
Exceptional  service in the national  interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly 
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Effect of Oxygen Impurities on 
Subcritical Crack Growth in High-
Pressure Hydrogen Environments 

Robert W. Wheeler, Chris San Marchi, and Joseph 
Ronevich

ASME Pressure Vessels and Piping Conference July 2024

SAND2024-09901C

Hydrogen and Materials Science Department, Sandia 
National Laboratories Livermore, CA, USA

SAND2024-09901C



2

• Background and motivation
– Mitigating effects of oxygen impurities on hydrogen 

embrittlement in laboratory testing

• Experimental methods
– Long-term, constant displacement fracture tests in 

high pressure gaseous hydrogen environments
– Commercial pressure vessel and pipeline steels

• Experimental results
– Comparison of subcritical crack growth in high-

pressure hydrogen and hydrogen with varying 
degrees of oxygen impurities

• Conclusions and future work

Overview



Oxygen is known to affect measurements of fatigue
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• Numerous examples of trace 
gases mitigating fatigue crack 
growth rate (FCGR) in laboratory 
conditions

• Example:
– (1) Oxygen reduces FCGR 

comparable to air

– (2) Oxygen has no effect on FCGR 
in H2

(1)

(2)

Refs.: Somerday et al, Acta Mater 61 (2013) 6153. Nibur et al, SAND2010-4633 (2010).
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Oxygen moderated hydrogen-assisted fracture

Sample ID Environment Test Pressure
(MPa)

Actuator rate
(mm/hr)

da/dt
(m/s)

KJQH
(MPa m1/2)

X100-51 Air  -  2.5 5.0E-7 217
X100-52 Air  - 2.5 1.4E-7 202
X100-5 H2 21 0.3 8.5E-7 43
X100-6 H2 5.5 0.3 3.6E-7 47
X100-7 H2 2.1 0.3 1.7E-7 75
X100-53 H2 + 100 ppm O2 21 0.3 1.1E-7 151
X100-55 H2 + 100 ppm O2 2.1 0.3 7.4E-8 222
X100-56 H2 + 100 ppm O2 1.4 2.5 1.0E-7 222

• Fracture toughness KJQH values decreased by over 60% in pure H2 
at 2.1 MPa 

• In 21 MPa mixed gas (100 ppm O2), fracture toughness decreased 
by only 30% relative to air

– In pure H2 at 21 MPa, relative decrease was 80% 

• At lower pressures (1.4-2.1 MPa) in mixed gas, no effect of 
hydrogen was measured

J-R curves ASTM E1820

60 - 80% reduction 

30% reduction 

Ref: Ronevich et al, PVP2018-84163



Oxygen has been shown to mitigate hydrogen 
embrittlement in laboratory tests
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• Fatigue and fracture measurements can be 
significantly impacted by oxygen impurities

• Fatigue crack growth tests are typically 
performed at 1 Hz (±decade)

– da/dN = 10-5 mm/cycle
– Time for ∆a = 1mm: ~1 day 
– 1 day = 0.02% of 10 year life

• Are the time scales of a typical laboratory 
fatigue test sufficient to demonstrate kinetics 
over decades?

– More accurately simulate the 
mechanical/environmental conditions that 
components see when in use

– Does trace oxygen have long term mitigation 
effects on hydrogen embrittlement?

Ref.: Somerday et al, Acta Mater 61 (2013) 6153.
Ref.: Nibur et al, SAND2010-4633 (2010).



Sustained load testing can be executed over periods of  
days to weeks to months to years
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• Fixed displacement tests

• Placed in pressure vessels & 
pressurized up to 140 MPa 
gaseous environment

– Experiments in this study 
were performed at 103MPa

• Instrumented reaction pins 
allows us to determine 
incubation time

• Directly compare subcritical 
crack growth in hydrogen 
and mixed gas environments

Wedge-opened loaded
(WOL)

ASTM E1681 – Threshold Stress Intensity Factor for 
Environment-Assisted Cracking 



Crack initiation and growth rates were measured during 
constant displacement fracture experiments
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• Instrumented reaction pins allow 
for determination of incubation 
time and crack growth rates

– Continuous data collection 
throughout the duration of the 
experiments

• Time between the initial crack 
propagation and arrest can range 
between seconds to hours

– With a constant displacement, the 
crack growth rates can be 
determined from the load on the 
reaction pin

• Post-test fatigue and heat tinting 
are used to mark fracture 
surfaces
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Material selection and fracture surfaces 
Grade L Grade J

X100 13-8

• SA372 Grade J steel
– YS = 700 MPa

•  SA372 Grade L steel
– YS = 730 MPa

• Cr-Mo pressure vessel steel
– YS = 750 MPa

• X100 pipeline steel
– YS = 760 MPa

• Precipitation Hardened 13-8 
stainless steel

– YS = 1480 MPa 
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~2.3x delay

13-8 Stainless
YS = 1480 MPa
Pressure = 34.5 MPa

100PPM O2 delays incubation time for X100, 
but 13-8 fractured immediately

48
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Values = Ktha (MPa m1/2)
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• X100 also saw a delay with the addition of 100PPM O2

• Both 13-8 samples fractured (a/W > 97%) within seconds of exposure to H2 + 100PPM O2
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• Introducing 100PPM oxygen increased the 
incubation time by factors between 1.5x 
and 15x, but did not prevent crack 
propagation

• For the Grade L and Grade J, increasing 
the oxygen content from 100PPM to 
1000PPM further delayed the incubation 
time, but had a smaller relative effect 
compared to the delay from pure 
hydrogen to hydrogen + 100PPM oxygen

• Based on this data, low oxygen impurities 
should not be relied upon for long-term 
mitigation of hydrogen embrittlement 
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Conclusions and future work
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• Crack growth rates (da/dt) fall 
within the expected ranges from 
previous tests in pure hydrogen at 
similar pressures

• Future research is planned to 
determine the mechanisms behind 
the delay of hydrogen embrittlement 
in the presence of oxygen impurities

– Surface effects that slow the 
hydrogen uptake and 
embrittlement process when 
oxygen impurities are present
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