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> | Behind The Meter Storage

Energy demand at commercial retailers is growing with electric vehicle charging ubiquity
BTMS consortium investigates battery storage to offset new energy demands
EV and BTMS battery considerations are not equivalent
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% ’ Safety is very important for large BTMS batteries

Pacific Northwest located near buildings = need to select safe materials
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Safety Background

What does it mean for a battery to be safe?
Thermal runaway is the largest threat to whole system failure and danger to surroundings
No stopping cascading exothermic reactions of thermal once started

The Issues
Energetic thermal runaway

Anode and cathode decomposition reactions

Electrolyte flammability

Low flashpoint electrolyte solvents

Vent gas management

Fuel-air deflagrations

Wide flammability range of decomposition products

Thermal stability of materials

Separators, electrolyte salts, active materials

Failure propagation from cell-to-cell

Single point failures that spread throughout an entire
battery system

Need to understand

- Battery failure mechanisms
+ Fundamentals causes of failure
* Impact of failure:
* Heat release
* Gas emission
* Pressure generation
* Burn time
 Waste generation
+ Direct comparisons with like battery chemistries/sizes
* Information to help aid in safer batteries:
« Materials choice
+ Design
* Engineering controls

Nai|l Penetration Thermal Ramp




» 1 Measuring Cell Failure Properties

Accelerated rate calorimetry (ARC) operated under adiabatic conditions to measurer exothermic i
reactions that lead to self heating events at a given temperature
« Gives info about total energy released by cell failure and heating of thermal runaway events

Heater . 18650 cell format gives scalable idea of heat
Heat-Wait-Seek Protocol release during failure
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5 ‘ Safety of Common Battery Chemistries

Amount of heat and how fast it is released from a battery is dependent on the

electrode identity and state of charge
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« Cell chemistry that can make a safer cell that still meets energy density requirements?
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« Cycling conditions that can make a safer cell that sill meets energy density requirements?



s 190-5-5 NMC || LTO Voltage Dependance

A nickel manganese cobalt oxide (NMC) cathode with a high percent of Ni and lower amounts

of Co paired with a lithium titanate (LTO) anode is a good candidate for BTMS needs
* Lower cost / critical material

Less Co content decreases material cost (Ni, sMn, ;Co,, common in commercial cells)
* Cycle Life

LTO (compared to graphite) enables long life batteries
* Energy Density

Increasing Ni content improves cathode capacity, somewhat making up for LTO’s higher V
 Butdoesa NMC| |LTO battery meet safety requirements?

—— 2.6 V cutoff
—— 2.7 V cutoff

1 2 3
Capacity (mAh)

|
Niy oMn, 45€0, o5 (90-5-5 NMC)| | Li,Ti;O,,(LTO) Need to study safety of chemistry and cycling conditions |



90-5-5 NMC || LTO Voltage Dependance

7
Onset of thermal runaway higher and the max heat rate lower for cells cycled to 2.6 V limit
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2.6 V limited cells are safer than 2.7 V!



¢ | Differential Scanning Calorimetry of 90-5-5 NMC

DSC measures the heat flow associated of a sample as a function of temperature
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Cathodes charged to 2.6 and 2.7 V showed more minor differences with voltage
limit but much larger exotherms than the pristine (uncharged) cathode

Cycled LTO

Sapphire Cup . . .
Microcell tests shows that maximum exotherms and self heating rates occur at

lower temperature in cells cycled to 2.7 V relative to those cycled to 2.6 V (agrees
with ARC)




o | Imaging of Electrodes

Scanning electron microscopy of cathodes from cells cycled 1000 times

Charged to 2.7V
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X-ray Diffraction of Electrodes

Powder X-ray diffraction data was collected on a Bruker Trio system equipped with a sealed tube
X-ray source (Cu Ka radiation), Dectris CMOS area detector, and Eulerian texture cradle with an
XYZ translation stage. Power settings for X-ray generation were 40 kV and 40 mA. The scan range
was 5-110° 20 with a step size of 0.02° 20 and a dwell time of 0.15 seconds. Microdiffraction was
performed on small solid samples using a 1 mm collimator and Gobel focusing mirror in 2D
detector mode.

Tuesday, April 30, 2024 11:01 AM
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Intensity A.U

X-ray Diffraction of Electrodes after 10 cycles

Electrodes harvested from coin cells, dried but not washed before analysis
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LTO anode shows no structure change with cycling
90-5-5 NMC cathode has voltage dependent structure



‘ X-ray Diffraction of Cathode 2.6 V Limit

Li, 5Ni, ,,0, phase is used to represent a possible lithiated Ni-Mn-Co oxide phase

Scan Parameters: 5.0°/110.0°/0.02°/94.95(s), I(p)=4720.3/124.5, Cu(40kV.,40mA), Tuesday, December 19, 2023, 11:28 AM
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Geometry: Diffractometer Lp Fitted-Range: 15.0° - 100.0° BG-Model: Polynomial (3) A: 1.54059A (Cu)
PSF: pseudo-Voigt Broadening: Crystallite Size & Strain Instrument: LaB6 Trio 2D uXRD 1mm
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‘ X-ray Diffraction of Cathode 2.7 V Limit

The phases used as phase ID are analogues, not exactly the chemistry of the samples
Li, 5Ni, ,,0, and Li, ,,NiO, phase is used to represent a possible lithiated Ni-Mn-Co oxide phase

Scan Parameters: 5.0°/110.0°/0.02°/94.95(s), [(p)=2257.9/121.9, Cu(40kV,40mA), Tuesday, December 19, 2023, 11:29 AM

v Zero Offset = -0.087 (0.0036) Displacement = 0.0 Distance Slack = 0.0
v Ka2 Peaks Present Ka2/Ka1 Ratio = 0.5 X-Ray Polarization = 1.0

Geometry: Diffractometer Lp Fitted-Range: 15.0° - 105.0° BG-Model: Polynomial (3) A: 1.54059A (Cu)

PSF: pseudo-Voigt Broadening: Crystallite Size & Strain Instrument: LaB6 Trio 2D uXRD 1mm

Phase ID (2) Chemical Formula PDF-# Wit% (o) XS(A) ST(%) a(a) b (o) c (o) Volume (a)
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2 1 X-ray Diffraction of Electrodes after 10 cycles
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Hexagonal (Li,Ni O, analogue #1) Hexagonal (Li,Ni O, analogue) Hexagonal (Li,Ni O, analogue #2)
NMC Cathode 04-012-0511 04-024-3833 04-010-4745 Lithium content
a=b C Volume a=b c Volume a=b c Volume
Pristine 2.875 14.201 101.7 fully lithiated
2.6 V CCCV 2.820 14.361 98.9 reduced lithium
2.7V CCCV 2.811 14.157 96.9 2.812 13.839 94.8 reduced lithium

LTO anodes show no structure change with cycling - same FCC Li,Ti;O,, structure
90-5-5 NMC cathode has voltage dependent phase - Li drastically changes unit cell volume



X-ray Diffraction of Electrodes after 1,000 cycles

15 |
LTO Anode 90-5-5 NMC cathode
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LTO anodes still show no structure change with cycling
90-5-5 NMC cathode has voltage dependent phase - Li drastically changes unit cell volume I



16 ‘ Conclusions

Ni, Mn, (sCO, o5 (90-5-5 NMC) | | Li,Ti;O,, (LTO) is a safer Li-ion chemistry - if proper voltage

controls are in place

Even with LTO anode a fully charged 90-5-5 NMC| |LTO cell will heat rapidly - LTO does not

inherently impart safety!
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~20% loss of capacity tradeoff for immensely improved safety



17 1 Conclusions

XRD was able to show the voltage dependance changes in the 90-5-5 cathode

2.6 V cutoff is enough to stop H2 - H3 transition (Even after 1000 cycles)
Delithiated, constricted c-axis H3 phase a danger for high Ni cathodes even with LTO anode
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19 | Thank Youl!

Questions?




20 | Choosing the right Anode and Cathode

Need long cycle life without sacrificing too much energy density
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Similar mAh/gyyc if cycle to 2.6 V - initially N/P>1 and N/P<1 pm are NMC limited at 2.6 V

N/P>1 & N/P<1 cycled to 2.6 V similar fade - H3 plateau unavailable at 2.6 V even if N/P<1

In early cycles N/P<1 cycled to 2.7 V similar to N/P>1 & N/P<1 cycled to 2.6 V but capacity

increases

N/P>1 & N/P<1 cycled to 2.7 V - higher capacity than N/P>1 and N/P<1 cycled to 2.6 V in
later cycles

N/P<1 cycled to 2.7 V no fade until excess cathode Li depleted - then similar fade as N/P>1

to2.7V



1 | Parts of a Battery

A cell is a device that converts the chemical energy contained in its active materials directly into
electric energy by means of an electrochemical oxidation-reduction (redox) reaction.

The anode is the negative electrode of a cell associated with oxidative « i
chemical reactions that release electrons into the external circuit. o-m

e m |External
Circuit

The cathode is the positive electrode of a cell associated with reductive
chemical reactions that gain electrons from the external circuit.

An electrolyte is a material that provides pure ionic conductivity between
the positive and negative electrodes of a cell.

Cathode
(+)

Anode

A separator is a physical barrier between the positive and negative electrodes
- | o (-)
that must be ionically conductive and electrically insulating.

A current collector is an inert member of high electrical conductivity used to

Electrolyte
Separator
93A]04129|3

conduct current from or to an electrode during discharge or charge.

The casing is the material that encapsulates the all other components of a

battery.

Current - large = fast ; small = slow Voltage - large = more force ; small = less force

A battery consists of one or more cell(s) in parallel and/or series.




> | Battery Terminology

Discharge: An operation in which a battery delivers electrical energy to an external load.
Charge: An operation in which the battery is restored to its original charged condition by reversal of the current flow.

Capacity: The total number of Ampere-hours (Ah) that can be withdrawn from a fully charged cell or battery under specified
conditions of discharge
Specific Capacity: The ratio of the capacity delivered by a cell or battery to its weight (Ah/kg or mAh/q).

State Of Charge (SOC): Remaining capacity in cell or battery, usually given as (%)
Depth of Discharge (DOD): Amount of capacity used for given discharge as a ratio of total capacity (%)

Gravimetric Energy Density: The ratio of the energy output of a cell or battery to its weight (Wh/kg).
Volummetric Energy Density: The ratio of the energy available from a battery to its volume (Wh/L).

Gravimetric Power Density: The ratio of the power delivered by a cell or battery to its weight (W/ kg).
Volummetric Power Density: The ratio of the power available from a battery to its volume (W/ L).

Efficiency: The ratio (%) of the output of a secondary cell or battery on discharge to the input required to restore it to the
initial state of charge under specified conditions.

C-Rate: It is the rate of charge or discharge of a cell or battery. Generally, it is expressed by n C.
Example: 0.1 C means the full charge or discharge time is 1/0.1 h (10 h); 10 C is 1/60 h (6 min).



Trying to see if there are major structural changes in cathode with charging voltage
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See more prominent peaks and more intense E; mode, but not qualifiable
differences between 2.6 and 2.7 V
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