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Computational Modeling of 

Spent Nuclear Fuel
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More Spent Nuclear Fuel in Dry Storage

[1] Adapted from Freeze et al. (2021, Figure 2-3)

Storage Projections (2 models)

Pool

Dry

Today

• The US inventory of spent 
nuclear fuel is rapidly 
increasing

• Moving from pool storage 
to dry storage

Nuclear Waste 
Repository
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Fuel Matrix Degradation Model (FMDM)

• 1-dimensional reactive transport model of a waste package

• Needed for each breached package in the repository at each time point

• Computationally intensive to calculate UO2 degradation rates 

• Surrogate models map inputs to outputs with less computational cost

 [2] Adapted from Jerden et al. (2015)
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Training Data
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Sampling Input Parameters

• Process model input parameters sampled from expected ranges in reservoir 
simulations to generate training data time-trajectories

• Ranges that span multiple orders of magnitude sampled with log-uniform distribution
• Parameters are externally-imposed

Parameter Distribution Min. Max.

Init. Temp. (K) Uniform 300 600
Burnup (Gwd/MTU) Uniform 40 80
Delay Time (years) Log-uniform 102 104

Env. CO3
2‑ (mol/m3) Log-uniform 10-3 2x10-2

Env. O2 (mol/m3) Log-uniform 10-7 10-5

Env. Fe2+ (mol/m3) Log-uniform 10-3 10-2

Env. H2 (mol/m3) Log-uniform 10-5 2x10-2
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Surrogate Inputs and Outputs

UO2 Degradation 
(Surface Flux)

• Environmental CO3
2‑ and H2

• Temperature

• Dose rate (function of time and 
burnup) 
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Neural ODEs
Methods
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Neural ODEs Background

• Neural ODEs approximate the derivative 
of the system state as a Neural Network

• Predict with ODE Solver

[3] “Neural Ordinary Differential Equations”, Chen et al.

u0 [t0, …, tn ]

[u0, …, un ]
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Training Process and Hyperparameters

• Select random points from a 
trajectory to serve as batch initial 
conditions

• Hyperparameters to tune:
– Learning rate
– Number of layers
– Number of neurons per layer
– Number of batches (batch_size)
– Number of time steps to 

predict/integrate during training 
(batch_time)

– Amount of training data
– Number of time points to use from 

training data
– Choice of numerical ODE solver

u0 [t0, …, tn ]

[u0, …, un ]
Loss

Optimizer

[utrue
0, …, utrue

n ]
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Neural ODEs
Logistic Decay Toy Problem
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Simplify Problem-Solving with Logistic Decay ODE

• Logistic Decay ODE with precise initial conditions mimics plateau-and-decay shape of 
UO2 flux trajectories but has known dynamics and no parameter dependence

t

y 
(t)

UO2 Flux 
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Experiments with Logistic Decay

• Dopri5 has best balance of speed and accuracy in torchdiffeq.odeint solvers (with NRMSE = 
9.4490e-05 when solving the true RHS of the ODE)

• Precision of the problem requires a learning rate of 1e-6
• Lowest training loss with 2 layers, 128 neurons, batch_time 20, and batch_size 80 

batch_time = 40, batch_size = 60 batch_time = 40, batch_size = 60 2 layers, 128 neurons/layer
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 Logistic Decay Results

• Neural ODEs have difficulty learning a 
trajectory with an initial plateau

• Very sensitive to initial conditions

• For the best set of hyperparameters, 
training NRMSE = 0.08323 after 1.2M 
epochs
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Neural ODEs
FMD Application
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Hyperparameter Tuning: Learning Rate

• For preliminary tests, we use
– torchdiffeq.dopri5 solver
– 100 trajectories (80 training/ 20 validation)
– 100 time steps
– Batch_time = 20
– Batch_size = 80
– 2 layers, 128 neurons

• A learning rate of 1e-4 is a good 
balance of speed, accuracy, and 
stability
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Hyperparameter Tuning: Neurons and Layers

• An architecture of 16 neurons and 2 layers 
has the lowest validation lossLearning rate = 1e-4

16 neurons
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Hyperparameter Tuning: batch_time

• Batch_time = 20 yields the lowest 
validation loss

Note: For each batch_time, batch_size = # time steps – batch_time
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Prediction of FMD Validation Data from Initial Flux

MAE = 0.0095912 NRMSE = 0.23046MAE = 0.0072875 NRMSE = 
0.066859
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Conclusions and Future Work
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Conclusions and Ongoing Work

• Choosing an accurate ODE solver and a large enough batch_time are crucial for 
learning the timing of the slope transition.

• Training requires over 100,000 epochs and may involve local minima in the loss.
• Neural ODEs have shown the ability to learn the dynamics of the FMDM data 

and predict a time trajectory from its initial condition, and therefore, have 
potential as a surrogate.

• Ongoing Work
– Further Hyperparameter tuning of

• Number of trajectories of training data
• Number of time steps in training data
• Choice of numerical solver

– Cross-validation for hyperparameter tuning
– Evaluation on testing data
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Additional Materials
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The Fuel Matrix Degradation (FMD) process model computes the 
degradation rate of spent nuclear fuel

• 1D reactive-transport model (diffusion only)
• Chemical (slow) and oxidative (fast) 

dissolution of UO2 matrix
• Hydrogen peroxide production via alpha-

radiolysis
• Precipitation and dissolution of U(VI) (i.e., 

schoepite) corrosion layer at the fuel surface
• Arrhenius temperature dependence
• Complexation of uranium with carbonates
• Hydrogen as an oxidation sink (focused on 

fuel interface)
• Logarithmic spatial discretization for 

enhanced accuracy near the solid interfaces

[4] J. Harvey et al. 
2022
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Surrogate FMD models can alleviate cost of UO2 flux computation 
in probabilistic repository assessments

27

Flow and Transport Model
 Advection, diffusion, 

dispersion
 Discrete fracture networks

 Multiphase flow
 Sorption, solubility, colloids

 Isotope partitioning
 Decay, ingrowth
 Thermal effects

 Chemical reactions

Uncertainty 
Sampling and 

Sensitivity 
Analysis

                             Computational Support Results 
VisualizationProcessing

Input 
Parameters

Parameter 
database

Multi-Physics Simulation and Integration

PFLOTRAN

Biosphere Model
 Exposure pathways

 Uptake/ transfer
 Dose calculations

Source Term and 
Engineered Barrier System 

Evolution Model
  Inventory

  Decay, ingrowth
  Waste form degradation

  Waste package degradation
  Radionuclide release
  Thermal, mechanical

  Gas generation

Models

Fuel Matrix Degradation 
Model (FMDM)
Offline, MATLAB

FMDM Surrogates:
ü PFLOTRAN Coupled
ü HPC Speed and Scale
ü Fortran
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Model inputs that do not impact the fuel degradation rate much can 
be dropped

• Correlation between fuel 
degradation rate and O2, Fe2+ is 
very small
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Data conditioning improves the quality of the training data

• Remove FMD process model runs that are physically unrealistic
– Runs that do not finish
– Runs that stagnate at late time
– Runs with Corrosion Layer Thicknesses that exceed physical domain size
– Runs with UO2 (aq) over 2 times the solubility concentration

• Log-transform data

• Scale between -1 and 1
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A variety of metrics evaluate different elements of the surrogate 
model accuracy

• (Normalized Root) Mean Squared Error
– Good metric for engineering purposes

• Mean Absolute Percentage Error
– Highlights errors in small values

• Mean Absolute Error
– Not as sensitive to outliers


