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Heterogeneous Numerical Methods2
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DOE applications require 
diverse “mathematical parts”: 
PDEs, integral equations, classical 
DFT, potential-based atomistic…

Diverse math. models require 
diverse “numerical parts”: 
mesh based (FE, FV, FD), 
meshless (SPH,  MLS), implicit, 
explicit, Eulerian, Lagrangian…

HNM = Collection of diverse 
numerical parts from multiple 
disciplines functioning together 
as a unified simulation tool

Coupling



Exemplar – Advection-Diffusion3

Non-overlapping DD of 𝛺 = 𝛺! ∪ 𝛺"	.

0

Coupled problem with ”matching” interface conditions:

<latexit sha1_base64="ABLxG484owSHya3kfDdnyafvXXc="></latexit>

ui,t �r · �i(i) = fi in ⌦i

ui = 0 on �i

u1 = u2 on �0

�1(u1) · n1 = ��2(u2) · n2 on �0

<latexit sha1_base64="tXpBHPudZRQSjzKl4yUqYSigbxA=">AAADX3icbZLdahQxFMfTXbV11brVKxEhuAhVcJkpRb0Rigr1shb7ATvrcJLJ7IQmmSEf6hryDj6Nt/oaXvomZnZXsLM9MOQ/53fOyUlySCO4sUnye6PXv3b9xubWzcGt23e27w537p2a2mnKTmgtan1OwDDBFTux3Ap23mgGkgh2Ri7etvzsM9OG1+qjnTdsKmGmeMkp2OjKh88yw2cScr7rnr7GmXI5zxQQAdg9x5kEW5HSQ8g5dvlwlIyTheF1ka7ECK3sKN/pPcqKmjrJlKUCjJmkSWOnHrTlVLAwyJxhDdALmLFJlAokM1O/OFTAT6KnwGWt46csXnj/z/AgjZlLEiPbNk2Xtc6r2MTZ8tXUc9U4yxRdblQ6gW2N2xvCBdeMWjGPAqjmsVdMK9BAbbzHQabYF1pLCarwWQWiDD4rI/Rp8HshXObERUpAe9clruLBu09VzjtALkhcrmDHLWifhPjjbsHDbxEeQvzLk24X8l8bsWw3r2pZBXa9xcJG8o4JC9iGQaekCJN06jPLvtrFy3giHAt+lHaraNaN1KxYBsaBSrvjsy5O98bpi/H+h/3RwZvVaG2hh+gx2kUpeokO0Ht0hE4QRd/RD/QT/er96W/2t/vDZWhvY5VzH12y/oO/kfkfPA==</latexit>

�i(u) = ⌫iru� aiuwhere



Review - Decomposition with Optimization-Based Coupling4

<latexit sha1_base64="IrvBSj1F3WS5D3xjx2hMN+/4luU="></latexit>
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<latexit sha1_base64="+XxqrbyU6qQdl+ndKHdshM0wmCE="></latexit>

s.t. finding un
i 2 Xi satisfying

1

�t
(un

i � un�1
i , v) + (�i(u

n
i ),rv) = (fn

i , v) + (�1)i(gn, v)�0 8v 2 Vi

<latexit sha1_base64="EmAvxBkkuwqZjzC29iNmHvhmhsQ="></latexit>
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n)

<latexit sha1_base64="MZXS7u/Pin5xlL58ZfLKikslWRw="></latexit>

Xi = {u 2 H
1(⌦i)|u = 0 on �i}, Vi = {v 2 H

1(⌦i) : v = 0 on �i}where



Review - Relaxation with Lagrangian5

<latexit sha1_base64="OOhmhLmqDwrXzqBc8pvZtA17GkE="></latexit>

L(un
1 , u

n
2 , g,

n µ1, µ2) := J�(u
n
1 , u
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n) +
2X
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[
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�t
(un

i � un�1
i , µi) + (�i(u

n
i ),rµi)

�(fn
i , µi) + (�1)i+1(gn, µi)�0 ]

We next introduce a Lagrangian in order to relax the constrained minimization problem,

and we solve for its stationary points.

<latexit sha1_base64="yHpuFnZA5r/jqDeAhIUeEehftuo="></latexit>

@L(un
1 , u

n
2 , g,

n µ1, µ2)

@gn
= 0 (Informs update to control)

<latexit sha1_base64="feDzIzHUuCHzmNRGjK0jkdmoYR0="></latexit>

@L(un
1 , u

n
2 , g,

n µ1, µ2)

@un
i

= 0 (Adjoint problem)
<latexit sha1_base64="4o1a2bX7qZ9gWn35tdwDSXw+LAQ="></latexit>
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�t
(µi, ⌘) + (⌫irµi + aiµi,r⌘) = (�1)i(un
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<latexit sha1_base64="6iuAUWSAtZkhzQYuSImfJgJRRcw="></latexit>

@L(un
1 , u

n
2 , g,

n µ1, µ2)

@µi
= 0 (State, primal problem)

<latexit sha1_base64="l5tgoccy6IWqttbDZEUDfxLa62U="></latexit>
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<latexit sha1_base64="dwA8QQAqcMZmN3feMvPY0p03mdk="></latexit>

�( , gn)�0 = �( , µ1 � µ2)�0 8 2 L2(�0)

<latexit sha1_base64="ZOfXkSVF9oR6JYG69E3dHSmO4SA="></latexit>

gn,(k) = (1� ↵�)gn,(k�1) � ↵(µ(k)
1 � µ(k)

2 )|�0
Gradient Descent



Application of Finite Element Method to OBC6

<latexit sha1_base64="ZmgHzp7i5fnFT4YvNR6+oXV0Ulo="></latexit>

Find ūn
i 2 RNi satisfying

1

�t
Miū

n
i + (⌫iKi �Ai)ū
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n�1
i

<latexit sha1_base64="h8iT+U7aeQmvp4T0jQ4LxXXlKxc="></latexit>

Find µ̄i 2 RNi satisfying

1

�t
Miµ̄i + (⌫iKi +AT

i )µ̄i = (�1)iM�0,i(ū1 � ū2)

(FEM State)

(FEM Adjoint)
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Given ḡn,(0)

for k = 1, 2, ... do

Solve FEM state using ḡn,(k�1) for ūn
1 and ūn

2

Solve FEM adjoint using ūn
1 and ūn

2 for µ̄(k)
1 and µ̄(k)

2

ḡn,(k) = (1� ↵�)ḡn,(k�1) � ↵(I1!0µ̄
(k)
1 � I2!0µ̄

(k)
2 )|�0

end for

FEM Gradient 
     Descent

<latexit sha1_base64="VsYSqxoNdUoIShI9DiUjLIwBpxM="></latexit>

where (Mi)k,j := (�i,k,�i,j), (Ki)k,j := (r�i,k,r�i,j), (Ai)k,j := (a�i,k,r�i,j),
(f̄n

i )k := (fn
i ,�i,k), and (M�0,i)k,j := (⇠�0,j , ⇠i,k)



Adaptation to ROM-ROM Coupling7

(ROM State)

(ROM Adjoint)

ROM Gradient 
     Descent

<latexit sha1_base64="AikcpIpo2+SYmrfPsMZZf5LJOsI=">AAAFYHicdZPPb9MwFMezssIoP7bCDS4WK1IrdVUSIeAyaeLX4IA2NrYhzV3kOG5i6tiR42wM4yNX+Pu48ldwxGnLaNLNh/bl+3l+79nvOcwYzZXr/lpqXFtuXr+xcrN16/adu6tr7XuHuSgkJgdYMCE/hSgnjHJyoKhi5FMmCUpDRo7C8cuSH50SmVPBP6rzjAxTFHM6ohgpKwXtpT8wJDHlGrFYSKqSlGLTAnbBfYUUAdv0lHDQgSGSOjYnmve7bs90wNTnjZC6M970+n5/MBh0DITze/cFOyVgb+c9yCffRU55XI013vDKaCMhrZ4gpYtSN4HXAYhHVc3vXBUeRZ8F5eoiQSVQ/7JIcxlhWqrdca+WdU6vZ64eoWc2QdfbgIhlCYIRYQr1Fs4IZrz7LtAelDROFJJSnAHXwN2cBmW6vmcWKtqw/v5V/v6Cv9/7ZtH2V3NR8Wse2S61IOFRpcnB2ro7cCcLLBrezFh3Zms3aDd2YCRwkRKuMEN5fuy5mRpqJBXFjJgWLHKSITxGMTm2JkcpyYd6MqMGPLZKNLn1kbCdmqjzOzRK8/w8Da1nilSS11kpXs5YnOWksJWJqFrE/+PWalOj50NNeVYowvG0tFHBgBKgfCIgopJgxc6tgbDdTzHACZIIK/uQWpCTMyzS1A6KtrfPRkbDkYXaM9o3psrDwtJyFIo6KRJqdHGSBLQG0gmxf5ewvRLYGwhDvVcPaHtuf5D9Ctx6Fem/MspJqcGkZNO3USORsuRVOc5AmVYtJDPH3lBDRb6oSS91yApi9LpXjyJJ3VOSaOpoR9CrD9yicegPvKeDJx/89a0Xs2FccR46j5yu4znPnC3nrbPrHDi4ETS+N340fi7/bq40V5vtqWtjabbnvlNZzQd/AXEL0B4=</latexit>

Given ḡn,(0)

for k = 1, 2, ... do

Solve ROM state using ḡn,(k�1)
for ûn

1 and ûn
2

Solve ROM adjoint using ûn
1 , and ûn

2 for µ̂(k)
1 and µ̂(k)

2

ḡn,(k) = (1� ↵�)ḡn,(k�1) � ↵(I1!0 µ,1µ̂
(k)
1 � I2!0 µ,2µ̂

(k)
2 )|�0

end for

with ROM change of basis:

<latexit sha1_base64="7CXdcdE80ICxa/9LfxWPfJrvsZw="></latexit>

where M̂i :=  T
µ,iMi µ,i, K̂i =  T

µ,iKi µ,i, Âi :=  T
µ,iAi u,i

How is the adjoint reduced basis
Ψ#,% 	generated?

<latexit sha1_base64="aA1sxg2Qve/o+BOzJp2KnPGkYTU="></latexit>

 u,iû
n
i + �̄n

i = ūn
i ; ûi 2 RNui,r

<latexit sha1_base64="KAzoJn1RMPF9zF9o35q7IcciyD8="></latexit>

 µ,iµ̂i = µ̄i; µ̂i 2 RNµi,r

<latexit sha1_base64="V6ZtgDBQpaXiSnEDzSGTDsAQPP4="></latexit>

Find µ̂i 2 RNµi,r satisfying

1

�t
M̃iµ̂i + (⌫iK̃i + ÃT

i )µ̂i = (�1)i( T
µ,iM�0,i( u,1û

n
1 � u,2û

n
2 ) + 

T
u,i(�̄

n
1 � �̄n

2 ))

<latexit sha1_base64="wcxAQ43RXG4F+wGeRnPcW8Iqw4o=">AAAEPXicfZJba9RAFMezXS813lp99GVwsbS0XTalqA8K9YIVpFqLvUBnN0wmk83QySTMRd0O89n8FoIfwDfx1VdPsluwaXEg5Mz5nfOfwzknqQTXZjD40ZnrXrl67fr8jfDmrdt37i4s3jvQpVWU7dNSlOooIZoJLtm+4Uawo0oxUiSCHSYnr2p++JkpzUv5yUwqNizIWPKMU2LAFS98D7FhX417w2WKPMI5Mc76mI8k5hLhvZF7Hzsb8zXlgTahSEOuziZcjpFfwjhEcHCmCHWRdzg1vlHZARXQs7XW6jKWtrkCeFeD9an9AuyVWRBaej51Zs37q2h5PVoZcbQTO7x9usY9TohyY7/637ecXI98GC/0Bv1Bc9BFI5oZvWB2duPFuQ84LaktmDRUEK2Po0Flho4ow6lgPsRWs4rQEzJmx2BKUjA9dM0APHoEnhRlpYJPGtR4/81wpNB6UiQQWRCT6zarnZczMa40s1BZmZ4vokal4iYvWrWZ7OnQcVlZwySdlpZZgUyJ6vmjlCtGjZiAQSjkc4poTqChBrYkxJJ9oWVREJk66KzIoMln3d7w/jxPLNB6JrZNbM69s6M85i1QNAR+l7C9GkAHksTttQW3TwFuE7jFg3YVxVkZINvOy2s23ekWgdVx+DUThiDjw5ak8MfR0DXr3szSJcIy73pRW0WxdqRi6TQQVjBqL9xF42CjHz3ub37c7G29nC3jfPAgeBgsB1HwJNgK3ga7wX5AO886SeekI7rfuj+7v7q/p6FznVnO/eDc6f75C/Z7dEw=</latexit>

Find ûn
i 2 RNui,r satisfying
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�t
M̂iû

n
i + (⌫iK̂i � Âi)û

n
i = f̂n

i + (�1)iM�0,iḡ +
1

�t
M̂iû

n�1
i



Adaptation to ROM-ROM Coupling8

How do we most appropriately/efficiently generate snapshots for a suitable ROM basis
for the adjoint system?

• Collecting snapshots of the state problem is well understood
• We make the assumption that the state snapshots are still available at the time

of generating adjoint snapshots
• Below are several obvious ways to collect snapshots (a,b) and another way 

proposed
by our group and investigated in this presentation (c):

a)  Use state snapshots to form a reduced basis for the adjoint
b)  Sequentially solve the FOM-FOM coupled problem with an OBC approach, 

 storing all iterations at all timesteps
c)  A modified version of b) that uses state snapshots to decouple timesteps

 and a fixed number of gradient descent iterations per timestep to reduce
 the adjoint snapshot size



Adaptation to ROM-ROM Coupling9

With traditional gradient descent, the solution
at timestep (n-1) is needed and must be highly
accurate (very tight tolerance for OBC) 

Observation: Replace solution at previous
timestep (n-1) with solution corresponding to 
that time in state snapshot matrix (breaks 
connection between timesteps [parallel] and 
allows GD tolerance to be loosened [cheaper]) 

Leaves open the choice of what to choose for 𝑔̅&,(()

at each timestep. We choose 𝑔̅&,(() = 0.

<latexit sha1_base64="G0rTXPlruIwYF75Cumr/bjsLxs4="></latexit>

Given ḡn,(0)

for k = 1, 2, ... do

Solve FEM state using ūn�1
1 , ūn�1

2 , and ḡn,(k�1) for ūn
1 and ūn

2

Solve FEM adjoint using ūn
1 and ūn

2 for µ̄(k)
1 and µ̄(k)

2

ḡn,(k) = (1� ↵�)ḡn,(k�1) � ↵(I1!0µ̄
(k)
1 � I2!0µ̄

(k)
2 )|�0

end for

<latexit sha1_base64="EO+Y+bj78uGq5WcDyOFmZu8Myb0="></latexit>

Given ḡn,(0)

for k = 1, 2, ... do

Solve FEM state using ūn�1
SNAP,1, ū

n�1
SNAP,2, and ḡn,(k�1) for ūn

1 and ūn
2

Solve FEM adjoint using ūn
1 and ūn

2 for µ̄(k)
1 and µ̄(k)

2

ḡn,(k) = (1� ↵�)ḡn,(k�1) � ↵(I1!0µ̄
(k)
1 � I2!0µ̄

(k)
2 )|�0

end for

Modified Gradient Descent 𝑚	for Reduced Adjoint

Gradient Descent 𝑚	for Reduced Adjoint



Numerical Result – OBC FOM-FOM Coupled Problem10

Δ𝑡 = 1.122398𝑒 − 3 ℎ =
1
64

𝜈 = 1𝑒 − 5

FEM-FEM coupling for 𝜈 = 1𝑒 − 5	at time t=2𝜋Monolithic FEM solution for 𝜈 = 1𝑒 − 5	at time t=2𝜋

Coupled FEM-FEM results
with 𝛿 = 1𝑒 − 16 and tolerance 
of 1𝑒 − 14 results in:

𝑢* − 𝑢+ ,*

𝑢+ ,*
= 7.8𝑒 − 8

Balance of mismatched states 
and penalty term for the 
control indicates error should 
be roughly 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 



Numerical Result – Applicability of P-ROM11

10 20 30 40 50 60 70 80 90 100
Number of Modes

0

0.2

0.4

0.6

0.8

1

Sn
ap

sh
ot

 E
ne

rg
y

Snapshot Energy in 1

=10-3

=10-5

10 20 30 40 50 60 70 80 90 100
Number of Modes

0

0.2

0.4

0.6

0.8

1

Sn
ap

sh
ot

 E
ne

rg
y

Snapshot Energy in 2

=10-3

=10-5

Snapshot energy in state solutions as a function of modes

20 40 60 80 100
Number of Modes

0

0.2

0.4

0.6

0.8

1

Sn
ap

sh
ot

 E
ne

rg
y

Snapshot Energy in 1

=10-3

=10-5

20 40 60 80 100
Number of Modes

0

0.2

0.4

0.6

0.8

1

Sn
ap

sh
ot

 E
ne

rg
y

Snapshot Energy in 1

=10-3

=10-5

Snapshot energy in adjoint solutions as a function of modes

Quick decay of snapshot
energies w.r.t. # of modes



Numerical Result – Comparison Using Different Reduced Spaces 
for the Adjoint 

12

RS - Reduced state
FS - FOM state

SRA   - State solution-based reduced adjoint
MGD1RA - Modified gradient descent – 1 iteration
FA   - FOM adjoint

Takeaway #1: State solutions used to 
produce reduced basis for adjoint 
doesn’t work until ~1500 modes 
retained. Replacing SRA with FA has 
significant impact. Can we do better?

𝛿 = 1𝑒 − 16 and tolerance of 1𝑒 − 14, 𝜈 = 1𝑒 − 5 

reduced basis adjoint. Results shown in Table 1 confirm that when the optimizer uses377

the FOM adjoint, the coupled ROM-ROM solution achieves the same accuracy as the378

coupled FOM-FOM solution, provided we use enough (> 50) modes in the reduced379

basis.380

Remark 4. In the numerical results that follow, we use ⇤ to denote when the381

gradient descent algorithm exceeds 10,000 iterations of gradient descent in a single382

timestep. This is many more iterations of gradient descent than one would normally383

execute in practice. In these cases, we provide the error which the algorithm is able384

to attain and denote this behavior by ⇤. Note that this behavior implies that there385

is stagnation in the gradient descent algorithm for these modal amounts due to the386

ROM-ROM model lacking su�cient accuracy to continue converging.387

RS-FA
Modes Error Iters.

50 10�4 ⇤
100 10�7 50.1
250 10�7 36.9
500 10�7 21.4
1000 10�7 9.8
1500 10�8 4.4
1600 10�8 4.4
1700 10�8 4.4
1800 10�8 4.4
2016 10�8 3

Table 1
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem with � = 10�16 and

⌫ = 10�5 for reduced space + full order adjoint (RS-FA)

RS
Modes E(u1, u,1) E(u2, u,2)

50 10�3 10�3

100 10�8 10�7

250 10�9 10�8

500 10�9 10�8

1000 10�9 10�8

1500 10�9 10�8

2016 10�15 10�15

Table 2
Projection error of the state solutions in ⌦1 and ⌦2 onto the reduced basis generated from state

solution snapshots.

5.1. State ROM Basis in the Adjoint. We first present results for the ROM-388

ROM optimization-based coupling when the gradient descent algorithm uses a ROM389

basis for the adjoint defined from the already available state solution snapshots. To390

see the e↵ectiveness of the state ROM basis in the adjoint, we first run the ROM-391

ROM coupled problem with a FOM state and the state ROM basis in the adjoint392

(FS-SRA).393

13

This manuscript is for review purposes only.

We see in the last column of Table 3 that the state ROM basis for the adjoint394

requires upwards of 500 modes to achieve accurate results. This behavior is also395

reflected in the ROM-ROM coupled problem results with a ROM state and ROM396

state basis for the adjoint (RS-SRA) in Table 3. However, as shown in the ROM state397

and FOM adjoint Table 1, we see the ROM state is not the cause of the deterioration398

in RS-SRA, since RS-FA provides accurate results for as few as 100 modes.399

Finally, we check the projection error of the state ROM basis for the adjoint in400

Table 4 and see that keeping any fewer than every possible mode gives a large loss401

in accuracy with projection error O(10�3) or greater. Compare Table 2 with Table 4402

to see the large di↵erence in accuracy between projecting state solutions and adjoint403

solutions onto the reduced space formed from state snapshots, respectively.404

Considering all modes being required for an accurate projection of the adjoint405

systems in Table 4 and the far fewer iterations required for RS-FA to converge com-406

pared to FS-SRA and RS-SRA, it is clear that using the state solutions snapshots to407

form a reduced basis for the adjoint systems is not appropriate.408

RS-SRA FS-SRA
Modes Error Iters. Error Iters.

50 10�3 ⇤ 10�4 ⇤
100 10�3 ⇤ 10�4 ⇤
250 10�5 ⇤ 10�4 ⇤
500 10�6 ⇤ 10�5 ⇤
1000 10�7 ⇤ 10�6 ⇤
1500 10�7 506.7 10�8 139.8
1600 10�8 68.6 10�8 48.2
1700 10�8 21.1 10�8 11.9
1800 10�8 14.8 10�8 9
2016 10�8 3 10�8 3

Table 3
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�16, tolerance

10�14, and ⌫ = 10�5. Reduced state + state snapshot reduced adjoint (RS-SRA), reduced space +
full order adjoint (RS-FA)), and Full order state + stated snapshot reduced adjoint (FS-SRA).

SRA
Modes E(µ1, u,1) E(µ2, u,2)

50 10�1 10�1

2000 10�1 10�1

2001 10�2 10�2

2014 10�2 10�2

2015 10�3 10�3

2016 10�15 10�15

Table 4
Projection error of the adjoint solutions in ⌦1 and ⌦2 for SRA. Note that two numbers separated

by a dash represents a range of quantities that varies over timesteps and gradient descent iterations.

5.2. Modified Gradient Descent ROM basis for the Adjoint. We now409

proceed to examine the new MGDmRA snapshot collection approach. Our results are410

summarized in Table 5. From the data in this table we see that the MGDmRA ROM411

14

This manuscript is for review purposes only.

basis constructed by collecting m = 1 adjoint snapshot per time step (MGD1RA),412

provides results for the adjoint that are as accurate as the FOM for more than 100413

modes.414

We combine MGDmRA ROM adjoint with a ROM state and, as expected, the415

iteration count increases as the modes decrease. Finally, we check the projection416

error of the basis for the adjoint in Table 6 and see that we get O(10�15) projection417

error for more than 100 modes with some variation between gradient descent steps418

and timesteps. Below 100 modes, we see worse projection errors which matches the419

results in the previous table.420

We also check the projection errors of the MGDmRA ROM basis constructed421

by collecting one snapshots per timestep (MGD1RA) and the MGDmRA ROM basis422

constructed by collecting two snapshots per timestep (MGD2RA). As shown in Table423

6, the projection errors do not significantly change by keeping more adjoint snapshots.424

Instead when a range of projection errors occurs, the distribution of the projection425

errors changes. This has almost no a↵ect on the iteration count and accuracy of the426

ROM-ROM coupled problem.427

RS-MGD1RA FS-MGD1RA
Modes Error Iters. Error Iters.

50 10�4 ⇤ 10�7 ⇤
100 10�5 2342.8 10�8 4.2
250 10�6 401.5 10�8 4
500 10�7 102.8 10�8 3.7
1000 10�7 35.2 10�8 3.7
1500 10�8 7.8 10�8 3.7
1600 10�8 6.6 10�8 3.7
1700 10�8 6.5 10�8 3.7
1800 10�8 6.5 10�8 3.7
2016 10�8 3 10�8 3

Table 5
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�16 and

⌫ = 10�5. reduced state + modified gradient descent reduced adjoint (RS-MGD1RA) and full state
+ modified gradient descent reduced adjoint (FS-MGD1RA).

MGD1RA MGD2RA
Modes E(µ1, µ,1) E(µ2, µ,2) E(µ1, µ,1) E(µ2, µ,2)
50 10�5 � 10�2 10�6 � 10�3 10�6 � 10�4 10�6 � 10�4

100 10�15 � 10�12 10�15 � 10�13 10�15 � 10�13 10�15 � 10�14

500 10�15 � 10�12 10�15 � 10�13 10�15 � 10�13 10�15 � 10�14

1500 10�15 � 10�12 10�15 � 10�13 10�15 � 10�12 10�15 � 10�13

2016 10�15 10�15 10�15 10�15

Table 6
Projection error of the adjoint solutions in ⌦1 and ⌦2 for MGD1RA and MGD2RA. Note that

two numbers separated by a dash represents a range of quantities that varies over timesteps and
gradient descent iterations.

5.2.1. Di↵erent Modal Numbers in State ROM and Adjoint ROM.428

Because MGDmRA adjoint ROM does not need as many modes as the state ROM,429

it is necessary to investigate using a di↵erent number of modes in the state ROM430
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RS - Reduced state
FS - FOM state

SRA   - State solution-based reduced adjoint
MGD1RA - Modified gradient descent – 1 iteration
FA   - FOM adjoint

Takeaway #2: MGD1RA outperforms SRA 
and doesn’t require many modes
(# of state modes kept is more important) 

𝛿 = 1𝑒 − 16 and tolerance of 1𝑒 − 14, 𝜈 = 1𝑒 − 5 

reduced basis adjoint. Results shown in Table 1 confirm that when the optimizer uses377

the FOM adjoint, the coupled ROM-ROM solution achieves the same accuracy as the378

coupled FOM-FOM solution, provided we use enough (> 50) modes in the reduced379

basis.380

Remark 4. In the numerical results that follow, we use ⇤ to denote when the381

gradient descent algorithm exceeds 10,000 iterations of gradient descent in a single382

timestep. This is many more iterations of gradient descent than one would normally383

execute in practice. In these cases, we provide the error which the algorithm is able384

to attain and denote this behavior by ⇤. Note that this behavior implies that there385

is stagnation in the gradient descent algorithm for these modal amounts due to the386

ROM-ROM model lacking su�cient accuracy to continue converging.387

RS-FA
Modes Error Iters.

50 10�4 ⇤
100 10�7 50.1
250 10�7 36.9
500 10�7 21.4
1000 10�7 9.8
1500 10�8 4.4
1600 10�8 4.4
1700 10�8 4.4
1800 10�8 4.4
2016 10�8 3

Table 1
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem with � = 10�16 and

⌫ = 10�5 for reduced space + full order adjoint (RS-FA)

RS
Modes E(u1, u,1) E(u2, u,2)

50 10�3 10�3

100 10�8 10�7

250 10�9 10�8

500 10�9 10�8

1000 10�9 10�8

1500 10�9 10�8

2016 10�15 10�15

Table 2
Projection error of the state solutions in ⌦1 and ⌦2 onto the reduced basis generated from state

solution snapshots.

5.1. State ROM Basis in the Adjoint. We first present results for the ROM-388

ROM optimization-based coupling when the gradient descent algorithm uses a ROM389

basis for the adjoint defined from the already available state solution snapshots. To390

see the e↵ectiveness of the state ROM basis in the adjoint, we first run the ROM-391

ROM coupled problem with a FOM state and the state ROM basis in the adjoint392

(FS-SRA).393

13

This manuscript is for review purposes only.

We see in the last column of Table 3 that the state ROM basis for the adjoint394

requires upwards of 500 modes to achieve accurate results. This behavior is also395

reflected in the ROM-ROM coupled problem results with a ROM state and ROM396

state basis for the adjoint (RS-SRA) in Table 3. However, as shown in the ROM state397

and FOM adjoint Table 1, we see the ROM state is not the cause of the deterioration398

in RS-SRA, since RS-FA provides accurate results for as few as 100 modes.399

Finally, we check the projection error of the state ROM basis for the adjoint in400

Table 4 and see that keeping any fewer than every possible mode gives a large loss401

in accuracy with projection error O(10�3) or greater. Compare Table 2 with Table 4402

to see the large di↵erence in accuracy between projecting state solutions and adjoint403

solutions onto the reduced space formed from state snapshots, respectively.404

Considering all modes being required for an accurate projection of the adjoint405

systems in Table 4 and the far fewer iterations required for RS-FA to converge com-406

pared to FS-SRA and RS-SRA, it is clear that using the state solutions snapshots to407

form a reduced basis for the adjoint systems is not appropriate.408

RS-SRA FS-SRA
Modes Error Iters. Error Iters.

50 10�3 ⇤ 10�4 ⇤
100 10�3 ⇤ 10�4 ⇤
250 10�5 ⇤ 10�4 ⇤
500 10�6 ⇤ 10�5 ⇤
1000 10�7 ⇤ 10�6 ⇤
1500 10�7 506.7 10�8 139.8
1600 10�8 68.6 10�8 48.2
1700 10�8 21.1 10�8 11.9
1800 10�8 14.8 10�8 9
2016 10�8 3 10�8 3

Table 3
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�16, tolerance

10�14, and ⌫ = 10�5. Reduced state + state snapshot reduced adjoint (RS-SRA), reduced space +
full order adjoint (RS-FA)), and Full order state + stated snapshot reduced adjoint (FS-SRA).

SRA
Modes E(µ1, u,1) E(µ2, u,2)

50 10�1 10�1

2000 10�1 10�1

2001 10�2 10�2

2014 10�2 10�2

2015 10�3 10�3

2016 10�15 10�15

Table 4
Projection error of the adjoint solutions in ⌦1 and ⌦2 for SRA. Note that two numbers separated

by a dash represents a range of quantities that varies over timesteps and gradient descent iterations.

5.2. Modified Gradient Descent ROM basis for the Adjoint. We now409

proceed to examine the new MGDmRA snapshot collection approach. Our results are410

summarized in Table 5. From the data in this table we see that the MGDmRA ROM411

14
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basis constructed by collecting m = 1 adjoint snapshot per time step (MGD1RA),412

provides results for the adjoint that are as accurate as the FOM for more than 100413

modes.414

We combine MGDmRA ROM adjoint with a ROM state and, as expected, the415

iteration count increases as the modes decrease. Finally, we check the projection416

error of the basis for the adjoint in Table 6 and see that we get O(10�15) projection417

error for more than 100 modes with some variation between gradient descent steps418

and timesteps. Below 100 modes, we see worse projection errors which matches the419

results in the previous table.420

We also check the projection errors of the MGDmRA ROM basis constructed421

by collecting one snapshots per timestep (MGD1RA) and the MGDmRA ROM basis422

constructed by collecting two snapshots per timestep (MGD2RA). As shown in Table423

6, the projection errors do not significantly change by keeping more adjoint snapshots.424

Instead when a range of projection errors occurs, the distribution of the projection425

errors changes. This has almost no a↵ect on the iteration count and accuracy of the426

ROM-ROM coupled problem.427

RS-MGD1RA FS-MGD1RA
Modes Error Iters. Error Iters.

50 10�4 ⇤ 10�7 ⇤
100 10�5 2342.8 10�8 4.2
250 10�6 401.5 10�8 4
500 10�7 102.8 10�8 3.7
1000 10�7 35.2 10�8 3.7
1500 10�8 7.8 10�8 3.7
1600 10�8 6.6 10�8 3.7
1700 10�8 6.5 10�8 3.7
1800 10�8 6.5 10�8 3.7
2016 10�8 3 10�8 3

Table 5
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�16 and

⌫ = 10�5. reduced state + modified gradient descent reduced adjoint (RS-MGD1RA) and full state
+ modified gradient descent reduced adjoint (FS-MGD1RA).

MGD1RA MGD2RA
Modes E(µ1, µ,1) E(µ2, µ,2) E(µ1, µ,1) E(µ2, µ,2)
50 10�5 � 10�2 10�6 � 10�3 10�6 � 10�4 10�6 � 10�4

100 10�15 � 10�12 10�15 � 10�13 10�15 � 10�13 10�15 � 10�14

500 10�15 � 10�12 10�15 � 10�13 10�15 � 10�13 10�15 � 10�14

1500 10�15 � 10�12 10�15 � 10�13 10�15 � 10�12 10�15 � 10�13

2016 10�15 10�15 10�15 10�15

Table 6
Projection error of the adjoint solutions in ⌦1 and ⌦2 for MGD1RA and MGD2RA. Note that

two numbers separated by a dash represents a range of quantities that varies over timesteps and
gradient descent iterations.

5.2.1. Di↵erent Modal Numbers in State ROM and Adjoint ROM.428

Because MGDmRA adjoint ROM does not need as many modes as the state ROM,429

it is necessary to investigate using a di↵erent number of modes in the state ROM430
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Numerical Result – Projection Errors (State and Adjoint)14

reduced basis adjoint. Results shown in Table 1 confirm that when the optimizer uses377

the FOM adjoint, the coupled ROM-ROM solution achieves the same accuracy as the378

coupled FOM-FOM solution, provided we use enough (> 50) modes in the reduced379

basis.380

Remark 4. In the numerical results that follow, we use ⇤ to denote when the381

gradient descent algorithm exceeds 10,000 iterations of gradient descent in a single382

timestep. This is many more iterations of gradient descent than one would normally383

execute in practice. In these cases, we provide the error which the algorithm is able384

to attain and denote this behavior by ⇤. Note that this behavior implies that there385

is stagnation in the gradient descent algorithm for these modal amounts due to the386

ROM-ROM model lacking su�cient accuracy to continue converging.387

RS-FA
Modes Error Iter

50 10�4 ⇤
100 10�7 50.1
250 10�7 36.9
500 10�7 21.4
1000 10�7 9.8
1500 10�8 4.4
1600 10�8 4.4
1700 10�8 4.4
1800 10�8 4.4
2016 10�8 3

Table 1
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem with � = 10�16 and

⌫ = 10�5 for reduced space + full order adjoint (RS-FA)

RS
Modes E(u1, u,1) E(u2, u,2)

50 10�3 10�3

100 10�8 10�7

250 10�9 10�8

500 10�9 10�8

1000 10�9 10�8

1500 10�9 10�8

2016 10�15 10�15

Table 2
Projection error of the state solutions in ⌦1 and ⌦2 onto the reduced basis generated from state

solution snapshots.

5.1. State ROM Basis in the Adjoint. We first present results for the ROM-388

ROM optimization-based coupling when the gradient descent algorithm uses a ROM389

basis for the adjoint defined from the already available state solution snapshots. To390

see the e↵ectiveness of the state ROM basis in the adjoint, we first run the ROM-391

ROM coupled problem with a FOM state and the state ROM basis in the adjoint392

(FS-SRA).393

13

This manuscript is for review purposes only.

Projection of state solutions onto
reduced basis generated from 
state solution snapshots

We see in the last column of Table 3 that the state ROM basis for the adjoint394

requires upwards of 500 modes to achieve accurate results. This behavior is also395

reflected in the ROM-ROM coupled problem results with a ROM state and ROM396

state basis for the adjoint (RS-SRA) in Table 3. However, as shown in the ROM state397

and FOM adjoint Table 1, we see the ROM state is not the cause of the deterioration398

in RS-SRA, since RS-FA provides accurate results for as few as 100 modes.399

Finally, we check the projection error of the state ROM basis for the adjoint in400

Table 4 and see that keeping any fewer than every possible mode gives a large loss401

in accuracy with projection error O(10�3) or greater. Compare Table 2 with Table 4402

to see the large di↵erence in accuracy between projecting state solutions and adjoint403

solutions onto the reduced space formed from state snapshots, respectively.404

Considering all modes being required for an accurate projection of the adjoint405

systems in Table 4 and the far fewer iterations required for RS-FA to converge com-406

pared to FS-SRA and RS-SRA, it is clear that using the state solutions snapshots to407

form a reduced basis for the adjoint systems is not appropriate.408

RS-SRA FS-SRA
Modes Error Iter Error Iter

50 10�3 ⇤ 10�4 ⇤
100 10�3 ⇤ 10�4 ⇤
250 10�5 ⇤ 10�4 ⇤
500 10�6 ⇤ 10�5 ⇤
1000 10�7 ⇤ 10�6 ⇤
1500 10�7 506.7 10�8 139.8
1600 10�8 68.6 10�8 48.2
1700 10�8 21.1 10�8 11.9
1800 10�8 14.8 10�8 9
2016 10�8 3 10�8 3

Table 3
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�16, tolerance

10�14, and ⌫ = 10�5. Reduced state + state snapshot reduced adjoint (RS-SRA), reduced space +
full order adjoint (RS-FA)), and Full order state + stated snapshot reduced adjoint (FS-SRA).

SRA
Modes E(µ1, u,1) E(µ2, u,2)

50 10�1 10�1

2000 10�1 10�1

2001 10�2 10�2

2014 10�2 10�2

2015 10�3 10�3

2016 10�15 10�15

Table 4
Projection error of the adjoint solutions in ⌦1 and ⌦2 for SRA. Note that two numbers separated

by a dash represents a range of quantities that varies over timesteps and gradient descent iterations.

5.2. Modified Gradient Descent ROM basis for the Adjoint. We now409

proceed to examine the new MGDmRA snapshot collection approach. Our results are410

summarized in Table 5. From the data in this table we see that the MGDmRA ROM411
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Projection of adjoint solutions onto reduced basis 
generated from state solution snapshots

Projection of adjoint solutions onto reduced basis 
generated from GDRA and MGD1RA

Takeaway #3: State 
solutions should not be 
used to generate reduced 
basis for adjoint

𝜈 = 1𝑒 − 5 

RS Modes 50 100 250
MGD1RA Modes Avg. Iters. Error Avg. Iters. Error Avg. Iters. Error

25 15.2 10�3 9.3 10�4 15.6 10�4

50 18.9 10�3 11.4 10�4 8.8 10�4

100 12.7 10�3 8.4 10�4 6.2 10�4

Table 9
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�10 and

⌫ = 10�5 and convergence tolerance 10�8 for varying modes in reduced state + modified gradient
descent reduced adjoint (RS-MGD1RA)

5.2.2. Comparison to Gradient Descent Adjoint Snapshots. The usual454

snapshot collection method for adjoints is to solve the FOM-FOM coupled problem455

and store all computed adjoints for all time steps; this is the gradient descent for456

reduced adjoint (GDRA) snapshot method. Because MGDmRA does not compute457

or store the adjoint snapshots from all iterations at all timesteps for the coupled458

problem, it is important to compare MGDmRA to GDRA for any e↵ect caused by459

this reduction or by the variation in the adjoint problem.460

In Table 10, we see that projection errors for GDRA ROM have the same order461

of errors, or range of errors, for each amount of modes as MGD1RA. It is important462

to remark, though, that the projection errors at each gradient descent step for each463

time step are not exactly the same for MGD1RA and GDRA. In fact, the order of464

the projection errors may be di↵erent. However, the range of projection errors are465

the same.466

GDRA MGD1RA
Modes E(µ1, µ,1) E(µ2, µ,2) E(µ1, µ,1) E(µ2, µ,2)

50 10�4 � 10�3 10�6 � 10�5 10�4 � 10�3 10�6 � 10�5

100 10�15 � 10�14 10�15 10�15 � 10�14 10�15

500 10�15 � 10�14 10�15 10�15 � 10�14 10�15

1500 10�15 � 10�14 10�15 10�15 � 10�14 10�15

2016 10�15 10�15 10�15 10�15

Table 10
Projection error of the adjoint solutions in ⌦1 and ⌦2 for GDRA and MGD1RA with ⌫ = 1e�5.

Note that two numbers separated by a dash represents a range of quantities that varies over timesteps
and gradient descent iterations.

We next compare the MGD1RA ROM-ROM coupled problem and GDRA ROM-467

ROM coupled problem for � = 10�14 and tolerance 10�12. Note that the FOM-FOM468

coupled problem to be solved as part of GDRA has an average of 1.98 iterations per469

time step. Therefore GDRA stores approximately 1.98 adjoint solutions per times470

step in the snapshot. However, MGD1RA stores one adjoint solution per time step.471

So there is a noticeable reduction in the size of the MGD1RA snapshot matrix. We472

compare the accuracy of the final solution given by kuc�umk
kumk and the average iteration473

per time step. Recall that with tolerance 10�12 we expect accuracy around 10�6. In474

Table 11 we see that MGD1RA ROM and GDRA ROM attain the same accuracy for475

each amount of modes. Furthermore, in Table 11 we see that there is some variation476

in the average number of iterations per time step, but it is not significant over the477

various modal amounts considered.478
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Numerical Result – Interplay of state and adjoint ROM modes15

and MGDmRA adjoint ROM. As seen in Table 3, using 100 or more modes in the431

state ROM results in the same accuracy as the state FOM. Therefore, in the following432

tables we will keep between 50 and 250 modes in the state ROM. Similarly, as seen433

in Table 5, keeping 100 or more modes in the MGDmRA adjoint ROM results in the434

same accuracy as the adjoint FOM. So we will not keep more than 100 modes in the435

MGDmRA adjoint ROM in the following tables.436

We begin using the same tolerance, 10�14, as the previous tables. In Table 7,437

we see that when keeping 25 MGD1RA adjoint ROM modes or 50 state modes we438

do not attain convergence and do not attain accuracy near 10�8. Once we keep 50439

or more MGD1RA adjoint ROM modes and 100 or more state modes, we do attain440

convergence. Note that keeping 50 state ROM modes never achieves convergence441

or accuracy near 10�8 for any MGD1RA adjoint ROM modes. This is due to the442

state ROM needing more modes and is not due to the adjoint ROM needing more443

modes which is clearly illustrated in the Table 7. Increasing the number of MGD1RA444

adjoint ROM modes and the state ROM modes concurrently deacreases the number445

of iterations needed, and Tables 7-9 seem to suggest there is a balance to be struck,446

i.e., it is not always beneficial to increase the MGD1RA adjoint ROM modes while447

keeping the state ROM modes fixed nor vice-versa.448

When using relatively few modes, it is common that a ROM is unable to attain449

the same accuracy as the FOM. Therefore, we provide a table using � = 10�14 with450

the tolerance 10�12. in Table 8 we see the same results as Table 7 but with lower451

iteration counts. Again, in Table 9, we lower the tolerance to 10�8 and simultaneously452

lower � to 10�10.453

RS Modes 50 100 250
MGD1RA Modes Avg. Iters. Error Avg. Iters. Error Avg. Iters. Error

25 ⇤ 10�4 4498.8 10�6 ⇤ 10�4

50 ⇤ 10�4 761.5 10�6 2119.8 10�6

100 ⇤ 10�4 2342.8 10�5 536.9 10�6

Table 7
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�16, conver-

gence tolerance 10�14, and ⌫ = 10�5 for varying modes in reduced state + modified gradient descent
reduced adjoint (RS-MGD1RA).

RS Modes 50 100 250
MGD1RA Modes Avg. Iters. Error Avg. Iters. Error Avg. Iters. Error

25 ⇤ 10�4 349 10�5 4246.4 10�6

50 ⇤ 10�4 170.7 10�5 312.4 10�6

100 ⇤ 10�4 150.4 10�5 129.5 10�5

Table 8
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�14, ⌫ =

10�5, and convergence tolerance 10�12 for varying modes in reduced state + modified gradient
descent reduced adjoint (RS-MGD1RA).
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and MGDmRA adjoint ROM. As seen in Table 3, using 100 or more modes in the431

state ROM results in the same accuracy as the state FOM. Therefore, in the following432

tables we will keep between 50 and 250 modes in the state ROM. Similarly, as seen433

in Table 5, keeping 100 or more modes in the MGDmRA adjoint ROM results in the434

same accuracy as the adjoint FOM. So we will not keep more than 100 modes in the435

MGDmRA adjoint ROM in the following tables.436

We begin using the same tolerance, 10�14, as the previous tables. In Table 7,437

we see that when keeping 25 MGD1RA adjoint ROM modes or 50 state modes we438

do not attain convergence and do not attain accuracy near 10�8. Once we keep 50439

or more MGD1RA adjoint ROM modes and 100 or more state modes, we do attain440

convergence. Note that keeping 50 state ROM modes never achieves convergence441

or accuracy near 10�8 for any MGD1RA adjoint ROM modes. This is due to the442

state ROM needing more modes and is not due to the adjoint ROM needing more443

modes which is clearly illustrated in the Table 7. Increasing the number of MGD1RA444

adjoint ROM modes and the state ROM modes concurrently deacreases the number445

of iterations needed, and Tables 7-9 seem to suggest there is a balance to be struck,446

i.e., it is not always beneficial to increase the MGD1RA adjoint ROM modes while447

keeping the state ROM modes fixed nor vice-versa.448

When using relatively few modes, it is common that a ROM is unable to attain449

the same accuracy as the FOM. Therefore, we provide a table using � = 10�14 with450

the tolerance 10�12. in Table 8 we see the same results as Table 7 but with lower451

iteration counts. Again, in Table 9, we lower the tolerance to 10�8 and simultaneously452

lower � to 10�10.453

RS Modes 50 100 250
MGD1RA Modes Avg. Iters. Error Avg. Iters. Error Avg. Iters. Error

25 ⇤ 10�4 4498.8 10�6 ⇤ 10�4

50 ⇤ 10�4 761.5 10�6 2119.8 10�6

100 ⇤ 10�4 2342.8 10�5 536.9 10�6

Table 7
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�16, conver-

gence tolerance 10�14, and ⌫ = 10�5 for varying modes in reduced state + modified gradient descent
reduced adjoint (RS-MGD1RA).

RS Modes 50 100 250
MGD1RA Modes Avg. Iters. Error Avg. Iters. Error Avg. Iters. Error

25 ⇤ 10�4 349 10�5 4246.4 10�6

50 ⇤ 10�4 170.7 10�5 312.4 10�6

100 ⇤ 10�4 150.4 10�5 129.5 10�5

Table 8
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�14, ⌫ =

10�5, and convergence tolerance 10�12 for varying modes in reduced state + modified gradient
descent reduced adjoint (RS-MGD1RA).
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RS Modes 50 100 250
MGD1RA Modes Avg. Iters. Error Avg. Iters. Error Avg. Iters. Error

25 15.2 10�3 9.3 10�4 15.6 10�4

50 18.9 10�3 11.4 10�4 8.8 10�4

100 12.7 10�3 8.4 10�4 6.2 10�4

Table 9
Error kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�10 and

⌫ = 10�5 and convergence tolerance 10�8 for varying modes in reduced state + modified gradient
descent reduced adjoint (RS-MGD1RA)

5.2.2. Comparison to Gradient Descent Adjoint Snapshots. The usual454

snapshot collection method for adjoints is to solve the FOM-FOM coupled problem455

and store all computed adjoints for all time steps; this is the gradient descent for456

reduced adjoint (GDRA) snapshot method. Because MGDmRA does not compute457

or store the adjoint snapshots from all iterations at all timesteps for the coupled458

problem, it is important to compare MGDmRA to GDRA for any e↵ect caused by459

this reduction or by the variation in the adjoint problem.460

In Table 10, we see that projection errors for GDRA ROM have the same order461

of errors, or range of errors, for each amount of modes as MGD1RA. It is important462

to remark, though, that the projection errors at each gradient descent step for each463

time step are not exactly the same for MGD1RA and GDRA. In fact, the order of464

the projection errors may be di↵erent. However, the range of projection errors are465

the same.466

GDRA MGD1RA
Modes E(µ1, µ,1) E(µ2, µ,2) E(µ1, µ,1) E(µ2, µ,2)

50 10�4 � 10�3 10�6 � 10�5 10�4 � 10�3 10�6 � 10�5

100 10�15 � 10�14 10�15 10�15 � 10�14 10�15

500 10�15 � 10�14 10�15 10�15 � 10�14 10�15

1500 10�15 � 10�14 10�15 10�15 � 10�14 10�15

2016 10�15 10�15 10�15 10�15

Table 10
Projection error of the adjoint solutions in ⌦1 and ⌦2 for GDRA and MGD1RA with ⌫ = 1e�5.

Note that two numbers separated by a dash represents a range of quantities that varies over timesteps
and gradient descent iterations.

We next compare the MGD1RA ROM-ROM coupled problem and GDRA ROM-467

ROM coupled problem for � = 10�14 and tolerance 10�12. Note that the FOM-FOM468

coupled problem to be solved as part of GDRA has an average of 1.98 iterations per469

time step. Therefore GDRA stores approximately 1.98 adjoint solutions per times470

step in the snapshot. However, MGD1RA stores one adjoint solution per time step.471

So there is a noticeable reduction in the size of the MGD1RA snapshot matrix. We472

compare the accuracy of the final solution given by kuc�umk
kumk and the average iteration473

per time step. Recall that with tolerance 10�12 we expect accuracy around 10�6. In474

Table 11 we see that MGD1RA ROM and GDRA ROM attain the same accuracy for475

each amount of modes. Furthermore, in Table 11 we see that there is some variation476

in the average number of iterations per time step, but it is not significant over the477

various modal amounts considered.478
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𝛿 = 1𝑒 − 16 and tolerance of 1𝑒 − 14 , 𝜈 = 1𝑒 − 5 

𝛿 = 1𝑒 − 14 and tolerance of 1𝑒 − 12 , 𝜈 = 1𝑒 − 5 

𝛿 = 1𝑒 − 10 and tolerance of 1𝑒 − 8, 𝜈 = 1𝑒 − 5

Takeaway #4: 
Important to balance 
reduced space state and 
reduced space adjoint 
number of modes. 
Also, loosening tolerance 
and increasing penalty 
increases rate of 
convergence.

State/Adjoint Reduced Space Modal Size Comparison



Numerical Result – MGDmRA vs. GDRA
What is lost from limiting ourselves to m iterations?
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RS Modes 100 250
MGD1RA Modes Avg. Iters. Error Avg. Iters. Error

50 170.7 10�5 312.4 10�6

100 150.4 10�5 129.5 10�5

GDRA Modes
50 170.7 10�5 371.2 10�6

100 242.1 10�5 143.2 10�5

Table 11
kuc�umk

kumk and iteration counts for ROM-ROM coupled problem, with � = 10�14, ⌫ = 10�5, and

convergence tolerance 10�12 for varying modes in reduced state + gradient descent reduced adjoint
(RS-GDRA) and reduced state + modified gradient descent reduced adjoint (RS-MGD1RA).

5.3. Timing study. We perform a comparison of coupled ROM-ROM problems479

with di↵erent choices for the reduced basis for the adjoint problem. We compare using480

the reduced basis for adjoint from MGD1RA (one step of gradient descent) against a481

more traditional (but impractical) reduced basis for the adjoint based on all gradient482

descent steps (GDRA).483

With meshing spacing h = 1
64 and �t = 1.122398e�3, we expect error in the FEM484

solution on the order of 1e � 3 (based on L2 FEM error on the order of C(O(�t) +485

O(h)2), so for this test we use a stopping criteria for the optimization algorithm of486

1e� 6 (the square of 1e� 3). � should be set su�ciently small so that 1e� 6 for the487

order of magnitude for the loss function is achievable, hence we set it to 1e� 8.488

We use the results from Tables 7, 8, and 9 to inform our choice of the number489

of modes to keep for both the primal and adjoint reduced space systems. Based on490

Table 9 particularly, we anticipate 100 or fewer modes being required for the reduced491

primal system, and 50 or fewer modes being required for the reduced adjoint system.492

While we think it is likely that 50 modes for each would provide a reasonably accurate493

solution, we will use 100 modes for the reduced primal system to provide as fair of a494

comparison as possible against the FOM-FOM optimization-coupled problem.495

Note that the FOM-FOM and ROM-ROM coupled problems solve the state and496

adjoint systems using an LU factorization that is computed one time, stored, and497

reused. For the ROM-ROM coupled problems this scales well to larger problems498

because the matrix dimensions can be reduced to the size that a direct method is499

favorable. However, for the FOM-FOM coupled problem, this does not scale well500

since there is no reduction in matrix dimensions as the problems size increases. This501

will ultimately lead to the FOM-FOM coupled problem requiring an iterative solver502

for the state and adjoint system solves. When the iterative solver for the systems is503

required, the FOM-FOM solver time will increase while in contrast the ROM-ROM504

will not require the iterative solver and therefore should scale better.505

We provide timings results in Table 12. For the FOM-FOM coupled problem, we506

get the solution at the final timestep in 86 seconds with accuracy O(10�3) as expected.507

The ROM-ROM coupled problem using MGD1RA and GDRA is solved in 33 seconds508

and 32 seconds, respectively, with O(10�3) accuracy. Therefore, the ROM-ROM509

coupled problem is solved faster than the FOM-FOM coupled problem without any510

significant loss of accuracy. However, its important to note that with these parameters,511

the FOM-FOM coupled problem for the snapshot collection has an average of 0.42512

gradient descent iterations per time step. This means the only significant di↵erence513

between MGD1RA and GDRA is the sequential nature of GDRA.514

For this reason, we consider the coupled problem with ⌫ = 10�3 for � = 10�12515
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𝜈 = 1𝑒 − 5

Takeaway #5: Similar 
iterations and runtimes 
for GDRA and MGD1RA; 
both beating the FOM-
FOM coupled problem

Runtime Comparison

Average Iteration Comparison
and tolerance 10�10 where the FOM-FOM coupled problem is solved in an average of516

1.7 iterations per timestep. For these parameters, the FOM-FOM coupled problem is517

solved in 131 seconds. We keep 100 state modes and 50 adjoint modes for the ROMs.518

The MGD1RA ROM-ROM coupled problem and GDRA ROM-ROM coupled problem519

are each solved in 76 seconds. Therefore, we again see that the MGD1RA ROM and520

GDRA ROM perform similarly and are faster than the FOM. The parameter ⌫ = 10�5521

makes the problem more hyperbolic, which is more di�cult to capture with a small522

ROM basis but is easier to control. We also investigated ⌫ = 10�3, a more elliptic523

problem, which is better suited for a small ROM basis, but has a higher average524

iteration count.525

⌫ = 10�5 ⌫ = 10�3

FOM MGD1RA ROM GDRA ROM FOM MGD1RA ROM GDRA ROM
86 sec 33 sec 32 sec 131 sec 76 sec 76 sec

Table 12
Computational times for ⌫ = 10�5 and ⌫ = 10�3.

5.4. Conclusions. Adapting the optimization-based coupling (OBC) approach526

developed for full order models (FOMs) to the coupling or reduced order models527

(ROMs) has the potential to decrease computation time to simulate coupled systems528

but also introduces a few challenges. The optimization algorithm required to solve529

the PDE-constrained OBC formulation involves the solution of adjoint equations for530

which a reduced basis is not readily available.531

The most straightforward way of collecting adjoint snapshots is by solving the532

FOM-FOM coupled problem and storing all computed adjoints for all time steps.533

This snapshot strategy, denoted GDRA, can result in large snapshot matrices and534

the snapshot collection algorithm is not obviously parallellizable in the sense that535

the primal solution at each timestep depends on the previous timestep solution, and536

therefore the FOM-FOM coupled system must be solved with a relatively tight toler-537

ance to produce the adjoint snapshots. This requires a large amount of storage and538

computational time.539

In comparison, the modified gradient descent for reduced basis for the adjoint540

(MGDmRA) snapshot collection technique produces a matrix whose size is control-541

lable by choosing how many iterations of gradient descent to compute and store for542

each time step. Furthermore, the MGDmRA algorithm is parallellizable because each543

time step is not dependent upon the previous time step’s solutions. This of course544

assumes that snapshots of the primal problem are available, as they are expected545

to be, for development of traditional projection-based reduced order models. Both of546

these advantages lend themselves towards reduction of computation time for collecting547

snapshots from which to generate a reduced basis for the adjoint system.548

Numerical results indicate that MGD1RA is able to produce the same accuracy549

as the FOM for the adjoint problem using few modes, Ni,r << Ni. Accuracy for550

MGD2RA (keeping the adjoint snapshots for two iterations of gradient descent per551

timestep) shows there is little benefit over MGD1RA. Furthermore, the MGDmRA552

ROM does not have any detrimental a↵ect on the ROM when compared to the much553

more expensive approach of performing gradient descent and keeping all adjoint snap-554

shots from all iterations over all timesteps. The accuracy that the MGD1RA ROM555

can attain is the same as the accuracy of the GDRA ROM, the average iteration per556

time step of the MGD1RA versus gradient descent are not significantly di↵erent for557
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Conclusions17

• Introduced a snapshot collection technique (MGDmRA) for producing a reduced 
basis for the adjoint of a ROM-ROM OBC problem

• Broke the connection between timesteps by using state snapshot data
• Fixed memory / computational footprint by selecting a fixed subset of gradient

descent iterations per timestep

• Numerical experiments indicate:

• State snapshots are not effective for producing a reduced basis for the adjoint
• MGDmRA produces a basis that is competitive with the reduced basis generated by 

gradient descent (run sequentially with a tight tolerance) in iteration counts, 
projection errors, and computational time (with reduced offline cost).

Future Work
• Explore FOM-ROM combinations
• Improved optimization algorithms (far fewer iterations) 
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