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Part I: Thin film batteries with inorganic electrolytes

H. Lee, S. Kim, K. B. Kim, J. W. 
Choi, Nano Energy 2018, 53, 225

1. Technology impact: safe, long lasting power for consumer electronics, IoT, …
2. Science Impact: validate models through precision fabrication, characterization tools



2e-+2Li++CH3OCO2CH3
Li2CO3+C2H6

Scrosati, Garche JPS 195, 2419, 2010

•SEI formation irreversibly consumes Li

•Li salt (LiPF6) reacts w/H2O to form HF

Liquid electrolytes degrade safety, lifetime

LiCoO2Li++e-+CoO+1/2O2(g)

Overcharge

+organic +heat
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Part I: Thin film batteries with inorganic electrolytes
1. Technology impact: safe, long lasting power for consumer electronics, IoT, …
2. Science Impact: validate models through precision fabrication, characterization tools

https://www.ensurge.com/

https://product.tdk.com/en/
products/solid-state-batt/





What limits power for thin film SSBs?

STMicro All solid state LIB

0.5 mA/cm2

50 mA/cm2



Interfaces, electrolyte, Li diffusion can limit power

Haruta et al., Nano Lett. 15, 1498 (2015)

A. A Talin, D. Ruzmetov,⊥ A.Kolmakov, K. 
McKelvey, N. Ware, F. El Gabaly, B. Dunn, and H. S. 
White, ACS Appl. Mater. Interfaces 2016, 8, 32385
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Space-charge layers, interface reactions, dendrides

Yang, G.; Abraham, C.; Ma, Y.; Lee, M.; Helfrick, E.; Oh, D.; Lee, D. Appl. Sci. 2020, 10, 4727



Interface potentials determine performance & stability, 
but are generally unknown

A. C. Luntz, J. Voss, K. Reuter, J. Phys. Chem. Lett. 6, 4599 (2015)

Calculated potential and [Li] profile

E. J. Fuller, E. Strelcov, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. 
Zhitenev, J. J. McClelland, Y. Qi, J. A. Dura, A. . Talin, ACS Energy Lett. 6, 3944, 2021

V

el
ec

tr
ol

yt
e

ca
th

od
e

an
od

e

e-





Electron holography
• Requires specimen thinning
• Complicated interpretation
• Beam effects
• Few results to date

Few methods to measure local potential

K. Yamamoto, T. Hirayama, T. Tanji, Microscopy 62, S29, 2013

XPS
• Limited to very thin overlayers
• Need synchrotron for lateral resolution
• Operando studies very challenging

A. Schwöbel, W. Jaegermann, R. Hausbrand, Solid State Ionics 288, 244, 2016



Kelvin Probe Force Microscopy
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W. Melitz, J. Shena, A. C. Kummel, S. Lee Surf. Sci. Reports 66, 1, 2011
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Previous KPFM potential profiling of SSBs

H. Masuda, N. Ishida, Y. Ogata, D. Itoc, Daisuke Fujita, Nanoscale 9, 893, 2017

• Not done under inert ambient (~1000 ppm O2, 
250 ppm H2O)

• Composite cathode (metal, cathode, SSE)
• Rough interface
• No profile of complete cell
• Challenging for model validation



In situ cross section SSLIB to avoid contamination

16
E. J. Fuller, E. Strelcov, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. Zhitenev, J. J. McClelland, Y. Qi, J. A. Dura, A. . Talin, ACS Energy Lett. 6, 3944, 2021



Operando measurement of potential, [Li] across SSB

E. J. Fuller, E. Strelcov, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. Zhitenev, J. J. McClelland, Y. Qi, J. A. Dura, A. . Talin, ACS Energy Lett. 6, 3944, 2021
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Local potential inhomogeneous at LiPON/LCO interface

E. J. Fuller, E. Strelcov, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. Zhitenev, J. J. McClelland, Y. Qi, J. A. Dura, A. . Talin, ACS Energy Lett. 6, 3944, 2021



A first-principles informed model of a Si/LiPON/LCO SSB

• Ab initio framework to calculate thermodynamic 
driving forces and interface potential drops at 
open circuit equilibrium

• Model system Li / LiPON / LixCoO2

• Open circuit voltage V from chemical potential 
energetics at equilibrium

• Electronic and ionic components
• Resulting V consistent with prior DFT and 

experiment
• Electronic EF changes and drives battery 

operation
• Calculate defect formation energies, electronic 

band alignments, interface energy barriers

E. J. Fuller, E. Strelcov, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. Zhitenev, J. J. McClelland, Y. Qi, J. A. Dura, A. . Talin, ACS Energy Lett. 6, 3944, 2021



Good agreement for calculated vs. measured ∆CPD

model ∆CPD

E. J. Fuller, E. Strelcov, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. Zhitenev, J. J. McClelland, Y. Qi, J. A. Dura, A. . Talin, ACS Energy Lett. 6, 3944, 2021



…and for calculated vs. measured [Li] profile



High current cycling leads to change in EIS
KPFM helps identify the interface responsible for change in EIS

E. J. Fuller, E. Strelcov, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. Zhitenev, J. J. McClelland, Y. Qi, J. A. Dura, A. . Talin, ACS Energy Lett. 6, 3944, 2021



In situ characterization of Al anode thin film LIBs

Li + Al  ⇋ LiAl, ~1000 mAh/g
Al is conducting, high capacity, and cheap

STM probe
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What is the origin of rapid capacity loss for Al anodes?
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Morphology correlated with charge/discharge plot
I=30nA or 15.3 µA/cm2

Al moles/dot: 1.09×10-8

Li moles/hr: 1.19×10-9

Li + Al  ⇋ LiAl

~11% lithiation w.r.t anode

M.S. Leite, D. Ruzmetov, Z. Li, L.A. Bendersky, N..C. Bartelt, A. Kolmakov, A.A. Talin, J. Materials Chem A (2014) 2, 20552



LiAl mounds appear on on the surface to accommodate volume increase

M.S. Leite, D. Ruzmetov, Z. Li, L.A. Bendersky, N..C. Bartelt, A. Kolmakov, A.A. Talin, J. Materials Chem A (2014) 2, 20552



Graphene current collector enables imaging of Li plating

A. Yulaev, V. Oleshko, P. Haney, J. Liu, Y. Qi, A. A. Talin, M. S. Leite, A. Kolmakov, Nano Lett. 18, 1644, (2018). 

• Close analogy Li plating <--> film growth by PVD
• Model behavior implies uniform Li transport at J<0.3 mA/cm2

# of Li clusters z-critical # of Li atoms in cluster
D-Li surface diffusion
J-current density



LCO morphology drives Li whisker formation at @ J>1mA/cm2

• Li lateral diffusion too slow to match incoming flux

A. Yulaev, V. Oleshko, P. Haney, J. Liu, Y. Qi, A. A. Talin, M. S. Leite, A. Kolmakov, Nano Lett. 18, 1644, (2018). 



Reaction with residual O2 determines Li growth morphology
In plane growth

5.7×10-7 Pa
Out of plane growth

5.7×10-6 Pa
In plane growth

4.8×10-5 Pa

A. Yulaev, V. Oleshko, P. Haney, J. Liu, Y. Qi, A. A. Talin, M. S. Leite, A. Kolmakov, Nano Lett. 18, 1644, (2018). 





Z. Wang et al., Energy Storage Materials 54 (2023) 284–293

J. Yao et al., Energy Storage Materials 11 (2018) 205–259

LixV2O5 : abundant, non-toxic, and high capacity, but…



High capacity, endurance for symmetric TFSSB: LixV2O5/LiPON/LixV2O5 





σ, [Li] ~same for LiPON/Au vs LiPON/V2O5Li comes from plasma
EIS

ToF-SIMS

Raman
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Autolithiation confirmed with ECRAM

Z. Warecki, V. C. Ferrari, D. A. Robinson, J. D. Sugar, J. Lee, A. V. Ievlev, N. S. Kim, D. M. Stewart, S. B. Lee, P. Albertus, G. Rubloff, A. A. Talin ACS Ener. Lett. 9, 2024

V2O5 + xLi+ + xe- LixV2O5



K. Leung, A. J. Pearse, A. A. Talin, E. J. Fuller, G. W. 
Rubloff, N. A. Modine, ChemSusChem 11, 1956, 2018

E. J. Fuller, F. El Gabaly, F. Léonard, S. Agarwal, S. J. Plimpton, R. B. Jacobs-
Gedrim, C. D. James, M. J. Marinella, A. A. Talin, Adv. Mat., 29, 1604310, 2017

LiPON

Autolithiation with LiCoO2 previously not fully appreciated



Summary Part I

• Thin film batteries offer safe, high energy density, long-lasting energy storage solutions

• Stacked multilayer TFSSBs coming to markets, may widen applications space

• Excellent systems for fundamental studies

• Massive Li incorporation during deposition discovered, may simplify TFSSB fabrication

• Electronic conductivity is a sensitive in situ probe for Li incorporation



Part 2: ionogels, composites, and 3D-architectures

https://www.solidpowerbattery.com

Arthur et al., MRS Bull. 2011
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3D structure key for high power and energy density

http://www.techinsights.com/Blog.aspx?id=27917288231&blogid=2147484418



3D LIB designs for higher power, energy density

Long, Rolison , Acc. Chem. Res. 2007

Notten et al., Adv. Mat. 2007 Arthur et al., MRS Bull. 2011

Planar (2D) battery Fardad et al, J. MEMS
16, 2007



L3D

L2D

more energy/cm2, less power

• Decrease diffusion length
• Increase interface area

3D LIB designs for higher power, energy density



First all solid state 3D LIBs

A. A Talin, D. Ruzmetov,⊥ A.Kolmakov, K. McKelvey, N. Ware, F. El Gabaly, B. 
Dunn, and H. S. White, ACS Appl. Mater. Interfaces 2016, 8, 32385
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Planar battery works BETTER than 3D!

depleted 
of Li

unused Li 
capacity

Non-uniformity causes Li depletion, poor performance



Glancing angle deposition affects LiCoO2 microstructure

V. P. Oleshko, T. Lam, D. Ruzmetov, P. Haney, H. J. Lezec, A. V. Davydov, 
S. Krylyuk, J. Cumings and A. A. Talin, Nanoscale 6, 11756 (2014)



High energy density needs thin SSE, high aspect ratio



Y. Zhu, X. He, Y. Mo ACS Appl. Mater. Interfaces 2015, 7, 23685

High interface area requires stable interfaces
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Nanowire LiBs excellent test-bed for 3D LiBs

Ruzmetov et al. Nano Letters 12, 505, (2012)



Ruzmetov et al. Nano Letters 12, 505, (2012)

Sputtered LiPON breakdown for thickness <100 nm



Can a 3D SSLIB be fabricated by ALD?

ALD

C. Liu, E.I.  Gillette, X. Chen, A.J. Pearse, A.C. Kozen, M.A. 
Schroeder, K.E. Gregorczyk, S.B. Lee, G.W.Rubloff, Nature 
Nanotechnology doi: 10.1038/nnano.2014.247.

(LiOtBu) + diethyl phosphoramidate (DEPA) 
@250 oC

A. Pearse, T. Schmitt, E. Sahadeo, D. M. Stewart, A. Kozen, K. Gerasopoulos, A. A. Talin, 
S. B. Lee, G. W. Rubloff, and K. E. Gregorczyk, ACS Nano 12 (5), 4286 (2018)



ALD LiPON works great at 30 nm thickness!

breakdow
n

stable

Sputtered LiPON

A. J. Pearse, T. E. Schmitt, E. J. Fuller, F. El-Gabaly, C-F Lin, K. Gerasopoulos, A. C. Kozen, 
A. A. Talin, G. Rubloff, K. E. Gregorcyzck, Chemistry of Materials, 29, 3740, 2017



D. Ashby, B. Dunn et al., Joule 1, 344,, 2017

Ionogels: nanoporous matrix filled with ionic liquid electrolyte



IG

Si

~6µm

FeS2

spin-on IG

Li foil

Ionogels: nanoporous matrix filled with ionic liquid electrolyte





Mixed 2D/3D solid state battery



Mixed 2D/3D solid state battery



Mixed 2D/3D solid state battery





FeS2 conversion electrodes



FeS2 conversion electrodes





Li

CAFM/KPFM

I nA V

LCO

Milewska et al. / Solid State Ionics 
263, 110 2014

How can size, orientation effects be observed in thin film cathodes?

M. Okubo, E. Hosono, J. Kim, M, Enomoto, N. Kojima, 
T. Kudo, H. Zhou, I. Honma, JACS 129, 7444 (2007).



C-AFM reveals anisotropy in LCO delithiation, size and orientation effects

E. J. Fuller, D.avid S. Ashby, C. Polop, E. Salagre, B. Bhargava, Y. Song, E. Vasco, J. D. Sugar, P. Albertus, T. O. Menteş, A. 
Locatelli, P. Segovia, M. Á. Gonzalez-Barrio, A. Mascaraque, E. G. Michel, A. A. Talin, ACS Nano 2022 
doi.org/10.1021/acsnano.2c05594

•Striping pattern for thickness < 20nm suggest surface 
coherent spinoidal decomposition



Application of force w/C-AFM reveals Li displacement

CAFM/KPFM

I nA V
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• Batteries of custom-form can enable higher practical energy density
• In practical applications, custom-form batteries can be packed more efficiently into a given space

• 3-5 axis direct-write printing is a straight forward way to produce 
custom-form cells

74

X. Yu, et al. "Customizable Nonplanar Printing of Lithium‐Ion Batteries." Advanced Materials Technologies 4, 2019.

Non-planar geometries

Ink

Direct-write printing onto cylindrical mandrels

Printed 
FeS2

Pressed Lithium

E. Macdonald, et al. “3D Printing for the Rapid Prototyping of Structural Electronics." IEEE Access 2, 2014.

J. Cardenas, et al. ACS Appl. Mater. Interfaces 14, 45342, 2022.
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Enabling custom-form FeF3 cells with exchanged ionogels

Glovebox blade coating
vs. 

printing in air

Carbon coated Al foil
vs. 

Custom carbon ink

As-printed ionogels
vs. 

Exchanged ionogels
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• FeF3 compatible with air printing • Carbon ink developed for custom-
form adhesion layers

• Electrolyte exchange needed
• Soft shorts in cycle 8-20 range 

J. Cardenas, et al. Custom-Form Iron Trifluoride Li-Batteries using 3D Printing and Electrolyte Exchanged Ionogels. In preparation…

Li-FeF3 w/ 1 LiFSI – 1.2 DME – 3 TTELi-FeF3 w/ 1 LiFSI – 1.2 DME – 3 TTE

1M LiFSI in PYR14 TFSI

Li-FeF3
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