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« ASME BPVC uses a basic Paris Law (power law) formulation to
characterize fatigue crack growth rate:

Basic Paris Law form
A
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constant stress ratio power
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* In high-pressure gaseous
hydrogen, a single power law
formulation is insufficient to
capture the observed fatigue
crack growth behavior over
relevant range of AK
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- Additionally, a relatively large
dependence on stress ratio
(R) is observed

Fatigue crack growth, da/dN (m/cycle)
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/" Background
7 7« BPVC VIII-3 Code Case 2938 adopted | :EZS},
10-6:_ —R =07

a two-part power-law formulation to

capture observed rate =l
8
da 1+CHR m £ 107 :
- C AK < Ref.: San
dN / ‘ ' g Marchi et al.,
Y Y ASME PVP2019-
constant Stress ratio power 10°F 93307 -

dependence law

T datdg, | dardn,, (/AN
2 3 4 5 6 7 8 910 20

C (m/cycle)  3.5x1014  1.5x10 AK (MPa m™)
Specifically developed for
42 2.
Cu 04286 00 - « Pressure of 106 MPa
m 6.5 3.66 * Quenched and tempered,

AK units: MPa pressure vessel steels
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Two important observations from
extensive testing in gaseous hydrogen

1.

Line pipe steels show similar
behavior as PV steels

Pressure affects lower domain of
crack growth but not upper domain

Motivation: can formulation be
adapted to capture:

1. other steels and

2. pressure effects?

/" Background and Motivation

Fatigue crack growth rate, da/dN (m/cycle)
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/ Formulation of Fatigue De5|gn Curves (FDCs) for
d steels in hydrogen service

4
Proposed generic form
to include pressure H =C f(Rg) AK
dependence: l ' 1
basic ASME form \

Pressure term

| da/dN,, | da/dN,y,

C (m/cycle)  3.5x10"  1.5x10™" 1+ Cy Ff‘ from BPVC
f(Rr) = VI3 CC 2938
Cy 0.4286 2.00
1/2 Phenomenological
m &2 2156 g(P) ( f ) form based on
f(P) g(P) 1 f res thermodynamics
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ldealized framework to capture pressure effect
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Low AK: pressure dependent
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da/dN (m/cycle)
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High AK: pressure independent
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~ * Note capturing the transition region (i.e., ‘below’ the knee) is important

Fatigue crack growth for PV steels

for design in the low AK regime
- SA-723 designations (RI, RO, L) represent different positions and
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Fatigue crack growth rate, da/dN (m/cycle)

Ref.: San Marchi et al., ASME PVP2019-93907
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Ref.: Bortot et al., ASME PVP2023-106417

Fatigue crack growth rate, da/dN (m/cycle)
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7/ Fatigue crack growth of line pipe steels: low pressure
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Fatigue crack growth rate, da/dN (m/cycle)
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proposed fatigue design curves, regardless of strength
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Fatigue crack growth rate, da/dN (m/cycle)
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,,/ Both vintage and modern linepipe steels are bounded by

Vintage
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Fatigue crack growth rate, da/dN (m/cycle)
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10 100
Maximum stress intensity factor, Kmax (MPa m”z)

/" Application of fatigue curves is limited by fracture resistance

- Fatigue crack growth curves
cannot be extrapolated to any
stress intensity factor (K)

- Practical application of fatigue
curves is limited to 40 MPa m'/2,
perhaps lower in some cases
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Maximum stress intensity factor, Kmax (MPa m”z)

Application of fatigue curves is limited by fracture resistance

Fatigue crack growth curves
cannot be extrapolated to any
stress intensity factor (K)

Practical application of fatigue
curves is limited to 40 MPa m'/2,
perhaps lower in some cases

Also important to recognize
that K.« > Kjo.y is time
dependent

+ Meaning this portion of the
curve is frequency dependent
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P Pressure dependence based on thermodynamics

» Consider the hydrogen effect as proportional to the equilibrium hydrogen
concentration da

oy & H]

» Concentration is proportional to square root of fugacity

_ 1 Sieverts’ Law Non-ideal gas
H(metal)« }EHE — [H] = H(PH) 1/2 4 [H] — K}rlf?

» Use high-pressure condition (106 MPa) as reference pressure (fugacity)

da _ [L+CaR] ol f 1/
dN"" " "|"1—R fres

\ J \ )
| |
Specifically for f,. =g(P)
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' Use thermodynamics to determine pressure

relationship: g(P)

e

A\

/ Abel-Noble EOS f

Regular solution model f (P .:f?')
P, “P\RT

Reference pressure

RET

P\ )
ol

Pure gas P,

Mixed gas P,

Fret _ o
Pt

(RT)J

P*

Reference pressure:
=106 MPa (15,374 psi)

Total pressure
Hydrogen partial pressure

£\ 2
g(P) ( fref)

Combining on Abel-Noble EOS
and regular solution model

g(P)=

(

1/2
PH b D D *
F)EKP (ﬁ(j t — I ))]

References of EOS and mixed gas:
(1) San Marchi et al, JHE 32 (2007)
(2) ASME PVP2021-62045




/ Fit g(P) In low pressure and high pressure regime
| separately
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,,/ Formulation of Fatigue Design Curves (FDCs) for
| steels in hydrogen service
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/ Low AK:
_ da/dN,,, da/dN,, pressure dependent
C (m/cycle) 35x10™  15x101  da _ . [1+CHR] AK™g(P)
dN 1-R
Cy 0.4286 2.00
m 6.5 3.66 High AK:
pressure independent
f(P <20.7MPa)  0.071 P05t 1 da _ - [1+CHR] AK™
dN 1-R

f(P > 20.7 MPa) 0.19 + 0.00763 P




,,/ Formulation of Fatigue Design Curves (FDCs) for
| steels in hydrogen service

74

/1 Low AK:
_ da/dN,, | da/dNy,, pressure dependent
: : d 1+CyR
C (m/cycle) 3.5x104  1.5x10™ d_ﬁ —C [ 1_1; ]Ang(P)
Cy 0.4286 2.00
m 6.5 3.66 High 2K
pressure independent
< 20. 0.071 PO-51 da 1+CyR
f(P < 20.7 MPa) 1 —=C[ H ]AK"‘
dN 1-R
f(P > 20.7 MPa) |0.19 + 0.00763 P

1/2

B - () e (L)
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7/ 0One more thing...

AN

L[ ya— - : : :
s - X80 (heat F) /'y 1+ Atlow stress intensity (and low

O . 2 . . .
S 3.4 MPa H, ’ AR - pressure) fatigue design curves
E | R0 s extrapolate to crack growth rates
5 e ] less than air
® o~ ]
-O. v
= 8 d « However, experimental observations
c ' E show that material response can
S transition to the behavior in air
<
O
E 10-9 E o °
o Fatigue design curves should
o not be extrapolated below
T the air curve

10 4 5 6 7 8 9 10 2I0 3I0 40

Stress intensity factor range, AK (MPa 1/2)




// Three regimes of fatigue crack growth must be considered
for hydrogen service

74
” AK < AK,

| 2.88
da/dN = da/dNg;, da/dN gy 3.8;:-:10_12(

2.88

3.07 toel
3.07 steels
R ) AK S, < 620
K MPa

AK,< AK < AK,

1+ 0.43R
da/dN = da/dN,,,, da/dN gy = 3.5x10 1"-1*( - k)ﬂKE.E [Dlo?lpﬂﬁl]
I | q J
g(P <
AK > AK, 20.7MPa)

(14 2R
da/dN = da/dNpign da/dNpign = 1.5x107 ll( TR k)ﬂfi’g'ﬁﬁ « f(P)=1
k

AK, - da/dNyy, = da/dNpign dasdN (micycle)
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/ Example Fatigue Design Curves
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7 Summary of fatigue design curves
4
7 For carbon steels and low alloy steels, S, <915 MPa

AK < AK,
da/dN = da/dN;,

3.07

Carbon and low alloy steels AK3:07 0<R <1

-12 ;
S, <620 MPa 3.8x10 (2.88 — Rk)

High strength low alloys

—12 3.26
steels Sy > 620 MPa 3.64 x107“(1 + 3.53R,)AK R,>0

T relationships from the ASME BPVC
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Summary of fatigue design curves

7 For carbon steels and low alloy steels, S, <915 MPa

AK,< AK < AK,
da/dN =da/dN,,, [m/cycle] = 3.5 x10~14 (“"‘“”*k) AKS5[g(P)]

Carbon and low alloy
steels, S, < 620 MPa

High strength low alloys
steels, Sy > 620 MPa

Carbon and low alloy
steels, S, < 620 MPa

High strength low alloys
steels, Sy > 620 MPa

0.1 to 20.7 0.071 p951

20.7to 110t 0.19+0.00763 P

T relationships fit to pressure range of 40 to 110 MPa

(8.6 — 3.0R,, + 7.9R,% — 9.4R, ) P~015
(9.6 + 2.7R; + Osz _ 7.8Rk3) p-0.16
(10.6 — 3.7R,, + 9.8R,* — 11.7R, %) P~021

(11.9 + 3.4R,, + OR,* — 9.6R,;.>) P~022
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P Summary of fatigue design curves

For carbon steels and low alloy steels, S, <915 MPa

AK > AK, Note: da/dN pressure independent
da/dN =da/dNpign [m/cycle] = 1.5 x10~11 (11+2Rk) A 366

P range [MPa] AK,. [MPa m1/2]

0.1 to 20.7 (21.66 + 10R,, — 3.7R,*) P7018 dependent because
da/dN,,,, depends on
pressure

20.7to 110 1 (27.4 + 12.7R;, — 4.8R;*) P~025

Transition is pressure

AK_ is defined by
da/leow — da/thigh

T relationships fit to pressure range of 40 to 110 MPa
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P Summary

- Measured fatigue crack growth of steels in gaseous hydrogen
can be bounded by a two-part ‘Paris Law’ (simple power law)

- And consideration for fatigue in air
- Fatigue Design Curves (FDCs) have a wide range of applicability

for pressure vessel steels and line pipe steels in gaseous
hydrogen service

- FDCs are pressure dependent
o 0.1 MPato 110 MPa

- FDCs account for dependence on stress ratio R
o 0.1to 0.7 (potentially 0.9 and higher)

- FDCs are relatively simple Paris Law (power law) relationships
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