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Many people have contributed to various aspects of ALEGRA over the years. The present work
seeks to implement extended MHD modeling capabilities in ALEGRA that build upon those
previous contributions.

Work on extended MHD modeling in ALEGRA began some years ago with contributions from
Duncan McGregor and Allen Robinson. The present work is composed primarily of improve-
ments and modifications of those algorithms.




ALEGRA Overview

» Multiphysics finite-element ALE shock hydro code.

» Many coupled physics modules: MHD (various), electromechanics, radiation transport, etc.
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MHD Models

» Consider only full 3D implementations in this presentation.

RMHD: (Resistive MHD) Standard resistive MHD model.

FMHD: (Full-Maxwell MHD) Includes displacement current in Ampere's Law. Works for o = 0.

Ref: D. A. MCGREGOR AND A. C. ROBINSON, An indirect ALE discretization of single fluid plasma without a fast magnetosonic time step
restriction, Computers & Mathematics with Applications, 78 (2019), pp. 417-436, doi:10.1016/j.camwa.2018.10.012.

GMHD: (Generalized MHD) Use a generalized Ohm'’s law and include displacement current in Ampere's
Law. Models the Hall effect.

A+ L IxB+I=0E (fluid frame)
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Electromagnetics discretization

» Implicitin time.
» Structure preserving (edge, face) discretization for E and B.

» Key question: How to handle J?

Maxwell’'s equations:

€0 E — curl (,ule) +J=0
0B + curlE =0

Semi-discrete system:
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Electromagnetics discretization

At
/ [(&E”“ + J”“) W = curl E"tL. curl‘l’] dQ = / [A%E” W4 B cwl W dO

For RMHD and FMHD:
» Jis stored as an element-averaged quantity.
» Substitution with Ohm'’s law is straightforward: J*t! = g"E"+1,

» Have the usual curl-curl linear system to solve for edge-centered E"*1.




Electromagnetics discretization

i n+1 n+ly) | g n+1 _/ i n —1lpn
/[(AtE +J ) v+ p curl E curl‘l’] dQ = [AtE Y+ "B curlW| d2

For GMHD the semi-discrete Ohm'’s law has the form:
l —_@anr| . gntl — ;npntl Ln n, :ﬂn
[(1+5,)1-8"] - 3" =o"B"" 4 LJ" where B3 B
First attempt:
» Use element-centered projection of B to allow analytic solution of Ohm’s law.
» Substitute into EM weak form as before.

» Result: Works in some cases but not others. Unstable for EM shock problems (Brio-Wu) unless
cyclotron frequency is resolved.




Electromagnetics discretization

Instead, discretize J on edges:

/ {LE““ oy A ~cur1‘l’] dQ+/J"+1 Y40
o

:/[EE”-WJFH*B”-MW} dQ,

/[(HA%)LE"} -J”“-‘i’dQ—/a”E”“o‘l’dQ:/ALtJ”WI’dQ.

» Requires solving 2 x 2 block system for E and J simultaneously.

» Stable for EM shock problems (Brio-Wu) without resolving
cyclotron frequency.

» Replace weak-form edge remap for E with strong-form edge
remap for E and J.

» Development of scalable preconditioners is ongoing.
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Midpoint predictor-corrector method

Table 1
Outline of the predictor-multi-corrector algorithm

Retrieve loop parameters: #igicp, imax

Initialize all variables with initial conditions

Form [M,] and My

Forn=0,..., Ngiep (Time-step loop begins)
Set At (respectmg the CFL condition)
Predictor: Y,. =Y

Fori=0,..., z,,m — 1 (Multi-corrector loop begins)
Assembly: F, n+1 2
» Second order method for Lagrangian hydrodynamics. Xi‘;:‘byl“"dafin“"“ MM
Yy w nt1/2
Internal energy update: e/ = e, — At [My] "W 1)
» More expensive than central difference (but stable). Position update: x;/}’ =x, + An'!}),
Volume update: V&) = v(x(!!)
. . Density update: p{'/| i =V My
» Exactly conserves total energy during the Lagrangian step. Equation of state update: p’+‘> Blost enlr)

End (Multi-corrector loop ends)

» Usually use two correction iterations. Time update: Y., = ¥,
End (Time-step loop ends)
Exit

Ref: G. Scovazzi, E. LOVE, AND M. SHASHKOV, Multi-
scale Lagrangian shock hydrodynamics on Q1/P0O
finite elements: Theoretical framework and two-
dimensional computations, Computer Methods in
Applied Mechanics and Engineering, 197 (2008),
pp. 1056-1079, doi:10.1016/j.cma.2007.10.002




Midpoint predictor-corrector method for XMHD

Existing strategy for multiphysics in ALEGRA:
» First order operator splitting.

» Example (RMHD): Lagrangian step with ideal MHD —>
Remap —> Magnetic diffusion.

New strategy for XMHD:

» No operator splitting: Solve EM equations on Lagrangian
mesh.

» Use implicit Euler method for EM equations.
Implicit Euler step taken at each correction iteration.

» Multiple implicit solves required for each time step.

N

\

Table 1
Outline of the predictor-multi-corrector algorithm

Retrieve loop parameters: #igicp, imax
Initialize all variables with initial conditions
Form [M,] and My
Forn=0,..., Ngiep (Time-step loop begins)
Set At (respectmg the CFL condition)
Predictor: Y,. =Y
Fori=0,..., z,,m — 1 (Multi-corrector loop begins)
Assembly: F, n+1 2
Velocity update v, +1) =v, — AM,]™!
Assembly: WT))
Internal energy update: e/ = e, — At [My] "W 1)

Position update: x{} = x, + An'H) s

n+l/2

Volume update: V&) = v(x(!!)
Density update: p{'/| i =V My
Equation of state update: p,; ’“) =p(pl), el

End (Multi-corrector loop ends)
Time update: Y., = Yo
End (Time-step loop ends)
Exit

Ref: G. Scovazzi, E. LOVE, AND M. SHASHKOV, Multi-
scale Lagrangian shock hydrodynamics on Q1/P0O
finite elements: Theoretical framework and two-
dimensional computations, Computer Methods in
Applied Mechanics and Engineering, 197 (2008),
pp. 1056-1079, doi:10.1016/j.cma.2007.10.002
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IMEX Runge-Kutta (RK) methods

Initial value problem:
y=f(y,t) +9(y,1),

Discrete stages:

. i—1 . 7 .
y D =y + ALY Ay f (" + A8 yD) + ALY Aijg (1" + ¢; At y)
j=1 j=1

s . ) s .
Y T =y A bif (17 + AL YD) + ALY big (87 + ¢ Aty D).
=1 =1
Coefficient tableaux: )
¢l A c| A
BT \ b7
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Reformulate as midpoint Runge-Kutta method

=V
pv Vx'g
pe =0 : VgV
» Use two-stage IMEX midpoint method:
1 1

0[0 0 AR
1 1 1 1
312 0 310 3

01 01

» Velocity advanced “implicitly”.
» Other hydrodynamics variables advanced explicitly.

» Only re-interpreting existing algorithm.
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Initial XMHD method as RK
AN

» Extend hydro IMEX method to incorporate additional physics (MHD) using the generalized-structure ) \
additively partitioned RK (CARK) approach.

Ref: A. SANDU AND M. GUNTHER, A generalized-structure approach to additive Runge-Kutta methods, SIAM Journal on Numerical Anal-
ysis, 53 (2015), pp. 17-42, doi:10.1137/130943224.

» IMEX separates the IVP into two parts and treats them with different methods (implicit + explicit).

» GARK approach is a generalization from 2 coupled RK methods to N coupled RK methods.

» XMHD midpoint-corrector algorithm can be written into this framework by adding a two-stage im-
plicit Euler tableau for the electromagnetics:

111
0l0 0 Lo 1|1 0
111 1 1
ioo 1o 1 + 1/0 1
\01 \01 0 1

» Again: Only re-interpreting existing algorithm.
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Improving the XMHD time discretization \
N\

» Two-stage implicit Euler method is inefficient, but GARK perspective gives us insight into how to \
make improvements.

N\

» |Leverage different methods to balance properties (cost, accuracy, stability).

010 O 0{0 O
110 1 10 2
0 1 01
Eulerl: Midpoint1: SDIRK?2:
» 1 implicit solve » 1 implicit solve » 2 implicit solves
» L-stable » A-stable » L-stable
» First order » Second order » Second order
» Symplectic > y=1-1/V2
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Improving the XMHD time discretization N\

AN

» GARK perspective requires coupling conditions to be satisfied to ensure higher order. \

» Result is that source terms in hydro equations need to use implicit midpoint for 2nd order.

Lorentz force with EM integrator: Lorentz force with midpoint:

B-Error L2 Error B-Error L2 Error
T T

107 T 10
102 102 A E
10?2 102 El
10 10 El
- - Order1.0 -~ Order1.0
Order 2.0 Order 2.0
105 | —6— RMHD;-07EN-OFFINT 105 |- —6— RMHD;e-07EN-OFFNT i
5 FMHD,e-0¢ULER{EN-OFFNT . ~5 FMHD;e-0cULER{EN-OFFINT
—~~ GMHD;e-0pULER e-4,e-4rEN-OFFINT A —O— GMHD;e-OgULER;e-4e-8rEN-OFFNT
1} FMHD e-05DIRK2sEN-OFFNT S - FMHD;e-0sDIRK21EN-OFFNT
— GMHD,e-05DIRK2e-41e-47EN-OFFNT ; —F— GMHD,e-05DIRK2; e-4,e-87EN-OFF;NT
106 . . L . 106 . . . .
2 5 2 27 2 2 210 24 25 2 2 2 » 210

15




VROD verification problem

MIDPOINT SDIRK2
T T T T T T T T T T T T T T T T T
. 4 4
S
4
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1 -@- RMHD -
£~ FMHD
T —5— GMHD b
) ) ) ) ) )
1 1 1 1 1 1
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=
w
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@
[ - = Order 0.8 1 1 i
a - = Order 2.0 - - Order2.0 - = Order 2.0
103 -@- RMHD R RMHD 4+ RMHD J
£~ FMHD £~ FMHD £~ FMHD
104 - —5— GMHD T+ —©— GMHD T —5— GMHD B
L L L L L L L L L L L L L L L L L L L L L L L L L L

L
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Mesh Cells Mesh Cells Mesh Cells

Ref: C. C. ASHCRAFT, J. H. NIEDERHAUS, AND A. C. ROBINSON, Verification and validation of a coordinate transformation method in axisymmetric
transient magnetics, Tech. Report SAND2016-0804, Sandia National Laboratories, United States, Jan. 2016, doi:10.2172/1237004
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Artificial viscosity

AN

Hydro Magnetosonic \

Pressure Pressure

103

» FMHD designed to avoid time step re-
striction based on fast magnetosonic wave

speed.
Low res:

» Implications for artificial viscosity less clear.

107t

» Existing approach uses only hydro wave
speed for artificial viscosity, but is unstable. Pressure Pressure
103 103
. . . 0.4
» Using the fast magnetosonic wave speed is 10
stable, but reintroduces explicit time step . *
o 00 10t
101 -0.2 100
107 o4 10-1
-0.4 -0.2 0.0 0.2 0.4

restriction. High res:

» No indication that whistler wave needs
special handling for GMHD.
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Summary and ongoing work

Summary:

» Recast spatial discretization for stability.

» Recast time discretization for accuracy and efficiency.

» New IMEX time discretization opens opportunities for all multiphysics in ALEGRA.

» |nitial results for common tests problems are good (Brio-Wu, magnetic blast, GEM challenge).

Ongoing work:
» Continued verification of IMEX coupled multiphysics implementation.
» Scalable solvers required for GMHD block system (Ray Tuminaro).

» Alternative solutions for handling of artificial viscosity.
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