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Data Analysis

* |nitial cycling in each conditions shows a linear degradation which changes to non-linear degradation post a certain point.
* Significance of each parameter changes based on chemistry, with SOC range showing the most consistent behavior. Larger SOC
shows a greater degradation rate. C-rate and temperature show chemistry specific trends.
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The point of change in degradation behavior varies based on chemistry and use conditions and is not necessarily 80%.

Battery lifetime can be increased by ensuring that parameters of high significance to the specific chemistry are set to optimum
levels. For example, the lifetime of LFP can be increased by ensuring the battery is maintained at lower temperatures.

Conclusion Next Steps

* Significance of parameters and degradation rates have a strong dependence on Continue cycling to end of life (40%).
chemistry and use conditions. Refine ANOVA analysis.
 Knowing which parameters most effect each chemistry can help optimize usage Quantify knee point occurrence.

and reduce degradation rates Investigate calendar aging trends.
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