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Many people have contributed to various aspects of ALEGRA over the years. The present work
seeks to implement extended MHD modeling capabilities in ALEGRA that build upon those
previous contributions.

Work on extended MHD modeling in ALEGRA began some years ago with contributions from
Duncan McGregor and Allen Robinson. The present work is composed primarily of improve-
ments and modifications of those algorithms.
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ALEGRA Overview

➤ Multiphysics finite-element ALE shock hydro code.

➤ Many coupled physics modules: MHD (various), electromechanics, radiation transport, etc.

Refs:

➤ A. Robinson, T. Brunner, S. Carroll, R. Drake, C. Garasi, T. Gardiner, T. Haill, H. Hanshaw, D. Hensinger, D. Labreche, R. Lemke, E. Love,
C. Luchini, S. Mosso, J. Niederhaus, C. Ober, S. Petney, W. Rider, G. Scovazzi, O. Strack, R. Summers, T. Trucano, V. Weirs, M. Wong,
and T. Voth, ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code, in 46th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, Jan. 2008, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2008-1235.

➤ J. H. Niederhaus, S. W. Bova, J. B. Carleton, J. H. Carpenter, K. R. Cochrane, M. M. Crockatt, W. Dong, T. J. Fuller, B. N. Granzow, D. A.
Ibanez, S. R. Kennon, C. B. Luchini, R. J. Moral, C. J. O’Brien, M. J. Powell, A. C. Robinson, A. E. Rodriguez, J. J. Sanchez, W. A. Scott, C. M.
Siefert, A. K. Stagg, I. K. Tezaur, T. E. Voth, and J. R. Wilkes, Alegra: Finite element modeling for shock hydrodynamics and multiphysics,
International Journal of Impact Engineering, 180 (2023), p. 104693, doi:10.1016/j.ijimpeng.2023.104693.
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MHD Models

➤ Consider only full 3D implementations in this presentation.

RMHD: (Resistive MHD) Standard resistive MHD model.

FMHD: (Full-Maxwell MHD) Includes displacement current in Ampere’s Law. Works for σ = 0.

Ref: D. A. McGregor and A. C. Robinson, An indirect ALE discretization of single fluid plasma without a fast magnetosonic time step

restriction, Computers & Mathematics with Applications, 78 (2019), pp. 417–436, doi:10.1016/j.camwa.2018.10.012.

GMHD: (Generalized MHD) Use a generalized Ohm’s law and include displacement current in Ampere’s
Law. Models the Hall effect.

τ J̇+
eτ

me
J×B+ J = σE (fluid frame)
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Electromagnetics discretization

➤ Implicit in time.

➤ Structure preserving (edge, face) discretization for E and B.

➤ Key question: How to handle J?

Maxwell’s equations:

ϵ∂tE− curl
(
µ−1B

)
+ J = 0

∂tB+ curlE = 0

Semi-discrete system:∫ [( ϵ

∆t
En+1 + Jn+1

)
·Ψ+

∆t

µ
curlEn+1 · curlΨ

]
dΩ =

∫ [ ϵ

∆t
En ·Ψ+ µ−1Bn · curlΨ

]
dΩ
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Electromagnetics discretization

∫ [( ϵ

∆t
En+1 + Jn+1

)
·Ψ+

∆t

µ
curlEn+1 · curlΨ

]
dΩ =

∫ [ ϵ

∆t
En ·Ψ+ µ−1Bn · curlΨ

]
dΩ

For RMHD and FMHD:

➤ J is stored as an element-averaged quantity.

➤ Substitution with Ohm’s law is straightforward: Jn+1 = σnEn+1.

➤ Have the usual curl-curl linear system to solve for edge-centered En+1.
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Electromagnetics discretization

∫ [( ϵ

∆t
En+1 + Jn+1

)
·Ψ+

∆t

µ
curlEn+1 · curlΨ

]
dΩ =

∫ [ ϵ

∆t
En ·Ψ+ µ−1Bn · curlΨ

]
dΩ

For GMHD the semi-discrete Ohm’s law has the form:[(
1 +

τ

∆t

)
I− βn

]
· Jn+1 = σnEn+1 +

τ

∆t
Jn where βn · J =

eτ

me
Bn × J

First attempt:

➤ Use element-centered projection of B to allow analytic solution of Ohm’s law.

➤ Substitute into EM weak form as before.

➤ Result: Works in some cases but not others. Unstable for EM shock problems (Brio-Wu) unless
cyclotron frequency is resolved.
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Electromagnetics discretization

Instead, discretize J on edges:∫ [
ϵ

∆t
En+1 ·Ψ+

∆t

µ
curlEn+1 · curlΨ

]
dΩ+

∫
Jn+1 ·Ψ dΩ

=

∫ [ ϵ

∆t
En ·Ψ+ µ−1Bn · curlΨ

]
dΩ,∫ [(

1 +
τ

∆t

)
I− βn

]
· Jn+1 ·Ψ dΩ−

∫
σnEn+1 ·Ψ dΩ =

∫
τ

∆t
Jn ·Ψ dΩ.

➤ Requires solving 2× 2 block system for E and J simultaneously.

➤ Stable for EM shock problems (Brio-Wu) without resolving
cyclotron frequency.

➤ Replace weak-form edge remap for E with strong-form edge
remap for E and J.

➤ Development of scalable preconditioners is ongoing.
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Midpoint predictor-corrector method

➤ Second order method for Lagrangian hydrodynamics.

➤ More expensive than central difference (but stable).

➤ Exactly conserves total energy during the Lagrangian step.

➤ Usually use two correction iterations.

Ref: G. Scovazzi, E. Love, and M. Shashkov, Multi-
scale Lagrangian shock hydrodynamics on Q1/P0
finite elements: Theoretical framework and two-
dimensional computations, Computer Methods in
Applied Mechanics and Engineering, 197 (2008),
pp. 1056–1079, doi:10.1016/j.cma.2007.10.002
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Midpoint predictor-corrector method for XMHD

Existing strategy for multiphysics in ALEGRA:

➤ First order operator splitting.

➤ Example (RMHD): Lagrangian step with ideal MHD –>
Remap –> Magnetic diffusion.

New strategy for XMHD:

➤ No operator splitting: Solve EM equations on Lagrangian
mesh.

➤ Use implicit Euler method for EM equations.

➤ Implicit Euler step taken at each correction iteration.

➤ Multiple implicit solves required for each time step.

Ref: G. Scovazzi, E. Love, and M. Shashkov, Multi-
scale Lagrangian shock hydrodynamics on Q1/P0
finite elements: Theoretical framework and two-
dimensional computations, Computer Methods in
Applied Mechanics and Engineering, 197 (2008),
pp. 1056–1079, doi:10.1016/j.cma.2007.10.002
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IMEX Runge-Kutta (RK) methods

Initial value problem:
ẏ = f(y, t) + g(y, t),

Discrete stages:

y(i) = yn +∆t
i−1∑
j=1

Âijf
(
tn + ĉj∆t, y(i)

)
+∆t

i∑
j=1

Aijg
(
tn + cj∆t, y(i)

)
,

yn+1 = yn +∆t
s∑

i=1
b̂if

(
tn + ĉj∆t, y(i)

)
+∆t

s∑
i=1

big
(
tn + cj∆t, y(i)

)
.

Coefficient tableaux:
ĉ Â

b̂T

c A

bT
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Reformulate as midpoint Runge-Kutta method

ẋ = v

ρv̇ = ∇x · σ
ρė = σ : ∇xv

➤ Use two-stage IMEX midpoint method:

0 0 0

1
2

1
2 0

0 1

1
2

1
2 0

1
2 0 1

2

0 1

➤ Velocity advanced “implicitly”.

➤ Other hydrodynamics variables advanced explicitly.

➤ Only re-interpreting existing algorithm.
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Initial XMHD method as RK

➤ Extend hydro IMEX method to incorporate additional physics (MHD) using the generalized-structure
additively partitioned RK (GARK) approach.
Ref: A. Sandu and M. Günther, A generalized-structure approach to additive Runge–Kutta methods, SIAM Journal on Numerical Anal-

ysis, 53 (2015), pp. 17–42, doi:10.1137/130943224.

➤ IMEX separates the IVP into two parts and treats them with different methods (implicit + explicit).

➤ GARK approach is a generalization from 2 coupled RK methods to N coupled RK methods.

➤ XMHD midpoint-corrector algorithm can be written into this framework by adding a two-stage im-
plicit Euler tableau for the electromagnetics:

0 0 0

1
2

1
2 0

0 1

1
2

1
2 0

1
2 0 1

2

0 1

+

1 1 0

1 0 1

0 1

➤ Again: Only re-interpreting existing algorithm.
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Improving the XMHD time discretization

➤ Two-stage implicit Euler method is inefficient, but GARK perspective gives us insight into how to
make improvements.

➤ Leverage different methods to balance properties (cost, accuracy, stability).

0 0 0

1 0 1

0 1

Euler1:

➤ 1 implicit solve

➤ L-stable

➤ First order

0 0 0

1
2 0 1

2

0 1

Midpoint1:

➤ 1 implicit solve

➤ A-stable

➤ Second order

➤ Symplectic

γ γ 0

1 1− γ γ

1− γ γ

SDIRK2:

➤ 2 implicit solves

➤ L-stable

➤ Second order

➤ γ = 1− 1/
√
2
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Improving the XMHD time discretization

➤ GARK perspective requires coupling conditions to be satisfied to ensure higher order.

➤ Result is that source terms in hydro equations need to use implicit midpoint for 2nd order.

Lorentz force with EM integrator: Lorentz force with midpoint:
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VROD verification problem
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Ref: C. C. Ashcraft, J. H. Niederhaus, andA. C. Robinson, Verification and validation of a coordinate transformation method in axisymmetric

transient magnetics, Tech. Report SAND2016-0804, Sandia National Laboratories, United States, Jan. 2016, doi:10.2172/1237004
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Artificial viscosity

➤ FMHD designed to avoid time step re-
striction based on fast magnetosonic wave
speed.

➤ Implications for artificial viscosity less clear.

➤ Existing approach uses only hydro wave
speed for artificial viscosity, but is unstable.

➤ Using the fast magnetosonic wave speed is
stable, but reintroduces explicit time step
restriction.

➤ No indication that whistler wave needs
special handling for GMHD.

Low res:

High res:

Hydro Magnetosonic
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Summary and ongoing work

Summary:

➤ Recast spatial discretization for stability.

➤ Recast time discretization for accuracy and efficiency.

➤ New IMEX time discretization opens opportunities for all multiphysics in ALEGRA.

➤ Initial results for common tests problems are good (Brio-Wu, magnetic blast, GEM challenge).

Ongoing work:

➤ Continued verification of IMEX coupled multiphysics implementation.

➤ Scalable solvers required for GMHD block system (Ray Tuminaro).

➤ Alternative solutions for handling of artificial viscosity.
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