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Overview

= Computational Modeling of Spent Nuclear Fuel
= Training Data

= Neural-ODE Surrogates
* Methods
* Logistic Decay Toy Problem

* Application to Spent Nuclear Fuel

= Conclusions and Future Work
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More Spent Nuclear Fuel in Dry Storage

Inventory (MTHM)
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[1] Adapted from Freeze et al. (2021, Figure 2-3)
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Fuel Matrix Degradation Model (FMDM)
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Surrogate models map inputs to outputs with less computational cost

[2] Adapted from Jerden et al. (2015)
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Sampling Input Parameters

Init. Temp. (K) Uniform 300 600
Burnup (Gwd/MTU) Uniform 40 80
Delay Time (years) Log-uniform 102 10%
Env. CO;2 (mol/m3) Log-uniform 103 2x10-2
Env. O, (mol/m3) Log-uniform 107 10-°
Env. Fe?* (mol/m3) Log-uniform 103 102
Env. H, (mol/m?3) Log-uniform 10° 2x10-2

Parameter

* Process model input parameters sampled from expected ranges in reservoir
simulations to generate training data time-trajectories

 Ranges that span multiple orders of magnitude sampled with log-uniform distribution
 Parameters are externally-imposed
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Surrogate Inputs and Outputs
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Neural ODEs Background

I
DESolve(

0 f: uOI A’ I)
* Predict with ODE Solver

[3] “Neural Ordinary Differential Equations”, Chen et al.

* Neural ODEs approximate the derivative
of the system state as a Neural Network
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Training Process and Hyperparameters

e Select random points from a
trajectory to serve as batch initial
conditions

 Hyperparameters to tune:
— Learning rate
— Number of layers
— Number of neurons per layer

— Number of batches (batch_size) / 1

— Number of time steps to
predict/integrate during training
(batch_time)

— Amount of training data

— Number of time points to use from
training data

— Choice of numerical ODE solver

Loss Pl
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Simplify Problem-Solving with Logistic Decay ODE

» Logistic Decay ODE with precise initial conditions mimics plateau-and-decay shape of
UQO, flux trajectories but has known dynamics and no parameter dependence
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Experiments with Logistic Decay

* Dopri5 has best balance of speed and accuracy in torchdiffeq.odeint solvers (with NRMSE =
9.4490e-05 when solving the true RHS of the ODE)

* Precision of the problem requires a learning rate of 1e-6
* Lowest training loss with 2 layers, 128 neurons, batch_time 20, and batch_size 80

Training Loss Training Loss Training Loss
—— 2 layers, 16 neurons —— 1 layer, 128 neurons _ —— batch_time = 20, batch_size = 80
—— 2 layers, 32 neurons —— 2 layers, 128 neurons ] —— batch_time = 30, batch_size = 70
—— 2 layers, 64 neurons —— 3 layers, 128 neurons —— batch_time = 40, batch_size = 60
—— 2 layers, 128 neurons
2 layers, 256 neurons
—~—
10_1‘ 10—1,
w 107t w w 1
< < <
= = =
1072_
0 2 4 6 8 10 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Epochs 10° Epochs 10° Epochs 103

batch_time = 40, batch_size =60 batch_time = 40, batch_size = 60 2 layers, 128 neurons/layer

15 energy.gov/ne



Logistic Decay Results

« Neural ODEs have difficulty learning a L0 L el OB prediction
trajectory with an initial plateau . “
* \ery sensitive to initial conditions 0.6
)
0.4+
* For the best set of hyperparameters,
training NRMSE = 0.08323 after 1.2M 0.2
epochs
0.0+

00 02 04 06 08 1.0
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Hyperparameter Tuning: Learning Rate

* For preliminary tests, we use
— torchdiffeq.dopri5 solver
— 100 trajectories (80 training/ 20 validation)
— 100 time steps
— Batch_time =20
— Batch_size = 80
— 2 layers, 128 neurons

* Alearning rate of 1e-4 is a good
balance of speed, accuracy, and
stability
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Hyperparameter Tuning: Neurons and Layers

-------- Training loss - 8 neurons ~ Training loss - 1 layer
—— Validation loss - 8 neurons —— Validation loss - 1 layer
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Hyperparameter Tuning: batch_time

« Batch_time = 20 yields the lowest
validation loss

MAE

| - Training loss - batch_time =5
{1 — Validation loss - batch_time =5
1] Training loss - batch_time = 10

| —— Validation loss - batch_time = 10
- Training loss - batch_time = 20

| —— Validation loss - batch_time = 20
- Training loss - batch_time = 40

1 —— Validation loss - batch_time = 40
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Epochs 10> Note: For each batch_time, batch_size = # time steps —
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Prediction of FMD Validation Data from Initial Flux
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Conclusions and Ongoing Work

* Choosing an accurate ODE solver and a large enough batch_time are crucial for
learning the timing of the slope transition.

* Training requires over 100,000 epochs and may involve local minima in the loss.

* Neural ODEs have shown the ability to learn the dynamics of the FMDM data
and predict a time trajectory from its initial condition, and therefore, have
potential as a surrogate.

* Ongoing Work

— Further Hyperparameter tuning of
* Number of trajectories of training data

« Number of time steps in training data
« Choice of numerical solver

— Cross-validation for hyperparameter tuning
— Evaluation on testing data
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The Fuel Matrix Degradation (FMD) process model computes the

degradation rate of spent nuclear fuel

* 1D reactive-transport model (diffusion only)

* Chemical (slow) and oxidative (fast)
dissolution of UO, matrix

* Hydrogen peroxide production via alpha-
radiolysis

* Precipitation and dissolution of U(VI) (i.e.,
schoepite) corrosion layer at the fuel surface

* Arrhenius temperature dependence

« Complexation of uranium with carbonates

* Hydrogen as an oxidation sink (focused on
fuel interface)

» Logarithmic spatial discretization for
enhanced accuracy near the solid interfaces
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Surrogate FMD models can alleviate cost of UO, flux computation

In probabilistic repository assessments
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Model inputs that do not impact the fuel degradation rate much can

be dropped

* Correlation between fuel
degradation rate and O,, Fe?* is
very small

Correlation
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0.4

0.2

0.0
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Data conditioning improves the quality of the training data

 Remove FMD process model runs that are physically unrealistic
— Runs that do not finish
— Runs that stagnate at late time
— Runs with Corrosion Layer Thicknesses that exceed physical domain size
— Runs with UO, (aq) over 2 times the solubility concentration

* Log-transform data

 Scale between -1 and 1

energy.gov/ne



A variety of metrics evaluate different elements of the surrogate

model accuracy

* (Normalized Root) Mean Squared Error
— Good metric for engineering purposes

N
mse — lz (y —y )’? 1 2
N - pred, | et EZ (errrfri, i — Ytrue, 1')
. =1
* Mean Absolute Percentage Error nrmse = N

N
y;:_iﬂ' ~f Vtrue, i
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— Highlights errors in small values mape = x 100

N
* Mean Absolute Error 1
— Not as sensitive to outliers mae — EZ ‘yp?‘ed.,;r' — Ytrue, i
=1
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