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Varying 
SOI timings
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Engine swirl ratio (SR) significantly impacts H2 
mixing, particularly apparent at later injection 

timings

*SOI: -60° aTDC

Trade-off between Cyclic Variability & Mixture 
Homogeneity necessitates optimization of 

operating conditions
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Delayed onset of low- and high-temperature combustion 
and longer dwell time due to the inhibitive effect of 
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H2 prolongs mixing time, increasing misfire 
probability and limiting reactions to near fuel-rich 

pockets
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Prolonged ignition delay and higher cyclic variability 
become significant as H2 concentration increases
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Fuel flexibility & Retrofits: 
NG/H2 blends, low-purity H2, and 
backup diesel operation

Robustness/TCO:
H2 penetration into 
applications challenging for 
H2-FC 
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H2 uptake limited by 
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Early H2 adoption Full H2 economy
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“H2ICEs provide for a 
smooth, continuous transition 
as H2 supply and 
infrastructure develops and 
the existing fleet turns over”

Cummins B6.7H
 Hydrogen Engine1

MAN Engines
H2 Dual Fuel 
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Lower cyclic 
variability

Hydrogen Mixing Dynamics 

LIF Spectrum3 (p-DFB)Tracer LIF 
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“Homogeneous mixture formation is essential 
for the robust operation of H2-DI engine, 
significantly affecting cyclic variability, emission 
characteristics, and efficiency”
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Image correction
• Laser pulse energy
• Light sheet profile
• Laser absorption

“Understanding the interplay between the 
physical and chemical processes 
governing pilot fuel jet ignition in a H2 
mixture, complemented with zero-
dimensional chemical kinetics and 
one-dimensional spray dynamics 
simulations”
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H2 addition results in a pronounced shift of the 
most-reactive mixture fraction towards richer 

zone
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• 1D Spray Simulation4 (pilot fuel jet mixing)
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• 0D CHEMKIN Simulation (ignition delay 
prediction)
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n-heptane mechanism
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