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Part I: Thin film batteries with inorganic electrolytes

1. Technology impact: safe, long lasting power for consumer electronics, loT, ...
2. Science Impact: validate models through precision fabrication, characterization tools

Capacity (pAh/cm’um) ‘

H. Lee, S. Kim, K. B. Kim, J. W.
Choi, Nano Energy 2018, 53, 225

E (V vs. Li"/Li)

0 5 10 15 20 25
discharge capacity (pAh)



Liquid electrolytes degrade safety, lifetime

LiCoO,> Lit+e+Co0+1/20,(g)

OV &

+organic +heat
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Solid Electrolyte: the Key for High-Voltage Lithium Batteries

Juchuan Li,* Cheng Ma, Miaofang Chi, Chengdu Liang, and Nancy J. Dudney*

Adv. Energy Mater. 2015, 5, 1401408
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Part I: Thin film batteries with inorganic electrolytes

1. Technology impact: safe, long lasting power for consumer electronics, 1oT, ...
2. Science Impact: validate models through precision fabrication, characterization tools
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Manufacturing Scale-Up of Anodeless Solid-
State Lithium Thin-Film Batteries for High
Volumetric Energy Density Applications

Diyi Cheng, Khanh Tran, Shoba Rao, Zhongchun Wang, Richard van der Linde, Shahid Pirzada,
Hui Yang, Alex Yan, Arvind Kamath,” and Ying Shirley Meng*

Cite This: ACS Energy Lett. 2023, 8, 4768-4774 I: I Read Online

ACS Energy Letters http://pubs.acs.org/journal/aelccp
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What limits power for thin film SSBs?

STMicro All solid state LIB
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Interfaces, electrolyte, Li diffusion can limit power
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_ diffusion 200
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diffusion o ..
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A. A Talin, D. Ruzmetov, L A.Kolmakov, K.
Table 1. Summary of the Conductivities (6, ) of Electrolytes McKelvey, N. Ware, F. El Gabaly, B. Dunn, and H. S.
(EL), and the Interface Resistances (R,) and Activation White, ACS Appl. Mater. Interfaces 2016, 8, 32385
Energies (E,) of EL/LiCoO, Interfaces

sputtering position EL g [Sem™] R [Qcm?] E, [eV] R R
1 2
on-axis Li;PO, 23 x 107° ~200 0.38 M M
LiPON 1.8 X 107° 880 0.46 R, CPE,
off-axis LiPON 7.1 % 107 8.6 038 O~VVW\~ CPE, CPE »o
2
references Li?_POf 4.6 X 1077 90 A\
. b - - // ) WB
LiPON 125 0.59
pC 25 0.64

Haruta et al., Nano Lett. 15, 1498 (2015)



Space-charge layers, interface reactions, dendrides
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Interface potentials determine performance & stability,
but are generally unknown

Calculated potential and [Li] profile
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Interface potentials inside solid-state
batteries: Origins and implications

Yue Qi,"2 Michael W. Swift, " Elliot J. Fuller, and A. Alec Talin
MRS BULLETIN » VOLUME 48 « DECEMBER 2023 « mrs.org/bullefin I 1
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Few methods to measure local potential

Electron holography XPS

. Requirfas spe;imen thinr.1ing  Limited to very thin overlayers

* Complicated interpretation « Need synchrotron for lateral resolution
* Beam effects * Operando studies very challenging

* Few results to date
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Kelvin Probe Force Microscopy
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Previous KPFM potential profiling of SSBs

® Pd Co-Li1+xAlxTizx(PO4)3
M LiCoPO4 B Co-Lit+xAkGez«(PO4)a

(@

Not done under inert ambient (~1000 ppm O,,
250 ppm H,0)

Composite cathode (metal, cathode, SSE)
Rough interface

No profile of complete cell

Challenging for model validation
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In situ cross section SSLIB to avoid contamination
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Operando measurement of potential, [Li] across SSB &
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Local potential inhomogeneous at LiPON/LCO interface
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A first-principles informed model of a Si/LiPON/LCO SSB

* Ab initio framework to calculate thermodynamic a) ,Lio2Si LIPON Lio95C00,
driving forces and interface potential drops at o
open circuit equilibrium 2k Vacuum 1 Vacuum
« Model system Li / LiPON / Li CoO, 3 e
* Open circuit voltage V from chemical potential 5 | &P
energetics at equilibrium w2
* Electronic and ionic components b b
e Resulting V consistent with prior DFT and 0.0 05 10 15
experiment X (pm)
QT T 7T T T T T T T T 1
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E. J. Fuller, E. Strelcoy, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. Zhiteney, J. J. McClelland, Y. Qj, J. A. Dura, A. . Talin, ACS Energy Lett. 6, 3944, 2021
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Good agreement for calculated vs. measured ACPD
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...and for calculated vs. measured [Li] profile

[a] g Eyaey = —eY
A _Ad— AEg = eACPD ™ 3 vacl 1
Fro Tvac = eV %
P, Ij{:’— Einz = —e@; P X Eini = —eq
= Eg= Fez ™K ag, —flea
T Er1 = Hex
Isolated by LIPON
IE' Eﬂ?:b Yy
—ey; charged
—ey,
plog pristiney [ 7 Pl ¥
________ _jl CDZ k
o T e ]
Eg R _y e =e-0CV
Li* HLi(x)
(@) anode (@) electrolyte  (3) cathode
$, — P A
CPD, — CPD; = 3e 1 —Tﬁ"

bl

500 rimy

x{L:lml
0005 1.0 1. 2.0 25 2.0

e

-
[ ]

-
L=

o, (Liem 1x10"
[ ¥y

L]

\ :
2.25 2.00 1.75 1.50 1.25 1.00

i Energy (MeV)

!
__3.00

4,00 .

subtraction :
| il
2.25 2.00 1.75 1.50 1.25 1.00

Eneray (MeW)

C), LiaS LiPON LCO
0.00V

&~ 4 .

i | 1.00 V

NE B 200V

% 3

< | 3.00V

>

% 2 |

% 1

(]

= 1} 3.75V

oL, , . .
0.5 1.0 15
X (Hm)




High current cycling leads to change in EIS

KPFM helps identify the interface responsible for change in EIS
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In situ characterization of Al anode thin film LIBs

Al is conducting, high capacity, and cheap
Li + Al = LiAl, ~1000 mAh/g

SEM
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M.S. Leite, D. Ruzmetoy, Z. Li, L.A. Bendersky, N..C. Bartelt, A. Kolmakov, A.A. Talin, J. Materials Chem A (2014) 2, 20552




What is the origin of rapid capacity loss for Al anodes?
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Morphology correlated with charge/discharge plot
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LiAl mounds appear on on the surface to accommodate volume increase |
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Graphene current collector enables imaging of Li plating
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LCO morphology drives Li whisker formation at @ J>1mA/cm?

* Lilateral diffusion too slow to match incoming flux

A. Yulaey, V. Oleshko, P. Haney, J. Liu, Y. Qi, A. A. Talin, M. S. Leite, A. Kolmakov, Nano Lett. 18, 1644, (2018).



Reaction with residual O, determines Li growth morphology
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Manufacturing Scale-Up of Anodeless Solid-
State Lithium Thin-Film Batteries for High
Volumetric Energy Density Applications

Diyi Cheng, Khanh Tran, Shoba Rao, Zhongchun Wang, Richard van der Linde, Shahid Pirzada,
Hui Yang, Alex Yan, Arvind Kamath,” and Ying Shirley Meng*

Cite This: ACS Energy Lett. 2023, 8, 4768-4774 I: I Read Online

ACS Energy Letters http://pubs.acs.org/journal/aelccp
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Li,V,O; : abundant, non-toxic, and high capacity, but...
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Simultaneous Solid Electrolyte Deposition and
Cathode Lithiation for Thin Film Batteries and
Lithium lontronic Devices

Zoey Warecki, Victoria Castagna Ferrari, Donald A. Robinson, Joshua D. Sugar, Jonathan Lee,
Anton V. levlev, Nam Soo Kim, David Murdock Stewart, Sang Bok Lee, Paul Albertus, Gary Rubloft,
and A. Alec Talin*
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o, [Li] ~same for LiPON/Au vs LIPON/V,0_.->Li comes from plasma
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Autolithiation confirmed with ECRAM
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Autolithiation with LiCoO, previously not fully appreciated
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Summary Part |

Thin film batteries offer safe, high energy density, long-lasting energy storage solutions
Stacked multilayer TFSSBs coming to markets, may widen applications space

Excellent systems for fundamental studies

Massive Li incorporation during deposition discovered, may simplify TFSSB fabrication

Electronic conductivity is a sensitive in situ probe for Li incorporation



Part 2: ionogels, composites, and 3D-architectures

Arthur et al., MRS Bull. 2011



Captured with Snagit 13.1.7.8036  

Microphone - Microphone Array (Realtek Audio)






3D structure key for high power and energy density
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3D LIB designs for higher power, energy density

Planar (2D) battery

Current
collector (g)

Current .
collector (a) /

LiCoO, (f) Y/ Si-substrate (b)

/ y E:am'er layer (c)
(a) Si (d)

Notten et al., Adv. Mat. 2007

Current collector 2

Electrode 1

Fardad et al, J. MEMS

- Electrode 2 16’ 2007

Arthur et al., MRS Bull. 2011




3D LIB designs for higher power, energy density

* Decrease diffusion length 3
* Increase interface area




First all solid state 3D LIBs

LiCoO,
TifPt/Ti_n. .

LiPON
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LiCoO, N
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A. A Talin, D. Ruzmetov, L A.Kolmakov, K. McKelvey, N. Ware, F. El Gabaly, B.
Dunn, and H. S. White, ACS Appl. Mater. Interfaces 2016, 8, 32385



Potential (V)

Potential (V)

Planar battery works BETTER than 3D!
Non-uniformity causes Li depletion, poor performance
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Glancing angle deposition affects LiCoO, microstructure
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High energy density needs thin SSE, high aspect ratio
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High interface area requires stable interfaces
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Sputtered LiPON breakdown for thickness <100 nm
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Nanowire LiBs excellent test-bed for 3D LiBs

Yy +— n-doped a-Si
(anode)

RS W
= ol
EHT = 500KV Signal A = SE2 i
WD = 56mm Pixel Size = 718 Am Time 143210 B ol e

Ruzmetov et al. Nano Letters 12, 505, (2012)



Sputtered LiPON breakdown for thickness <100 nm

Ruzmetov et al. Nano Letters 12, 505, (2012)
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Can a 3D SSLIB be fabricated by ALD?

(LiOtBu) + diethyl phosphoramidate (DEPA)
@250 °C

B v:0; [ Prelithiated g Rucurrent [ Electrolyte
cathode V,0. anode collector

A. Pearse, T. Schmitt, E. Sahadeo, D. M. Stewart, A. Kozen, K. Gerasopoulos, A. A. Talin,
S. B. Lee, G. W. Rubloff, and K. E. Gregorczyk, ACS Nano 12 (5), 4286 (2018)

C. Liu, E.I. Gillette, X. Chen, A.J. Pearse, A.C. Kozen, M.A.
Schroeder, K.E. Gregorczyk, S.B. Lee, G.W.Rubloff, Nature
Nanotechnology doi: 10.1038/nnano.2014.247.



ALD LiPON works great at 30 nm thickness!
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lonogels: nanoporous matrix filled with ionic liquid electrolyte

Precursor to form Silica Network
Use of non-hydrolytic sol-gel route
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lonogels: nanoporous matrix filled with ionic liquid electrolyte

Understanding FeS, Performance
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High-Performance Solid-State Lithium-lon Battery with Mixed 2D Table 1. Electrolytes for 3D Architectures™
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Mixed 2D/3D solid state battery
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Mixed 2D/3D solid state battery
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Understanding the Electrochemical Performance of FeS, Conversion
Cathodes

David S. Ashby,* Jeffrey S. Horner, Grace Whang, Aliya S. Lapp, Scott A. Roberts, Bruce Dunn,
Igor V. Kolesnichenko, Timothy N. Lambert, and A. Alec Talin*
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Understanding FeS, Performance
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FeS, conversion electrodes
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E vs Li (V)

Upper Conversion Loss (%)

Wpper Conversion!
] i

FeS + - 5qr
LizFes +  1)Lis5

Fee® 4 2LisS-+
LizFes + (1-4)Li5

Uppar Convarsion
LizFes + (1-x)LiS
—FeS§ 4-%34a

: LizgFeS + (1-x)Li5—
! Fee + 2LisS

0 ; . . :
0 100 200 300 400 500 600
Capacity (mAhig)
ci2o cH1o CIT CI5
]
a-
]
B -
]
4 -
"
2- = -
0 : . .
0.05 0.10 0.15 0.20
C Rate

FeS, conversion electrodes

=

Ll o =
h ﬂ:l fé

Capacity Contribution
o
M

- Uppar Conversion Il Intarcalation Il Lowsr Conversion

Cycle

- Rale [Lossscycn (i

- ‘-
%
- =
. s : . [ ]
-.__‘_- L - - ;- 4
T I
-— e — -
- .
- ™
- L -
.
e - -
-t - . -

-

2 4 6 ] 10
Cycle

E vs Li (V)

"0 100 200 300 400
Capacity (mAh/g)
()

@
=
=
£
@
c
o
=]
g
=]
o

(b} M Upper Conversion Il Intercalation Ml Lower Conversion
1.0
=
S8
5
=
= 0.8
c
=]
Q
=04
o
2
m 0.2
Q
T T 0.0
500 GO0 VOO Cl40 Ci20 CHS CHMD €8 C5 C2
C Rate
1000
____________ T~ %
100 !
{ Gonversmn
1\ CathodesiLi
D
Y
100 1000

Energy Density (Whikg)



Joule & CelPress

Electrochemical-mechanical coupling measurements
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Figure 1. Effect of stresses on arange of processes in a full cell that consists of Li metal, a single ion conducting SE, and a porous cathode




How can size, orientation effects be observed in thin film cathodes?

4.0 —
~ 38
- 8.2 11
; .£ Nm nm bulk
>
= 36—
g
=
2
Q
S 34
32—
30 T T T T T T T
0 20 40 60 30 100 120 140
capacity (mAh/g)

M. Okubo, E. Hosono, J. Kim, M, Enomoto, N. Kojima,
T. Kudo, H. Zhou, I. Honma, JACS 129, 7444 (2007).

; | I
. HEX-II HEX-l + HEX-Il | HEX-I
2 O—O—N\‘\ :
1 1 Milewska et al. / Solid State lonics
263, 110 2014 :
' 0 - R
®
g £y e * | — s ]
k) g 5 |
-2 é §
-
| ot e
4
L I ! I LI : I : T ‘ T
0.5 0.6 0.7 0.8 0.9 1.0

x in Li CoO
X 2

400.0 nm



C-AFM reveals anisotropy in LCO delithiation, size and orientation effects
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Application of force w/C-AFM reveals Li displacement
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* Batteries of custom-form can enable higher practical energy density

* In practical applications, custom-form batteries can be packed more efficiently into a given space I
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X. Yu, et al. "Customizable Nonplanar Printing of Lithium-lon Batteries." Advanced Materials Technologies 4, 2019. E. Macdonald, et al. “3D Printing for the Rapid Prototyping of Structural Electronics." IEEE Access 2, 2014.

e 3-5 axis direct-write printing is a straight forward way to produce
custom-form cells
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