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Overview

Background and motivation

— Mitigating effects of oxygen impurities on hydrogen
embrittlement in laboratory testing

Experimental methods

— Long-term, constant displacement fracture tests in
high pressure gaseous hydrogen environments

— Commercial pressure vessel and pipeline steels

Experimental results

— Comparison of subcritical crack growth in high-
pressure hydrogen and hydrogen with varying
degrees of oxygen impurities

Conclusions and future work
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Oxygen is known to affect measurements of fatigue N\
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* Numerous examples of trace
5 gases mitigating fatigue crack
‘ ,\A( ) growth rate (FCGR) in laboratory
conditions
* Example:
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‘Refs.: Somerday et al, Acta Mater 61 (2013) 6153. Nibur et al, SAND2010-4633 (2010).




Oxygen moderated hydrogen-assisted fracture

at 2.1 MPa

by only 30% relative to air

— In pure H, at 21 MPa, relative decrease was 80%

At lower pressures (1.4-2.1 MPa) in mixed gas, no effect of

hydrogen was measured

400
Fracture toughness K o, values decreased by over 60% in pure H, 30| 12 mihe
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Sample ID| Environment (MPa) (mm/hr) | (m/s) |(MPa m'?)
X100-51 Air i 25 |[50E7| 217
X100-52 Air _ 25 |L4E7| 202
X100-5 H2 21 03 |85E7| 43
X100-6 H2 5.5 03 |3.6E7| 47
X100-7 H2 2.1 03 |17E7| 75
X100-53 [H2 + 100 ppm 02| 21 03 |LIE7| 151
X100-55 |H2 + 100 ppm 02| 2.1 03 |74E8| 222
X100-56 |H2 + 100 ppm 02| 1.4 25  |LOE7| 222

‘Ref: Ronevich et al, PVP2018-84163
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Oxygen has been shown to mitigate hydrogen \\
embrittlement in laboratory tests

\\
« Fatigue and fracture measurements can be \

A N significantly impacted by oxygen impurities

_ fHNdEHE  Fatigue crack growth tests are typically
S Aot A performed at 1 Hz (+decade)

66 i — da/dN = 105 mm/cycle

o’ — Time for Aa = 1mm: ~1 day

9 — 1 day = 0.02% of 10 year life
N ° L dduo, * Are the time scales of a typical laboratory
0 Py g 10 ddu O , fatigue test sufficient to demonstrate kinetics

’ ey L, loodduo, over decades?
d=018UpQg L0oo ddu Q . .

, £LOH? — More accurately simulate the

0 c 0 20 e mechanical/environmental conditions that
A 1bce mniie i BAN 1 BUARA T 1o FE components see when in use

— Does trace oxygen have long term mitigation
effects on hydrogen embrittlement?

Ref.: Somerday et al, Acta Mater 61 (2013) 6153.
Ref.: Nibur et al, SAND2010-4633 (2010).




Sustained load testing can be executed over periods of \\
days to weeks to months to years

* Fixed displacement tests

* Placed in pressure vessels & Wedge-opened loaded
pressurized up to 140 MPa - (woL)
gaseous environment '

— Experiments in this study
were performed at 103MPa

 Instrumented reaction pins
allows us to determine
incubation time

* Directly compare subcritical
crack growth in hydrogen
and mixed gas environments

ASTM E1681 — Threshold Stress Intensity Factor for
Environment-Assisted Cracking




Crack initiation and growth rates were measured during \\

constant displacement fracture experiments

* |nstrumented reaction pins allow
for determination of incubation
time and crack growth rates

— Continuous data collection
throughout the duration of the
experiments

* Time between the initial crack
propagation and arrest can range
between seconds to hours

— With a constant displacement, the
crack growth rates can be
determined from the load on the
reaction pin

» Post-test fatigue and heat tinting
are used to mark fracture
surfaces
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Material selection and fracture surfaces

SA372 Grade J steel
— YS =700 MPa

Grade L Grade J

SA372 Grade L steel
— YS =730 MPa

Cr-Mo pressure vessel steel
— YS =750 MPa

X100 pipeline steel
— YS =760 MPa

Precipitation Hardened 13-8
stainless steel

— YS = 1480 MPa
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Grade L: 100PPM & 1000PPM O, delay incubation time
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. Grad\(?_l_ shows a 5x delay at higher preload (K,,, = 60 MPay/m) and a 1.5x delay at lower preload (Kapp = 34
MPay/m)

« Similar crack arrest thresholds for all test conditions




Grade J: 100PPM & 1000PPM O, delay incubation time
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« Similarly, the Grade J material showed delays of 15x at a higher preload (Kapp = 145 MPay/m) and a 2.2x delay
increase at a lower preload (Kapp = 135 MPay/m)
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+ K thresholds were within +5 MPa./m of average for both the pure and mixed gas conditions
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100PPM O, delays incubation time for X100,
but 13-8 fractured immediately
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« X100 also saw a delay with the addition of 100PPM O,

* Both 13-8 samples fractured (a/W > 97%) within seconds of exposure to H, + 100PPM O,
B .




Summary and Conclusions N\
+ Constant displacement fracture tests 190 _Crack arrest threshold vs. applied preload
were carried out in pure hydrogen and
mixed gas (100 and 1000PPM oxygen) 100 |
environments at 103MPa (15ksi) _ mmcgmommmmmm— e
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Summary and Conclusions

* Introducing 100PPM oxygen increased the
incubation time by factors between 1.5x
and 15x, but did not prevent crack
propagation

* For the Grade L and Grade J, increasing
the oxygen content from 100PPM to
1000PPM further delayed the incubation
time, but had a smaller relative effect
compared to the delay from pure
hydrogen to hydrogen + 100PPM oxygen

» Based on this data, low oxygen impurities
should not be relied upon for long-term
mitigation of hydrogen embrittlement
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Conclusions and future work

« Crack growth rates (da/dt) fall
within the expected ranges from
previous tests in pure hydrogen at
similar pressures

* Future research is planned to
determine the mechanisms behind
the delay of hydrogen embrittlement
in the presence of oxygen impurities

— Surface effects that slow the
hydrogen uptake and
embrittlement process when
oxygen impurities are present
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