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Abstract

The costs of quantum simulation tasks tend to be dominated by non-Clifford
gates. On a surface code architecture these gates must be performed via
magic-state distillation and gate teleportation, requiring additional space on a
guantum device dedicated to distillation. This additional space may be
prohibitive to near-term devices where physical qubits are limited. We present
an architecture for early fault-tolerant quantum computers that avoids the
need for qubit-costly magic-state distillation during runtime. It uses only
transversal gates, boot-time preparations of the +1 eigenstate of the single-
qubit Hadamard operator, and state teleportation between [4,2,2] (2D) and
[8,3,2] (3D) error-detecting color codes. Our architecture realizes the universal
logical gate basis consisting of measurement and preparation of qubits in the
/-basis, single-qubit Hadamard gates, and controlled-controlled-Z gates. We
provide explicit transpilations from the widely used Clifford + T gate basis to
this one, allowing for optimal gate synthesis up to a constant prefactor. We
characterize our architecture with two performance metrics and propose
empirical tests based off mirror circuit fidelity estimation to estimate these
performance metrics at various computational volumes

The [8,3,2] and [[4,2, 2] Codes

* The [8,3,2] and [[4,2,2] error-detecting codes combined posses a transversal
universal gateset
* Circles depict physical qubits, colored edges/faces depict logical operators
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A transversal CNOT between the two codes allows state teleportation
between codes [1].
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State teleportation between [[8,3,2] and [[4,2,2] codes, consisting of a) transversal CNOT
between codes, b) logical X measurement, c) classically controlled Z gates, and d) the state is
now teleported from the [[8,3,2] to the [4,2,2] code

Transpilation
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 CCZ+H is universal, given access to a “phase reference” qubit [2] pointing
imaginary subspaces of the Hilbert space

* First synthesize a circuit into a Clifford+T circuit using gridsynth [3], then exactly transpile all

gates from Clifford+T to CCZ+H

to the real and

* [18,3,2] also has transversal CZ, CX, and Paulis, only need to transpile S and T.
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Circuit transpilations for S and T, the phase reference qubit is denoted p. For the transpiled T gate the +1
eigenstate of the Hadamard gate (denoted |H)) is used catalytically, meaning it can be reused for all

transpiled T gates

* |H) can be distilled on the [[4,2,2] code [4]. As |H) is catalytic, this is only done once at

boot-up.

Spatial Requirements

Physical qubits: 10 [%} + 16 Distance 2 surface code: 8(1.5n.| + 112 [5]
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* Each block requires at least 2 additional physical qubits for stabilizer
measurements

Universal Architecture
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Performance

Performance is characterized by two metrics:

 Confidence — probability that data is error-free after error-detection and
post-selection
* Yield —fraction of runs kept by post-selection

Confidence and yield can be estimated at various computational volumes
using mirror circuit fidelity estimation techniques

Conclusions and Ongoing Work

* We present a fault-tolerant error-detecting architecture that avoids magic-
state distillation, achieving significantly fewer required physical qubits than
the surface code at distance 2

* We present a compilation strategy to compile any circuit into a CCZ+H that
first synthesizes the circuit into a Clifford+T circuit using gridsynth, then
exactly transpiles all gates to CCZ+H

* Ongoing work is aimed at development of empirical methods to estimate
the performance of a device utilizing this architecture.
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