS-MGD1RA	
Modes	Error	Iters.	Error	Iters.
50	10^{-4}	*	10^{-7}	*
100	10^{-5}	2342.8	10^{-8}	4.2
250	10^{-6}	401.5	10^{-8}	4
500	10^{-7}	102.8	10^{-8}	3.7
1000	10^{-7}	35.2	10^{-8}	3.7
1500	10^{-8}	7.8	10^{-8}	3.7
1600	10^{-8}	6.6	10^{-8}	3.7
1700	10^{-8}	6.5	10^{-8}	3.7
1800	10^{-8}	6.5	10^{-8}	3.7
2016	10^{-8}	3	10^{-8}	3

$\delta = 1e-16$ and tolerance of $1e-14$, $\nu = 1e-5$

Numerical Result – Projection Errors (State and Adjoint)

Modes	RS	
	$\mathcal{E}(u_1, \Psi_{u,1})$	$\mathcal{E}(u_2, \Psi_{u,2})$
50	10^{-3}	10^{-3}
100	10^{-8}	10^{-7}
250	10^{-9}	10^{-8}
500	10^{-9}	10^{-8}
1000	10^{-9}	10^{-8}
1500	10^{-9}	10^{-8}
2016	10^{-15}	10^{-15}

Projection of state solutions onto reduced basis generated from state solution snapshots

Modes	SRA	
	$\mathcal{E}(\mu_1, \Psi_{u,1})$	$\mathcal{E}(\mu_2, \Psi_{u,2})$
50	10^{-1}	10^{-1}
2000	10^{-1}	10^{-1}
2001	10^{-2}	10^{-2}
2014	10^{-2}	10^{-2}
2015	10^{-3}	10^{-3}
2016	10^{-15}	10^{-15}

Takeaway #3: State solutions should not be used to generate reduced basis for adjoint

Projection of adjoint solutions onto reduced basis generated from state solution snapshots

Modes	GDRA		MGD1RA	
	$\mathcal{E}(\mu_1, \Psi_{\mu,1})$	$\mathcal{E}(\mu_2, \Psi_{\mu,2})$	$\mathcal{E}(\mu_1, \Psi_{\mu,1})$	$\mathcal{E}(\mu_2, \Psi_{\mu,2})$
50	$10^{-4} - 10^{-3}$	$10^{-6} - 10^{-5}$	$10^{-4} - 10^{-3}$	$10^{-6} - 10^{-5}$
100	$10^{-15} - 10^{-14}$	10^{-15}	$10^{-15} - 10^{-14}$	10^{-15}
500	$10^{-15} - 10^{-14}$	10^{-15}	$10^{-15} - 10^{-14}$	10^{-15}
1500	$10^{-15} - 10^{-14}$	10^{-15}	$10^{-15} - 10^{-14}$	10^{-15}
2016	10^{-15}	10^{-15}	10^{-15}	10^{-15}

Projection of adjoint solutions onto reduced basis generated from GDRA and MGD1RA

Numerical Result – Interplay of state and adjoint ROM modes

State/Adjoint Reduced Space Modal Size Comparison

RS Modes	50		100		250	
MGD1RA Modes	Avg. Iters.	Error	Avg. Iters.	Error	Avg. Iters.	Error
25	*	10^{-4}	4498.8	10^{-6}	*	10^{-4}
50	*	10^{-4}	761.5	10^{-6}	2119.8	10^{-6}
100	*	10^{-4}	2342.8	10^{-5}	536.9	10^{-6}

$\delta = 1e - 16$ and tolerance of $1e - 14$, $\nu = 1e - 5$

RS Modes	50		100		250	
MGD1RA Modes	Avg. Iters.	Error	Avg. Iters.	Error	Avg. Iters.	Error
25	*	10^{-4}	349	10^{-5}	4246.4	10^{-6}
50	*	10^{-4}	170.7	10^{-5}	312.4	10^{-6}
100	*	10^{-4}	150.4	10^{-5}	129.5	10^{-5}

$\delta = 1e - 14$ and tolerance of $1e - 12$, $\nu = 1e - 5$

RS Modes	50		100		250	
MGD1RA Modes	Avg. Iters.	Error	Avg. Iters.	Error	Avg. Iters.	Error
25	15.2	10^{-3}	9.3	10^{-4}	15.6	10^{-4}
50	18.9	10^{-3}	11.4	10^{-4}	8.8	10^{-4}
100	12.7	10^{-3}	8.4	10^{-4}	6.2	10^{-4}

$\delta = 1e - 10$ and tolerance of $1e - 8$, $\nu = 1e - 5$

Takeaway #4:
 Important to balance reduced space state and reduced space adjoint number of modes.
 Also, loosening tolerance and increasing penalty increases rate of convergence.

Numerical Result – MGDMRA vs. GDRA

What is lost from limiting ourselves to m iterations?

Takeaway #5: Similar iterations and runtimes for GDRA and MGD1RA; both beating the FOM-FOM coupled problem

Average Iteration Comparison

RS Modes	100		250		
MGD1RA Modes	Avg. Iters.	Error	Avg. Iters.	Error	
50	170.7	10^{-5}	312.4	10^{-6}	
100	150.4	10^{-5}	129.5	10^{-5}	
GDRA Modes					
50	170.7	10^{-5}	371.2	10^{-6}	
100	242.1	10^{-5}	143.2	10^{-5}	

$$\nu = 1e - 5$$

Runtime Comparison

$\nu = 10^{-5}$			$\nu = 10^{-3}$		
FOM	MGD1RA ROM	GDRA ROM	FOM	MGD1RA ROM	GDRA ROM
86 sec	33 sec	32 sec	131 sec	76 sec	76 sec

Conclusions

- Introduced a snapshot collection technique (MGDmRA) for producing a reduced basis for the adjoint of a ROM-ROM OBC problem
 - Broke the connection between timesteps by using state snapshot data
 - Fixed memory / computational footprint by selecting a fixed subset of gradient descent iterations per timestep
- Numerical experiments indicate:
 - State snapshots are not effective for producing a reduced basis for the adjoint
 - MGDmRA produces a basis that is competitive with the reduced basis generated by gradient descent (run sequentially with a tight tolerance) in iteration counts, projection errors, and computational time (with reduced offline cost).

Future Work

- Explore FOM-ROM combinations
- Improved optimization algorithms (far fewer iterations)

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) under contract DE-NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed in the written work do not necessarily represent the views of the U.S. Government. The publisher acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this written work or allow others to do so, for U.S. Government purposes. The DOE will provide public access to results of federally sponsored research in accordance with the DOE Public Access Plan.